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When laser light containing two frequencies w; and w, impinges on a plasma with w,
=W —wy, plasma waves are resonantly excited. The ponderomotive force of these waves
is much larger than that of the beam, and the self-focusing effect is greatly enhanced.
With use of CO, laser light of only 5X10° W/cm? intens ity and a plasma at 0.6% of critical
density n,, this effect is observed as a strong (10°~fold) enhancement of refracted light
at 6=5°~12° when the density is at the resonant value.

PACS numbers: 52.35.Mw, 52.25.Ps, 42.65.Cq, 52.40.Db

In laser-driven inertial-confinement fusion,
the use of multiline lasers has been suggested as
a means of suppressing undesirable parametric
instabilities such as stimulated Brillouin scatter-
ing. Though a broadband pump has been shown!
to be helpful, use of a discrete-line spectrum in-
curs a risk that other instabilities may be driven
at resonant layers where the plasma frequency
w, matches the frequency difference Aw between
two lines. In particular, we suggest a sequence
of events in which optical mixing first excites a
plasma wave, which is driven to larger amplitude
by stimulated Raman scattering in the forward
direction; the ponderomotive force F, of the
plasma wave then creates a density depression
on axis, causing a deflection of the laser beam
by refraction. Such a mechanism could alter the
focusing of beams onto a small target. The ef-
fect is similar to ponderomotive self-focusing of
light by a plasma, but the plasma wave greatly
amplifies the effect because of its larger pon-
deromotive force.

The standard theory of self-focusing has been
applied to plasmas by Max,” and we use an exten-
sion of Ref. 2 to explain the observations. As-
sume a locally Gaussian beam profile and make
the paraxial ray approximation. The amplitude
of the light wave (w,,%,) is then given by

E ()= (E/f)exp(-r*/a’f?), (1)

where f (z), the beam width factor, is determined
by?

df /dz == [Ry"*+2U (1) - 20 (f)}/2 @)
with

2 exp(=71%/f?)
k02a72 k02a262

U(f)= (3)
Here a is the beam radius where it enters the
plasma (2 =0, f =1); 6 is the collisionless skin
depth ¢/w, calculated with the undisturbed den-

sity; R,=(-df/dz), ! is the incident wave-front
curvature radius; and

n=m=vy/ 2., v,*= KT, +KT)/m, @)

v, being the peak quiver velocity. At intensities
below a critical value,® f will decrease from

unity to f,;, at the focus and then increase indef-
initely; at higher intensities the beam will oscil-
late in width. The turnaround at f,,, is the re-
sult of diffraction in the near-vacuum conditions
created by Fy near the focus; hence, it is es-
sential to keep the exponential nonlinearity in Eq.
(3). In the absence of plasma (5 - «), Eq. (2) can
be integrated to give the focal distance ’

z2o=R,(1+4R%/k a®)" 1. (5)

In a homogeneous plasma slab, Eq. (2) must be
integrated numerically to give a new focal dis-
tance z,. Applying this to an inhomogeneous plas-
ma of dimension R, one can expect refraction to
have a significant effect on the collimation of the
exit beam when the focal shift Az =z,-2z, is com-
parable to R.

To extend this formulation to resonant self-
focusing, one merely has to replace E’ by an
equivalent intensity AE  due to the plasma wave,
which is assumed also to have a Gaussian pro-
file. The amplification factor A is found from
the ponderomotive forces Fy; in each case:

Fyy (light) = = (w,%/w,?)V(E 7)/87 (6)
F . (plasmon) = — V(E %)/ 8n, (7)

where E, is the amplitude of the plasma wave.
Poisson’s equation gives |E,| =4nen,/k,; and,
since |vy| =eE/mw, and v ,= w,/k,~ ¢ in forward
Raman scattering, Eqs. (6) and (7) yield

2 2
4 -F(plasmon) _ v_qm> 4%) (®)
F; (light) Vg Mg vo/c

Since A can be very large (for instance, A =122
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for n,/n,=1% and I, = 10*° W/cm? of 10.6-um
light), we neglect F; (light) in the presence of
Fy(plasmon); Egs. (4) and (8) then give

n=n,=(c/20,)n,/n,). 9)

As long as the plasma-wave amplitude has the
same radial variation as the beam intensity, Egs.
(2) and (3) describe resonant self-focusing if Eq.
(9) is used for 7 instead of Eq. (4).

The observations leading to the above analysis
were made on a previously described setup® com-
prising a gain-switched 30-J CO, laser system
and an arc plasma target in 4 Torr of argon. The
radially incident laser beam is focused by an f/
7.5 lens to a 300-um-diam spot on the column
axis, The undeflected beam, of half-angle 6 =4°,
is blocked by a beam dump subtending 6 =5°.
Forward-scattered radiation between 6 = 5° and
12°, integrated over azimuth, is collected by an
f/2 lens, analyzed by an infrared monochro-
mator, and detected by a Hg:Ge photoconductor.
An intracavity SF, cell is used to produce vari-
ous intensities of the 10.6-um (P-20), 9.55-pm
(P-20), and 10.26-um (R- 16, 18,20) lines. At a
pressure of 3.5 Torr in the cell, the line ratio is
approximately 0:1:1. Though we show data only
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FIG. 1. Forward-scattered light (solid lines) and
plasma density (dashed lines) as functions of pulse
timing. The stray-light level is 1, and the 9.55-um
data have been displaced one decade downwards for
clarity.

for this case, the same saturation level was ob-
served for a ratio as low as 0:1:1072.

