
_________________________________________________________________________________________________________

Electrical Engineering Department
Los Angeles, California 90095-1594

UNIVERSITY OF CALIFORNIA   •   LOS ANGELES

Low frequency electrostatic instability
in a helicon plasma

Max Light, Francis F. Chen, and Pat Colestock

LTP-103   March, 2001

Low Temperature Plasma
Technology Laboratory



Low Frequency Electrostatic Instability

in a Helicon Plasma

Max Light

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Francis F. Chen

Electrical Engineering Department, University of California, Los Angeles, California 90095-1594

P. L. Colestock

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(March 2, 2001)

Abstract

Recent discoveries in a helicon plasma show a decrease in equilibrium plasma

density as magnetic field strength is increased. This can be explained in the

framework of a low frequency electrostatic instability. However, quiescent

plasma behavior in helicon sources has been hitherto accepted. To verify the

existence of an instability, extensive measurements of fluctuating quantities

and losses as a function of magnetic field were implemented. Furthermore,

a theoretical model was developed to compare to the measurements. Theory

and measurement show very good agreement; both verifying the existence of

a low frequency instability and showing that it is indeed responsible for the

observed density characteristic.
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I. INTRODUCTION

Interest in the helicon plasma discharge source continues to be strong in view of its

applicability to industrial needs, as a tool to study basic plasma physics, and even as a means

for spacecraft propulsion [1–5]. The physics of the helicon wave, a radially bounded whistler,

have been studied extensively in these sources [7–9]. Equilibrium plasma behavior and loss

scaling with magnetic field, however, have not received a great deal of attention because it has

been generally accepted that a quiescent plasma can be produced. Recent reports [10–14] of

the plasma density n0 dropping off with increased magnetic field strength B0, as shown in

figure 1, require a new perspective on the assumed quiescent plasma behavior.

The basic equilibrium loss mechanisms can be treated separately as perpendicular and

parallel to the magnetic field for the purpose of this examination. However, in general they

can not be de-coupled. Along the magnetic field the ions control the loss rate and are

assumed to escape across the end sheaths at the sound speed [15]. This gives a parallel flux

(neglecting density gradients) that scales linearly with density

Γ|| = n0Cs (1)

where Cs is the ion sound speed. Perpendicular to the magnetic field direction [16], the flux

is given as a Fick’s law

Γ⊥ = −D⊥∇⊥n0 (2)

where the perpendicular diffusion coefficient, D⊥, is a function of collision rate and magnetic

field strength. The dependence of D⊥ goes as 1/B2
0 for both coulomb and neutral collisions.

Bohm [17], experimentally found that for coulomb collision dominated plasmas, D⊥ actually

goes as 1/B0. In any case, perpendicular diffusion, and hence radial flux, goes, at worst, as

the inverse of the magnetic field strength.

The perpendicular and parallel loss times in a cylindrical chamber due to the above

mechanisms can be simply estimated. They are given as
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τ⊥ =
R2

D⊥
τ|| =

L/2

Cs

(3)

where R is the chamber radius and L its length. Assuming Bohm diffusion and using

B0 = 900G, Te = 4eV , and n0 = 1013/cm−3 (the parameters corresponding to the maximum

density with neon in this experiment) reveals

τ⊥,Bohm = 2mS τ|| = 0.2mS

showing that axial diffusion should, in theory, dominate for this experiment. Axial losses

scale as n0 and show no direct correlation with magnetic field strength. On the other hand,

radial losses scale as (worst case) 1/B0, which is in the wrong direction to account for the

observed n0(B0) behavior.

One possible mechanism for enhanced plasma loss across the magnetic field is the E×B

velocity imparted to plasma particles from azimuthal electric field fluctuations due to a

low frequency electrostatic instability [18–21]. This gives rise to what is sometimes called

“anomalous” radial diffusion and can greatly affect the equilibrium plasma. Instabilities

of this kind can be driven by a gradient in equilibrium density, such as the resistive drift

wave [22–29], or a gradient in equilibrium space potential profile, for instance the Kelvin-

Helmholtz [30–33] or Simon-Hoh [34,35] instabilities.

