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ABSTRACT

In recent helicon wave experiments by our group
and by T. Shoji of Nagoya University, it was found
that a second, usually larger, peak in density
occurred at very low magnetic fields. This peak
cannot be caused by the lower hybrid resonance
because at low fields the lower hybrid frequency
is even farther from the operating frequency and
the effects of ion motion are even more negli-
gible. By retaining electron momentum in the
equation of motion, we have found a second root of
the dispersion relation which dominates at low
tields. This root is related to the electrostatic
electron cyclotron wave in a magnetic field; that
is, to the lower Trivelpiece-Gould mode in cylin-
drical plasmas when w, >> w.. At magnetic fields
of interest, the new mode is closely coupled to
the usual helicon mode and becomes partly electro-
magnetic. Our treatment includes the gyratory
motion of electron fluid elements in the magnetic
field but neglects finite Larmor radius effects
caused by thermal motions. The formalism also
treats damping properly when it is not small. The
simple helicon mode is recovered in the limit of
small w/w., while the second mode disappears, its
radial wavelength becoming infinitesimal. The new
mode is of particular value to plasma sources
because of the small B-fields needed to achieve
high densities.



1. INTRODUCTION

The work of Boswell and co-workers (1982, 1984, 1985, 1987a,
1987b) and of Perry and Boswell (1989) has shown that excitation
of helicon waves can lead to efficient generation of high-density
plasmas. Chen (1985, 1988) has proposed that the efficient
absorption of rf energy in these experiments is due to Landau
damping and that plasma sources can be designed so that the
trapping and acceleration of electrons in such waves produce
primary electrons of the optimum energy. Recent experiments [Chen
(1989), Chen and Decker (1989, 1890)] have given credence to this
hypothesis. The dispersion relation for simple helicon waves of
the type discussed by Woods (1962, 1964), Harding and Thonemann
(1965a,b), and Lehane and Thonemann (1965) requires that the
density n be proportional to the magnetic field B when all else is
held constant. This basic relationship has been verified by
Boswell and his co-workers, by Chen and his co-workers, and by T.
ShojJi of Nagoya University (1988).

In varying the ion mass, however, Shoji (1988) found that the
linear increase of n with B occurred only with the heavier gases A
and Xe. In Ne, a well-defined density peak occurred near the lower
hybrid frequency (B = 590 G for £ = 8.5 MHz). In H:, D:, and He,
however, the peak occurred at a field (150-200 G) which was near
the lower hybrid resonance but which did not vary with ion mass.
Recently Chen and Decker (1989, 1990) have observed a significant
peak in argon at very low fields (10-50 G). For low ion masses,
one would expect that the simple helicon relation calculated with
infinite ion mass would be affected by ion motions when the the
lower hybrid frequency approaches the rf frequency. The low-field
peak in argon, however, occurs when the lower hybrid frequency is
even farther from the rf frequency than at the normal magnetic
field for helicon waves and must, therefore, be caused by an
effect other than finite ion mass.

When finite electron inertia is included in the theory of
helicon waves, Klozenberg et al. (1965) found that there is a
second root to the dispersion relation. We find that this root is
esgsentially an electrostatic cyclotron wave propagating at an
angle to the magnetic field (Trivelpliece-Gould mode). The new
wave has a frequency below but near the electron cyclotron
frequency and can be responsible for the low-field density peak
that is observed. If so, a new type of plasma source can be
designed which requires very little power in the magnetic field
circuit.



11. THE FOURTH-ORDER WAVE EQUATION

We consider a cold plasma with stationary ions which fills
uniformly a cylinder of radius a containing a uniform, coaxial
magnetic field B, = B, z. The electrons have no zero-order drift
but in their wave motion have a phenomenological collision rate .
The first-order equation of motion is then

m [ —e (E+vx8y,) —mry .

¥t 1)

The only other equations required are Maxwell’s equations with
displacement current neglected:

‘Z"f’-:_"""é_ (v.8 =0) (2)
Vx8 = r\‘,i (Y_?_-i'—'o) X (3)

Since the ions do not move, the plasma current is given by

= "‘oe! .

&

(4)

The resistivity ﬂ is related toy by

v
Nz = (5)
“oet.
Replacing v with j and ¥ with v], we can solve Eq. (1) for E,
assuming perturbations of the form exp(-imt), obtaining
E= & (5x8)+ v (- )4
S en, )20 ] v )3 - (6)

The first term in Eq. (6) describes the electron E x B drift and
contributes only to E, . The second term in Eq. (6), which gives
all of E,, but only a small part of E;,, consists of two parts.