Figure 1 shows the dramatic change in forward-
scattered light as the density is changed by vary-
ing the timing between the arc and the laser; the
peak signal is almost 10° times the stray-light
level. It is seen that the effect occurs whenever
the density is close to n,=5.8x 10 em™?, at
which w, equals the beat frequency Aw between
the 9.55- and 10.26-um lines. The density reso-
nance is shown unambiguously in Fig. 2, in spite
of a small systematic error between two methods
of measuring the density. Uniformity of the den-
sity along the laser axis is shown in Fig. 3, ob-
tained by Abel inversion of a ruby-laser inter-
ferogram. Figure 4 shows the dependence on in-
cident intensity at n=n,. Threshold is below 6
% 10° W/em?®, and saturation is reached at 2x 10%°
W/cem?. The falloff at high I, is due to a (meas-
ured) rise in » from 6x 10® to 8x 10'® ¢m"3 re-
sulting from laser heating and ionization. This
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FIG. 2. Forward-scattered light in the 10.3-um line
VS wp /Aw, with density measured by ruby interferom-
etry (squares) and by Stark broadening of a seed gas
H, line. The shaded area indicates the spread of dif-
ference frequencies in the incident beam.
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> FIG. 3. Plasma density profile along the laser axis.

effect also shortens the scattered light pulse at
high powers.

By varying the line intensity ratio and, particu-
larly, by using a weak, nonresonant 10.6-um
probe line, it was determined that the scattered
light had no measurable frequency shift (<3 GHz).
The light is refracted and nof red- or blue-shift-
ed by an amount w,. Yet the density resonance
requires the existence of a plasma wave w,. Di-
rect detection of this wave by ruby Thomson
scattering is impossible because of the large val-
ue of @ =1/kxp. An attempt to detect a Stark-ex-
cited forbidden line* of a He seed gas failed. How-
ever, evidence of the plasma wave was found in
a line around 11 um (Fig. 4, inset), which is
presumably the beat between w, and the 10.26-
pm line. The 11-pum line is 30 X stray light and
appears only at n=n,.

To compare with theory, we take R,~1 cm,
approximately the radius of the uniform plasma.
The f number of 7.5 then implies a= w cm. For
our arc conditions T, =5 eV and T;~T,/3, we
have 7,°=1.57x10"*’], for 10-pm light. A den-
sity of 5.8x 10 em™? gives §=22.1 pm. Numeri-
cal solution of Eq. (2) for these parameters yields
the curves f(z) shown in Fig. 5 for various val-
ues of n°. These curves show an increasing fo-
cus shift up to % =%; for higher 7, the focusing
returns to its vacuum state as the ponderomotive
force blows the plasma out of the beam, The in-
set of Fig. 5 shows the focus shift Az vs 7° and
the corresponding values of I, (if n=n,) and n,/n,
(if n=n,). It is seen that ordinary self-focusing
would not be observable at intensities of = 10° W/
em? without the resonance amplification effect.

Saturation of the plasma wave would occur at
n,/ny=11if it were caused by wave breaking @,
~p,). Pressure balance, however, sets a much
lower limit., Setting F; (plasmon) equal to dp/dr,
we find n,/n,=2v,/c~0.7% at T,=5 eV. Actually,
Fig. 5 (inset) shows that the refraction effect sat-
urates at a lower value; the peak of Az occurs at
1,2=0.3, corresponding to n,/n,=0.4%. This lev-
el is consistent with that (~ 1%) inferred from the
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FIG. 4. Growth curve of forward-scattered light.
The maximum ratio Pg /I, corresponds to a refracted
power of 25%. Inset: Spectrum of satellite observed
near 11.0 um.

intensity of the 11-um line assuming that it is
produced by Thomson scattering of 10.26-pm
light by the plasma wave.

We must now relate n,/n, to the pump intensity

z/R,

FIG. 5. Relative beam radius f vs distance z for
various ponderomotive force parameters n?. Inset:
The focus shift Az vs 12,
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I,. When the pump lines are equally strong, no
stimulated Raman growth is necessary, and we
may use optical mixing theory. In a homogene-
ous plasma, relativistic nonlinearity of the wave
limits its amplitude to®

n_ (16 _m_m)l’sz(ﬁzof>”3
n, \3 ¢ ¢ 3¢

~ X 10781 V2, (10)

In a finjte plasma, convection limits the wave
amplitude. The group velocity is v,=3,%/v,
=~3,%/c, and the radial distance is afmm, where
fmm— 0.04 from Fig. 5. The wave energy W =E N
8 is thus lost at the rate dW/dt =Wuv, /af ... The
wave amplitude ¢ grows linearly w1th time5:

E=0,/wy=Woos/ Iy t/ 4Ry~ (v,2/8c%)ct.

The wave gains energy W « £? at the rate dW/d¢
=2W/t, which equals the loss rate at ¢ = 2L/v, ,
when the amplitude is

_J._Q_MImm.

~8.5% 10" ¥, (11)
n, v,

Thus convection is the limiting factor for I, <19
X 10%°, and we use Eq. (11). Setting ny/ny,=0.4%
in Eq. (11), we find that /,=4.6x 10° W/cm? at

saturation, in reasonable agreement with Fig. 4.

The threshold may be defined as the intensity
where A=1. From Egs. (8) and (11), we find a
threshold intensity I, = 1.1x 10®* W/em?, again in
reasonable agreement with observations.

Resonant self-focusing is relevant both to laser
fusion, where it is important to avoid density
resonances by suitable profile modification, and
to ionospheric experiments, where enhanced self-
focusing can be used greatly to amplify micro-
wave beam intensities.
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