This was not initially anticipated in the present plasma discharge due mainly to the

fact that low frequency oscillations had never before been observed in the usual operating

regimes. They were initially reported as a nuisance during measurements of the helicon

magnetic field components [36]. The detection frequency of a few MHz was observed to have

a low frequency modulation of a few KHz, rendering measurements of the wave magnetic

field components useless at certain magnetic field strengths. This is shown in figure 2.

Figure 16 shows that the observed saturation in n0(B0) corresponds with the onset of strong

low frequency fluctuations in ion saturation current as well. Normalized density fluctuations,

ñ/n0, were greater than 10 percent in the region where n0(B0) began to significantly deviate

from a monotonically increasing characteristic. These results suggested an interpretation of
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the detected density and potential fluctuations in the equilibrium plasma as the result of an

instability.

II. THEORY

The instability model was based on a normal mode, or linear, analysis to predict the

instability characteristics as a function of magnetic field strength. In this approach ion

and electron density and velocity, and plasma potential are expanded to first order about

an equilibrium state in order to characterize the behavior of (first order) fluctuating quan-

tites [38]. This description is good for predicting onset and growth up to the nonlinear

regime; however, it can say nothing about saturation behavior.

The instability was assumed to be absolute, since it was observed to grow at all points

in the plasma with time. Thus, the wavenumbner, k, was assigned to be real and the

eigenfrequency, ω, complex. Directionality of growth and damping is therefore unambiguous.

To reach the dispersion relation, the linearized velocities are solved as functions of po-

tential from the force equations and coupled into their respective continuity equations. For

low frequency electrostatic perturbations, the plasma approximation (ni = ne) is sufficient

to close the set of equations.

To clarify the situation, the assumptions imposed on the linear model are:

• A two fluid description is used. This facilitates the interpretation of “slippage” between

the electron and ion fluids.

• For the experimental parameters in the present work, neutral collisions dominate

coulomb collisions by at least an order of magnitude [38,39].

• Ions are “cold”: Ti = 0, Te 6= 0.

• Electron inertia is ignored: me/Mi = 0.

• Fluctuations are electrostatic. This is accurate for low β plasmas (as in the present

case) where there is no significant magnetic field from the wave. This also implies
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ω/k|| � VA, where VA is the Alfven speed, and the plasma approximation (ni = ne) is

therefore valid.

• No resonant particles: Vth,i � ω/k|| � Vth,e.

• Fluctuating quantities will have a Fourier representation. For example, ~̃v =

V (r)ei(mθ+kzz−ωt) in cylindrical geometry where the inhomogeneity exists in the ra-

dial direction.

• An equilibrium radial electric field exists. This is based on experimental measurements

and thus the potential will have both zero and first order components: φ(r) = φ0(r) +

φ̃(r, θ, z).

Consider a radially bounded plasma in a cylindrical geometry immersed in an axial

magnetic field. The field magnitude will be constant across the radius of the plasma. Density

and potential will have only radial variations. The equations governing this situation for

each species are the momentum equation for ions

Mini

∂~Vi

∂t
+ ~Vi · ∇~Vi

 = eni

(
−∇φ+ ~Vi × ~B0

)
−Miniνci

~Vi (4)

the momentum equation for electrons

0 = −ene

(
−∇φ+ ~Ve × ~B0

)
−KTe∇ne −meneνce

~Ve (5)

and continuity for each species

∂nj

∂t
+∇ ·

(
nj
~Vj

)
= 0 (6)

which, as specified earlier, are closed with the plasma approximation.

A. Equilibrium Velocities

In this section, the zero subscript will be dropped and axial zero-order velocities will be

neglected for both species (beam-plasma effects were ignored).
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1. Ion Equilibrium

Taking the r̂ component of equation 4 gives insight in to both the convective derivative

and perpendicular collision contributions to the ions’ motion

vrv
′
r

Ωc

− 1

r

v2
θ

Ωc

= −φ
′

B
+ vθ −

νci

Ωc

vr (7)

where ′ denotes ∂/∂r, Ωc = eB/Mi is the ion cyclotron frequency, and νci represents the

ion-neutral collision frequency. The left hand side of equation 7 represents the contribution

of the convective derivative to the ion motion, which introduces a new term along with the