The vnj term is Ohm's law along B. and cross-field mobility across
B.. The ie® term is actually independent of collisions and repre-
sents electron inertia along B, and polarization drift across B, .
This last drift, coupled with the E x B drift, describes the
cyclotron motion of the electrons. Eqs. (2-3) and (6) are suf-
ficient to determine the wave variables E, B, and j. We follow
the procedure of Klozenberg et al. (1965).



Substituting for j from Eq. (3), taking the curl of Eq.(6),
and using this in Eq.(2), we obtain the following equation for the
fluctuating magnetic field B:

1
bt )UxUxB - = kB, VxB + % wpeB =0, (7
( YUxUxB - /X% Peo®2

L.l

Eq. (7) contains the assumption that B varies as expli(kx - wt)l.
With the definitions

WCEE<S§§ . ldg“E ::ﬁ: ' 8)
Eq. (7) becomes
(,_).‘.;v)v;,gv-gg - kwc V8 + (wu‘,llc“)_g_ = 0. (9)
This can be factored into
(Bi—Vx)(B,-Vx)B =0, (10)
where B8, and 8, are the roots of the quadratic
(N*i\?)f’l-k‘-"(s* Lwet/ct =0, (11)
Let the solution of Eq. (10) be the sum of B, and B., which
satisfy the equations
Y‘glz 58, ' Y‘?‘l :ﬂt 8. . (12)
Since the linear differential operators (8, - Y x) commute, it is
clear that B = B; + B: satisfies Eq. (10):
(8,-vr)(p,-v*)B, + (,-Vx)(g,-Vx)8, =0,
B =B, + B is also the most general solution. From Eq.(2) we see

that ¢:(B, +B.) = O, but ¢-B, and ¥:B. do not necessarily vanish
separately. Taking the curl of Eqs. (12), we have
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Y(V' V) -Vg, = (,,‘z?.
Addition gives viB, + ple, - (g, +8r8,)

since V['V (B -\»3‘)] = 0O . Since B, and B, must be different
functions 1if B, 8., each side must vanish individually; and,
hence, ¢ +:B; must also vanish for each wave. Thus, B, and B:
satisfy ™

VI8, 4p2820, Vi, +£18,7 0

The constants B8, and 8. can be written more succinctly by
defining the complex constants

d=':)__\/\°€ o :9_&_1.

k B, ket (14)
- WA
¥z Koo (15)
<

The roots of Eq.(11) can then be written
) Y
- — e l-l‘d 1‘]
‘4“2 Zy[l* ( Y) . (16)

The usuval helicon mode is 8;, with the minus sign, in the limit
w-eo. Expanding the square root, we see that

(‘\2.7‘:).‘(2"‘3'*2&13'1):“(”&3'). (17)

When ¥Y>>W , the inertia term can be neglected, and we have

\alv

B, =+ T ) = a (1438

(18)
where ay  _ X noe ™ t)ol"
0% %o, - 28, T Wp, o)

Eqns. (13a) and (18) are precisely the equations treated previously
[Chen, 1985)1.



The new root, B8, takes the plus sign in Eq.(16), and its
nature can be seen in the limit of small B., so that Y is large
and o is small. 1f 4a3-(< 1, Eq. (16) gives

(5 ~ ) - kuwe ) (20)
LI 1 IRE XY

For Y = 0 and B;% = Kyo:2 = k; 2 + k.f@{ the frequency is

0= (kn e )b, = L tos ©. (21)

This is just the electrostatic electron cyclotron wave in a

magnetic field, r the lower Trivelpiece-Gould mode in a cylinder
when m;2/$> L 74

The waves B, and B., however, are not always so well
separated. The two waves merge when 4xy = 1. This condition,
from Eqs.(14) and (15), can be written

w v C w
Y -3 V? ) ? k - (22)

Let us take mv,*?/2 50 eV, the optimum energy for the ionizing
electrons in argon. Eq. (22) then can be written

1]
2 -, (23)
83
where, as usual, n;+ is n, in units of 10'* cm * and B; is B, in
kG. For n, = 2 x 10'? cm %, we see that the critical field is
128 G. As B, is lowered toward this value, the effect of electron
inertia cannot be ignored in the helicon wave. At fields much
lower than this, the electron cyclotron wave is dominant.