E × B drift term and a collisional part. For parameters in the regime of the plasma in

this experiment, the third term on the right and first term on the left of equation 7 can be

neglected. To understand why, first note that the only force acting on the ions is radially

directed in the form of the electric field ( ~E = E(r) = −∇φ(r)). This gives the ions a θ̂

component to their guiding center velocity from the general relation [16]

~vF =
1

q

~F × ~B

B2
(8)

The only mechanism which can impart a radial component to their guiding center velocity

is due to collisions in a diffusion process (the third term on the right of equation 7) which

can be written as

vr ∼
(

µ

1 + Ω2
c/ν

2
ci

)
∇φ−

(
D

1 + Ω2
c/ν

2
ci

)
∇n
n

(9)

where µ and D are the mobility and diffusion coefficients respectively, written as

µ =
|q|

Miνci

D =
KTi

Miνci

(10)

and Ω2
c/ν

2
ci � 1. Ions are assumed to be cold. In fact, the ions are most likely at room

temperature so that D is extremely small. Using this and the definition of µ above, the

radial velocity component can be reduced to

vr ∼
φ′

B

ν

Ωc

(11)
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which is the familiar E × B drift (but in the radial direction) reduced by the ratio ν/Ωc.

So, in fact, the first term on the left and third term on the right of equation 7 go as Ω−2
c .

In this experiment, Ωc ∼ 106 /sec and νci ∼ 103 /sec so that the two terms mentioned

above can be neglected with no effect on the outcome of the ion equilibrium velocity. Thus,

in equilibrium, the radial velocity component can be neglected and perpendicular collisions

play an insignificant role in the ion equilibrium velocity terms.

Equation 7 can now be reduced to

− 1

rΩc

v2
θ = −φ

′

B
+ vθ (12)

which consists of the E × B guiding center drift and a centrifugal force term from the

convective derivative. Solving the quadratic for vθ and picking the root that gives zero

velocity in the limit of no electric field (φ′ → 0) gives an expression for the ion equilibrium

velocity

vθ = −rΩc

2

1−
√

1− 4
φ′

B

1

rΩc

 (13)

This can be further reduced by closer examination of the expression under the radical re-

vealing a condition on the radial electric field for a stable equilibrium solution

E <
1

4
BrΩc (14)

In fact, from experimental measurements

E � 1

4
BrΩc

allowing a binomial expansion on the radical term in equation 13 such that

vθ =
φ′

B
(15)

So the equilibrium velocity for the ions is simply the E×B guiding center drift, vEB. It can

be argued that, near the origin, the 1/r dependence in equation 13 could dominate. However,

the dependence of φ′ at that location must also be taken in to account. In particular, it is

likely that φ′/r cancels this at r = 0. If not, the theoretical model for φ(r) can be chosen to

make it so.
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2. Electron Equilibrium

Coupling the θ̂ component into the r̂ component in equation 5 gives an expression for vθ

vθ

(
1− ν2

ce

ω2
c

)
=
φ′

B
− KTe

eB

n′

n
(16)

where νce is now the electron-neutral collision rate and ωc is the electron cyclotron frequency.

Again, typical values for νce and ωc are 108/sec and 1010/sec respectively allowing the ν2
ce/ω

2
c

term on the left hand side of equation 16 to be dropped. This reduces the equilibrium electron

velocity to

vθ =
φ′

B
− KTe

eB

n′

n
(17)

= vEB − vD (18)

The second term in equation 17 is the well known diamagnetic drift velocity due to electron

pressure, KTe∇n.

The equilibrium guiding center velocities for both species are perpendicular to the mag-

netic field and, in fact, only in the θ̂ direction. Radial guiding center velocity components are

due to diffusive processes which were neglected because of the magnetic field. This is equiv-

alent to ignoring cross field diffusion for the equilibrium state because this process occurs

on a timescale orders of magnitude greater than any of the derived equilibrium azimuthal

motions. This is not to be confused with radial flow due to the instability mechanism which

will occur on the same timescale as the equilibrium motions.

B. Perturbation Description in Slab Geometry

The slab model is a good starting point to describe the instability. Making the plane-wave

approximation and assuming a local wavenumber, kx, in the direction of plasma inhomogene-

ity (i.e., the direction of the plasma density and space potential profiles) further simplifies

this process. However, care must be taken in this approach, especially in the vicinity of any

very short scale gradients. This is a truly “local” calculation in that trends can be predicted
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at basically a single point instead of summing the contribution from the whole system from

one boundary to the other.

The magnetic field is specified to lie along the z-axis, and the density and space potential

profiles to be along the x-axis. The azimuthal direction will therefore be the y-axis (strictly,

ŷ = rθ̂). The linearized forms of equations 4 to 6 are now utilized. First-order quantities

will be denoted with a tilde (velocities are all first-order, except where specifically labeled).

1. Electron Perturbation

Collisional effects are ignored in the perpendicular direction for the same reasons that

allowed their neglect in the equilibrium velocity equations. Next, let ve0 = γe0 = vEB −

vD represent the zero order expression for the electron velocity. The components of the

momentum equation are then substituted in to the continuity equation to get

ηe = χ

[
−ω∗νce + ik2

zv
2
the

ω̂νce + ik2
zv

2
the

]
(19)

where

ω̂ = ω − ωEB = ω − ky
φ′0
B0

(20)

represents a doppler shift in the real part of the frequency (ωR),

ω∗ = ky
KTe

eB0

n′0
n0

(21)

is the diamagnetic drift frequency,

v2
the =

KTe

me

(22)

is the (squared) electron thermal speed, and the two new variables in the fluctuating quan-

tities are given by

ηe ≡
ñe

n0

χ ≡ eφ̃

KTe

(23)
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In fact, equation 19 is a modified Boltzmann relation in the first order density and

potential. This is well known in terms of the resistive drift instability [22–29]. Density

perturbations will tend to travel azimuthally (ŷ-direction) at the diamagnetic drift speed

vD. In the absence of electron collisions η = χ, and the first order potential will oscillate

in phase with the density perturbation creating a stable drift wave. Significant parallel

electron collisions (they are magnetized azimuthally) will cause η 6= χ. Density and potential

perturbations will be de-phased such that a net outward (x̂-direction) Ẽ ×B0 electron flow

will build up from the azimuthal electric fields due to charge separation creating an unstable

situation. Inclusion of a non-zero space potential profile in equation 19 simply doppler shifts

the real part of the frequency and has no effect on the drift instability growth rate.

2. Ion Perturbation

In the first order expressions for the ion velocities the convective derivative term can no

longer be neglected. Collisions will be separated into perpendicular (ν⊥) and parallel (ν||)

components to clarify their contribution in those directions. The zero order velocity is again

vi0ŷ = γi0 = vEB. Consider, first, the convective derivative part of the linearized momentum

equation

(~̃v · ∇)~v0 = ṽxγ
′
i0 ŷ (24)

(~v0 · ∇)~̃v = γi0iky(ṽxx̂ + ṽyŷ + ṽz ẑ) (25)

It is clear that the equilibrium ion velocity, γi0, now plays an important role in the first

order description. The contribution from (~v0 · ∇)~̃v gives the doppler shift to the real part

of the frequency, and the (~̃v · ∇)~v0 term gives rise to a shear effect. In particular, note

that γ′i0 ∼ φ′′0. So, if the E0 × B0 azimuthal velocity is not constant along the radius (x̂

direction) due to a radial profile in φ0, the possibility of “slippage” in the rotation can

occur from shearing (φ′′0 6= 0) in the space potential profile. This creates a Kelvin-Helmholtz

instability in the shear region where the energy in rotation of the two co-rotating fluids can

10



be released [30–33]. However, the classic Kelvin-Helmholtz instability is brought about by

energy exchange between the two fluids due to their viscosity, or collisions, between each

species. This implies coulomb collisions in a plasma, whereas the present model only includes

the effects of charge-neutral collisions. So, any Kelvin-Helmholtz mechanism in this model

would be due to one species imparting a drag on the other species through electric field

interaction from charge bunching at the layer. Even in the absence of an E0 × B0 velocity

shear (φ′′0 = 0, φ′0 6= 0), the Simon-Hoh instability [34,35] could still be an important factor

if the density and space potential profiles are oppositely directed and νe/ωc, νi/Ωc � 1.