I1l1. SOLUTION OF THE SECOND-ORDER WAVE EQUATIONS

Each of the two waves satisfies the equation
V"'G*(L‘@ =) (24)

and therefore will have the same solution but with a different
value of B. In cylindrical coordinates, the components of Eq. (24)



become separable if B is expressed in terms of its right- and
left-hand circular-polarization components given by

28,=8 -8y waB = B, By , 8,28, . .

The inverse transformation is

V28 =B,+8, 3 8, = (8e-8)) , 6,78, (26)
For B X expli(m& + kz - ot)], Eq. (24) then becomes

2L 4 L2 ("‘“)“ - (27a)
{'&‘f‘- ?)f*[‘- ]23 =0 a

n ,\___}__ - (h'ﬂ)"’ -
'-'i}» ¢ 2¢ *[\ ]}6 -0 (27b)

M l_) |- !2} -
'3?\4?3? + ( ?')}6* =9, (27¢)
where f = Tr, T2 = B2 - k2. (28)

The solutions of these Bessel equations that are finite at the
origin are:

SQ = C"}'m_‘ (Tv) (29a)
8 = T, () (29b)
G% < C.,'SM(T.—) .

(29¢)

Since Eqs.(2) and (3) state that ¥ x E = iw(B; + B,) and
Mo l-= g x (B, + B»), we may define E,, E., j:., and j: such that
g = E, + E; and j = j:, *+ Jj2; then Eqs. (2) and (3) are satisfied
for each wave individually. From Eqs. (3) and (12), we see that

(30)

‘2‘. = (ﬁ')‘o) 8 .



The coefficients C,, C., and C; may now be found (for each wave
separately) from ¢-B = 0 and by comparing the results of
evaluating E;, in terms of B, (j = 1,2) in two ways: from Eq. (6)
and (30), and from Eq. (2). Dropping the subscript j, we have from
Eq. (26) the B components

8, = QT T, (31a)
Bg ot c (C|3-M_‘ - Cljn*‘)
(31b)
(31 2 Cqd
(31c)
where C, =¢C'/42 and cC. = CJ /742,
and the argument Tr of the Bessel functions is understood.
The condition ¥'.B = 0 is
t, B [ . =
B, 4+ =X o YQQ*.\(B%-O\ (32)

where the prime (') denotes 3/?2r. With Eq.(31), this becomes

' \ ! § W
CTlmay* 20T+ T, ¢ TC T w6, - COme, ) +ik CyTim(33)

Wsing the recursion relations =0.
3 =TT, - 5T =T (3, - %5, (34
we find
T = SR S |
+ ¢ [vT.- "%"TM"" “"':T‘ Tmer ] ¥ 1KC3Tm =0 y 3%
c3:-iIE (¢,-C,) . (36)

Next we consider Eq.(6). Substituting Eq. (30) into Eq. (6), we
obtain



where
T‘O v Nyl "‘D ks UC.
1t will be convenient to define
) - W A Lt Wt
‘M='\Z—(l- “ﬁ?é“r =4, %
® ) c c
and
- =Q, "4, .
q*, } qz, s a_ | Z

Eqs. (37) and (31) then yield

EY < i(Q_C|3—M-| -G C:j

+29me)

B = -(a.C,Tpy +a,C, Ty, )

The rotating components are given succinctly by

Finally, we use Eq.(2), whose components are

8,7 55 (€, - kEy)

(37)

(38)

(39)

(40)

(41a)

(41b)

(41c)

(42)

(43a)



8, = o (L€, +{E])
¢ P oowm
8,= ";—u(Y‘Ee) - o By -

Inserting the solutions Eqs. (31) and (41) into Eq. (43),

. MA —_
(‘-%q“)c'jh-| * (l_ %qd- )CZ-I“*‘ + L —VT:: C’SJW\ - 0

. Q !
0-Ke e, T, - (1-5 €4) CTmer * € 3€C3T, =0

T (C\_C. =6, C,)],. - wCqJy, =0

where we have used the recursion relations [Eq.(34)1.

(43b)

(43c)

we obtain

(443)

(44b)

(44c)

The sum and

difference of Eqs. (44a,b) then yield the following relations:

-k ¢
LS8 Ty v 54,03 (T + 2T ) =0 a5
¢ ! WM —
2 (“ "‘q-g-)c Jmay ‘%‘»c‘zc3 (Tn - ';‘Jm) 0
(46)
The Bessel functions cancel out according to Eq.(34), giving
2w ok 20w k
CS qz? (‘ Ga-)c' - —qj;t-_(‘- :q_._) Cz- ca?7)
Thus K K
Cp =G (-5a-)/(1-54y) (a8)
Egqs. (36) and (44) also give
-7 - T -
cs"‘TZ(C' <,)= \B(Q_C, a,C, ). (49)
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These relations are all consistent with one another. Indeed, Egs.
(2) and (6) are six scalar equations for the two ratios C,/C, and
C:/7C,, but the superfluous equations simply reduce to the known
relations Eqs.(11) and (28). Egs. (48) and (41), then, give all
the wave components in terms of a single amplitude C,. In terms
of more familiar variables, these relations are

dﬁ{ = (wiv) v, ]

Cz: C

Va-@iv(wtv)/uc ] (50)
npe 28T g (Ltiv)/We
370 = SLIH(wtiv)fu ) ‘o

where o and 8 are given by Eqs. (14) and (16). An alternate
expresgsion for C; is

= C‘l‘k f_ (l— ::'w.l . (52)

€3

Before leaving this solution, we wish to estimate the extent
to which each wave 13 electrostatic. The space charge is given by

- ' im -
V-E = -(rB) + ~Eg™ kE, . (53)
From Eqs. (34) and (41) we obtain

VE =i (Ta_C,+ ka,_C3 ~Ta,Cy) T (Tr) (54)

This is in general quite a complicated expression, but if a, is
samall, we have a, ¥ a. and thus C;, & C,. We then have

VB = al(:l\c +1kCy )Ty,

B w U- ’___ kr LTIV (55)
=2k 5les, 1) + (1-—1=, ~ |-

Since 8 = o« for mode i1 while 8 > o for mode 2, it i3 seen that



mode 2 , which is basically an electrostatic cyclotron wave, has a
much larger electrostatic component than mode 1, which is
basically an electromagnetic whistler wave. Mode 1 helicon waves,
nonetheless, have a sufficiently large electrostatic E-field to
make their wave patterns almost orthogonal to those of electro-
magnetic waves in a vacuum waveguide.

IV. CHARACTERISTICS OF THE TWO WAVES

A) The Undamped Modes

The total wavenumber 8 is given by

g:i\}(\:(«-ww‘h] , (56)

where, for VY = 0,

i
Ykw . k v c* (57)
Note that o, 8, and are functions only of n,, B,, and v, = w/k,
and X i real in this section.
1. Condition tor merged roots.
The two 8's are identical if
W
4,{X-.~.| or _e_\.,_‘f. :--’-. (58)
c ¢ 2
For instance, if n, = 10'> cm *, and vo = 4.19 x 10° cm/sec,
corresponding to E., = mv? /2 = 50 eV, then w. = 5 x 10° sec~!, or

B, = 284 G. The common value of 8 is

=L - kve - LY
P’zy"i’a 2V, (59)
Solving for v, and inserting into Eq. (58), we obtain
Ve W -1 - c (60))
2

e a
uc C z'T P“ \n’? .



Here, we have taken 8 = T and T = p,,/a, where p,; is the first
zero of J, (Tr) and a is the tube radius. Taking p;: = 3.83, we
obtain a critical tube radius

a = 0.20 / +dn,. cm, (61)

which is independent of v, and w.. Since B is complex for 4xy >
i, both waves are evanescent unless 4a¥ < 1; but the condition is
not as simple as Eq.(61) for the coalescence of roots.

2. Condition for geparated roots.

The two roots are well separated if

WoVo,el or B_>> 89.7 40 (for E, = 50 eV) (62)
2

4ive
In that case, we canAapproximate dispersion relations for each.

a) Helicon wave. For small 4ay , we may expand the square
root in Eq. (56) to second order to obtain

v
g, = o((l-taly) = %%&—L[\«- (%‘2 \"’:i)"] \ (63)

where the second term is necessarily small.

b) Cyclotron wave. Expanding Eq. (56) with the plius sign, we
obtain

)
—

R LGN

B) Boundary Conditions

1. Insulating boundary

For a non-conducting tube, the boundary condition at r = a is
. _
v By 0. (65)

a) Coupled modes. The two modes may have non-vanishing 3. s
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such that they cancel each other at the boundary. Wwe then have