As before, the velocity components from the momentum equation are substituted in

to the continuity equation. Furthermore, given the plasma parameters measured in this

experiment, the frequency ordering relative to the detected fluctuations at ω is

ω, ωEB, ω∗ � Ωc (26)

which permits dropping the γ′′i0 ∼ φ′′′0 terms. This gives

ω̂

C2
sχ

ηi = −
(k2

x + k2
y)(ω̂ + iν⊥)

Ωc(Ωc + γ′i0)

+
ikx

n′
0

n0
(ω̂ + iν⊥)

Ωc(Ωc + γ′i0)
−

ky
n′

0

n0

Ωc + γ′i0
+

k2
z

(ω̂ + iν||)

− i2kxkyγ
′
i0(ω̂ + iν⊥)2

Ω2
c(Ωc + γ′i0)

2
+

2kyγ
′
i0(ω̂ + iν⊥)

Ωc(Ωc + γ′i0)
2

(27)

where the ion sound speed is defined as

Cs =

√
KTe

Mi

(28)

3. Dispersion Relation

Equations 27 and 19 can now be combined using the plasma approximation relative to

fluctuating quantities as well as in the equilibrium state, ηe = ηi, resulting in a quartic

expression for the complex frequency ω.
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ω̂

C2
s

[
−ω∗νen + ik2

zv
2
the

ω̂νen + ik2
zv

2
the

]
+

(k2
x + k2

y)(ω̂ + iν⊥)

Ωc(Ωc + γ′i0)

−
ikx

n′
0

n0
(ω̂ + iν⊥)

Ωc(Ωc + γ′i0)
+

ky
n′

0

n0

Ωc + γ′i0
− k2

z

(ω̂ + iν||)

+
i2kxkyγ

′
i0(ω̂ + iν⊥)2

Ω2
c(Ωc + γ′i0)

2
−

2k2
yγ

′
i0(ω̂ + iν⊥)

Ωc(Ωc + γ′i0)
2

= 0 (29)

This relation includes the effects of the resistive drift, Kelvin-Helmholtz, and Simon-Hoh

mechanisms for low frequency instability in the framework of a linear two-fluid description.

Two of the roots, ω4 and ω3, are extremely high frequency and are properly treated only

by using Poisson’s equation. This and the frequency ordering (equation 26) justifies their

neglect as candidates. The two surviving roots are identified, without loss of generality, by

invoking the local approximation (kx → 0), neglecting collisions, and letting φ′0 → 0 giving

the well known expression [37]

ω1,2 = −ω∗
2
± 1

2

√
ω2
∗ + 4C2

sk
2
z (30)

where C2
sk

2
y/Ω

2
c � 1. This is shown in figure 3. These two roots are the accelerated

and retarded ion acoustic wave branches [38], which can be seen by comparison with the

acoustic wave slopes. Notice that the accelerated branch has a finite frequency for infinite

wavelength (kz → 0). This frequency is the diamagnetic drift frequency mentioned earlier,

ω∗, and represents the zero kz limit of the electrostatic drift wave. Only roots of equation

30 lying on the accelerated ion acoustic wave branch will have positive imaginary parts, ωI ,

designating this branch as the focus of the instability investigation.

For generality, and in terms of the slab model presented here, shear can be thought of

as a constant multiplier on φ0 (which could be different at any point in space) representing

a scale length over which the second derivative of φ0 exists. The same applies for the first

derivative of φ0. Thus, doppler shifting is represented by one variable multiplying φ0, and the

addition of shear implies a second variable, to represent the shear magnitude, multiplying

the first in the model.
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Figure 4 gives the growth rate characteristic as a function of magnetic field for different

ion masses. This shows that ion mass plays an important role in the growth rate without the

inclusion of the magnetic viscosity tensor in the ion equations of motion. In other words,

the instability shows a scaling with B0 without finite ion larmor radius effects included.

Magnetic viscosity was not included in the analysis because the assumption Ti → 0 was

made. In terms of the instability model, light ion gases will see a maximum instability

growth rate at lower magnetic field strengths. The model also predicts low ωR.

C. Perturbation Description in Cylindrical Geometry

To more accurately compare an individual root, or mode, to experiment, it is necessary

to use a cylindrical geometry and assume a Fourier representation only in the directions of

homogeneous plasma characteristics. The coefficients of the Fourier series representation

of wave quantities will become functions of the spatial coordinates in the nonhomogeneous

direction, turning the algebraic equations into a linear differential system.