£ By [!ler o, (66)

where

By = Ci Ty (Ta) CaTmyg, (Ta) (67)

for each mode, and the B's are given by Eq. (56). 1t will be
convenient to define

A‘:(C|)‘ , R, = ((;IC,)‘ for wave 1
(68)
A-{—‘(C,)z ) ﬂ.b: (C‘L/CI)L for wave 2
Then
BA, (J'h-‘ﬁ- RIme )t (a A, (T,.., R, Tiar, ) = 0, (69)
where o (‘ L
1 . o=py (l=ky)
T =4 —L‘.; Ry = : (70)

-y (v Lr)

b
Both « and Y are fixedhno, B, w, and k (which had to be chosen at
the outset) and do not depend on the wave in question. Then the
B’s are fixed by Eq. (56) and, thus, so are the T's and R’s, which
are different for the two modes. Eq. (69) then gives the ratio of
the amplitudes, A;/A,.

b) The merged mode. Here 86, = B,, and thus T, = T;, A = A,
and R, = R:. Eq. (69) then gives
Ty ¥ RTmyy =0 (at r = a) . (71)

Since 4«3’= 1 here, we may use this in Eq.(70) to obtain

-2ky - W -2lw
R = IRY = Pe-ivw

Y = o). (72)
\*Zky LTI Z, |\ (for 0

We see that this mode is right-hand elliptically polarized.



polarized at the center, as discussed above.

The boundary condition for either wave is given by Eq. (71)
with the corresponding value of R. By use of the recursion
relations Eq.(34), the boundary condition can also be written

(l-P.)‘JM' + (H-R)% T =0 at r = a. (78)

From Eq.(75), we find
ty

=R
R ol-g 79)

>

so that the boundary condition Eq. (78) can be written

™ T = ,(ﬂX' /
- = =3 T . (80)
a ™ ‘—p ™

In the limit of zero electron inertia, both y and « - 6 approach

zero. To recover our previous result for the helicon wave, we can
substitute for B8 from Eq.(63) to obtain

, (81)

which is precisely the boundary condition we obtained earliier for
the w/w. = 0 case.

2. Conducting boundary

Now we require E, = 0 and E, = 0. From Eq.(41), we have

Eg = - (6_Ci Ty ¥ G4Ce Tomsy ) (82)

Wwhen a; = a,-(w + i)y )/w. is not zero, both boundary conditions
cannot be satisfied. Since E; can be expressed as a sum of J, and
J.’' terms, both J, and J.' must vanish at the boundary, and that
is not possible. The waves can nonetheless exist in a conducting
cylinder because the plasma will not extend all the way to the
wall. A thin vacuum layer near the wall will allow E... to be



finite, and tangential surface currents will flow there. However,
radial currents cannot flow through the vacuum, so the boundary
acts like an insulating boundary. Unless the vacuum layer is
thick, one does not have to match to the vacuum solution; the in-
sulating boundary condition will be followed approximately.

In any case, we can show that the condition E, = 0 does not
differ much from the condition j. = O. It does not differ at all
if a; = 0, the ideal helicon case. Defining

(R V)
z=ky = 2V (83)
€zky o

we can write Eq. (82a) as

(1-€)C,T,,_, + (14e)C, T, =0. (84) .

Converting to J. and J,' by Eq.(34) and using R = C, /C., we obtain

-R ' ™ 1-R
(——‘HR G)Th -t--;:(\-e ;;—R*)'IM-O. (85)
Eq. (79) gives
- efp
+R a-g (86)
so that Eq.(85) can be written
T ) L 5
€xd,, ° a—(d-p +¢ (3)3',., ) 87

In terms of Y this becomes

wo - key 7'
TJn - ;(_b_‘.k\-\,l./; ™

(88)

which differs from the insulating boundary condition Eq. (80) by
only the last term in the denominator.
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C) Excitation and Damping

1. Excitation

Iin the laboratory, the helicon and cyclotron branches will
probably be excited as separate modes, satisfying the boundary
condition separately. For simplicity, we discuss the collision-
less case ¥ = 0. Then

B, alitdy) 2
(89)

~ L ~
P ¥ T4 ¥ o

where

L T 2 T
[ =T 4k, (90)

1f the lowest radial mode is excited for each wave, so that T =
pi: /a8, then k, will be different from k;. Although a common k was
chosen initially, we can take different k’s when the waves are
uncoupled. For ¥ = 0, Eq.(11) becomes

BT - kuw T+ wwet/c* =0 (91)

where we have taken 8 = T. Solving for w/k, we obtain

W, T

LA \'J (92)
k- - ° T“\. k"\rl“'-
For the helicon mode, using 8, from Eq.(89) and assuming 6, = T,
we find
ks *
:ﬂ -V = EZEL 1‘ - uhc P"
k e wet —"‘\,,, = ° (93)

This is the same as Eq. (92), with u?ﬂ?)) T2. For the cyclotron
mode, using 6; from Eq.(89), we find

We - ow 2. (94)

v = £ = c
° T Pn}

.
k

which is the same as Eq.(92) with w%<<< T?. Since both waves
have v, proportional to B,, it would seem that sweeping the
magnetic field would not make the dominant mode jump from one to



the other.

However, the observations can be explained as follows.
Starting at large B,, a density is reached which satisfies Eq. (83)
for a value of v, that gives good production of primaries. The
helicon mode is dominant. As the field is swept downwards, the
density n, falls linearly with B,. Eventually, the field becomes
so low that Eq. (84) is satisfied for the optimum v,; then the
cyclotron wave is excited and the density rises again. At these
low fields and high densities, w. and w, do not satisfy Eq. (93)
any more, and the helicon wave is not excited.

2. Damping

a) Merged mode. For this mode we have 4ax = 1, where « and X
are given by Eqs. (14) and (15). Solving for k?, we obtain

4yt W
* .. —
k= tg;&r(‘* v . (95)

Another equation for k* arises from the condition

Y 1 (zu‘w 1
T .1 * o — - -
g =T +k = ("7(3 = (2a)" = —k—f,:';,_) . (96)
This leads to
¢ 1L T+ ' - bﬂdf
xtaT k--4Q =0 where Q2 B 97)

Since Eq. (95) leads to complex k* whereas Eq. (97) gives real k2,
there can be no merged mode when there is dissipation.

b) Helicon mode. Here we have

r;t =T takt & (o (\-\-;.()]1' (98)

Y

where X=€/k, ol = Q/k,

with ¢ and Q defined by Eqs. (83) and (97), respectively. This
leads to an 8th order equation for complex k:

¢ -
¥+ T - QY (kY v2eq kv 'QY) =0 (89>



To get an approximate answer, we let k = k. + ik, and ignore k; in
small terms. Eq.(98) then becomes

- ® ER - 42 M (100)
Bzl 5R) = (k)™ 24
This yields
L= & (e )
v r 4 c (101)
s & v
1 )
¢ Pkt W (102)
The ratio is
L T
ke W WY M (103)

which reduces to our previous result (V/w)(c?T?/w,2) when T is
approximated by the first term of 8, in Eq. (98).

¢) Cyclotron mode. From Eq. (89b), we now have

{;“1:-\-1*\‘1:(%5_%31'_ (104)

This is a 4th order equation for k. As an approximation, we
define 8, as in Eq. (100), whereupon Eq. (104) becomes

*_g.ek-€Q =0, (105)

Again writing k = k. + ik,, and also ¢ =€, + i€,, we can solve
the real and imaginary parts of Eq. (105) to obtain

- 4R6, M
k.= Lp.¢ r[l (1+ ;er;\ 2] - Fr +% , (106)

(107)

\C;f-v%' fl‘,*&/kr

[ 1"{5rw/k(uc !

where B8, = T. The ratio is



N v ﬁr E
E"N v X r ~Y T

k- W e ~p 0l T W k t QB e le, - (108

1V. CONCLUSION

We have shown that the density peak at low magnetic fields
in helicon-wave discharges can be explained by an electron
cyclotron wave.

The following tasks remain to be done:
1. Calculate the energy absorption profile.

2. Find expressions for the electrostatic and
electromagnetic parts of the E-field.

3. Incorporate the effect of an equilibrium E-field. In
particular, the enhancement of the ambipolar E-field by a central
electrode can cause the fast electrons to be confined in axis-
encircling orbits with radii smaller than their Larmor radii.

4, Calculate the effect of a zero-order radial density
gradient.

5. Calculate the distribution function of the fast electrons
and consider their effect on the dispersion relation.
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