1. Dispersion Relation

Proceeding as before, the dispersion relation can be written as

φ̃′′ +B(r)φ̃′ + C(r)φ̃ = 0 (31)

where

B(r) = −
1
r
γ′i0 − 1

r2γi0

γ′i0 + 1
r
γi0 + Ωc

−
2
r
γ′i0 − 2

r2γi0

2
r
γi0 + Ωc

+
1

r
+
n′0
n0

(32)

C(r) =

[
− ω̂

C2
s

(
−ω∗νen + ik2

zV
2
th

ω̂νen + ik2
zV

2
th

)
+ k2

z

]

+

m
r

(
1
r
γ′i0 − 1

r2γi0

) (
2
r
γi0 + Ωc

)
(ω̂ + iν⊥)

(
γ′i0 + 1

r
γi0 + Ωc

)
13



−
m
r

n′
0

n0

(
2
r
γ′i0 + Ωc

)
ω̂ + iν⊥

− m2

r2
(33)

andm is now the azimuthal mode number. Equation 31 is integrated from r = 0 to the radial

boundary, r = a, to find the eigenfunction, φ̃(r), subject to boundary conditions. These

boundary conditions are based on experimental observation in this work and others [26] and

are simply (valid for m 6= 0)

φ̃(0) = φ̃(a) = 0 (34)

Figure 5 shows a comparison between the slab and cylindrical models in the absence of

a space potential profile for an m = +1 mode. The real and imaginary eigenfrequencies

are calculated as a function of kz and show good agreement. Addition of a non-zero space

potential profile, however, points out the differences in the models. For the cylindrical model,

a radial space potential profile of

φ0(r) = Φ0

[
(r/r0)

c

1 + (r/r0)c

]
(35)

is used to compare the calculated eigenfrequency with that of the slab model as a function

of magnetic field strength, where c = 4, r0 = 4cm, and an m = +1 mode is used. This is

given in figure 6. The difference in the two models is most apparent in fR, whereas growth

rates show better agreement.

The cylindrical model produces interesting results, in terms of the equilibrium space

potential profile, if the condition

ωR − ωEB = ωR −
m

r

φ′o
B0

→ 0 (36)

is met. In other words, when the real part of the eigenfrequency approaches, or is equal

to, the E0 × B0 frequency at some radial location. As this condition is approached, the

local index of refraction becomes singular. This is illustrated in figure 7. As the region

where equation 36 is closest to being satisfied is approached, the radial wavelength of the

eigenfunction decreases, and the eigenfunction magnitude decreases.
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As kr(r) approaches a singularity, the number of [ω, kz] pairs that satisfy equation 31

transitions from discreet to continuous. This suggests the possibility of mode conversion at

a local region. In order to treat this situation properly, however, the continuity equations

for each species must be closed with Poisson’s equation, and terms dropped due to the

frequency ordering assumption of equation 26 must be retained. Thus, in terms of the

present cylindrical model, all that can be said is that the possibility of mode conversion can

exists where ωR = ωEB.

Significant ion collisions can mitigate this effect as shown in figure 8. Here, A space

potential profile is chosen such that ωR is nearly equal to ωEB at two radial locations.

Increasing the ion-neutral collision rate is shown to decrease the magnitude of kr(r).

In terms of the observed n0(B0) behavior and its correlation to large low frequency

density fluctuations, the slab model gives a good representation of the instability behavior

as a function of magnetic field, while the cylindrical model reveals the possibility of mode

conversion.

III. EXPERIMENT

A. Apparatus

The experimental apparatus is shown in figure 9. The plasma chamber consists of the

main and microwave sections. The microwave section allows excitation at 2.45 GHz, but

was not used for the present experiment. Radial diagnostic access was achieved through

three sets of three 1/4-inch vacuum feed-through connections located 62.4, 96.4, and 130.3

cm downstream of flange 2. Axial diagnostic access was achieved through the back flange

(3). Gas fill pressure was 8 mTorr.

Ten of the eleven coils, as noted in figure 9, were used to create a coaxial static magnetic

field of up to 1500 Gauss. The field varied by less than 8 percent over the length shown. Ra-

diofrequency (rf) power was fed, via a capacitive matching network, to an R-antenna [40] at
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13.56 MHz. Input power was 2 - 2.2 kW and matched to keep reflections ≤ 10 %. The

experiment was operated in a pulsed mode with an extremely low duty cycle. Magnetic

field strength was allowed to “flatten” (due to the coils’ inductance) before the rf power was

turned on. Duration time of the rf was 100 mS with diagnostic triggering at 40 msec after

rf power was switched on.

The antenna length was 24 cm and located with its midplane 33 cm downstream of flange

2. The magnetic field pointed from flange 2 to 3, designating the ẑ direction.

B. Diagnostics

Equilibrium plasma parameters (n0, Vs, Vf , and Te) were measured using rf compensated

Langmuir probes [41].

Ion flow velocities parallel to B0 were measured using mach probes [42–45,19,46]. Care

was taken to ensure that their disturbance length was much less than any axial equilibrium

gradient. Parallel ion velocities were calculated from the relation

M =
v

Cs

=

√
v2Mi

KTe

(37)

where M and v denote the mach number and parallel velocity respectively. Note that Ti → 0

in this experiment and therefore Ti does not contribute to Cs, facilitating the calculation of

actual ion flow velocities.

The time averaged cross-field particle flux, for a particular species, due to fluctuations

in potential and density is given as

Γ⊥ = < ñṽ⊥ > =

〈
ñ
Ẽθ ×B0

|B2
0 |

〉
=

〈
ñ Ẽθ

B0

〉
(38)

where electrostatic fluctuations will be assumed

Ẽθ = −ikθφ̃ (39)

Taking the Fourier transform of fluctuating quantities, the radial flux can be written

as [47–49]
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Γ⊥ =
2

B0

∫ ∞

0
kθ |γnφ(ω)| sin[αnφ(ω)] ñrms φ̃rms dω (40)

where αnφ is the phase angle between density and potential fluctuations and the coherence

spectrum is defined as

|γnφ(ω)| = |Pnφ(ω)|√
Pnn(ω)Pφφ(ω)

(41)

Pii and Pij are the auto- and cross- spectra respectively. The coherence spectrum can be

interpreted as the degree of cross correlation between the two signals.

Radial flux was measured using a triple probe technique. The probe is shown in figure 10.

Measurement of αnφ, ñrms, and φ̃rms was implemented using the ñ and φ̃f tips lying on the

same B0 line.

The wavenumber kθ was measured using the two φ̃f tips, which were separated az-

imuthally by a small distance ∆x. The phase difference, ψ12, of the cross spectral density

measurement between them gives

kθ(ω) =
ψ12

∆x
(42)

The upper limit of kθ is set by ∆x and the point at which branching of the inverse tangent

function in calculating ψ12 is reached; while the lower limit is set by the accuracy of the ψ12

measurement. Each data point in the fluctuating quantities was averaged over several shots.

This gave the upper and lower bounds on the wavenumber as

0.13 < |kθ| < 7.6 cm−1 (43)

Density fluctuations were measured by biasing an uncompensated probe tip in the ion

saturation region. The bias was kept negative enough to avoid rf effects on the ion saturation

current [41]. The measurement resistor and cable length for the tip gave no significant low

pass filtering effects on the signal in magnitude or phase below 10 MHz - which is three

orders of magnitude above the detected frequency of fluctuations. Displacement current due

to the sheath capacitance was also found to be insignificant.

17



Ideally, fluctuations in the space potential would be measured. This, however, proves to

be extremely difficult in terms of electrostatic probe methods. It is much easier to measure

fluctuations in the floating potential. The relation between space and floating potentials in

a Maxwellian plasma is

φs − φf =
KTe

e

(
3.33 +

1

2
ln µ

)
(44)

where µ is the ion mass relative to hydrogen. As long as Te does not change on the equi-

librium timescale φs − φf remains constant, and the fluctuations in floating potential are

identical in magnitude and phase to those of the space potential. Te was observed to be

constant on the equilibrium timescale of this experiment by implementing fast probe traces

at different times during the rf input.

Correct measurement of floating potential fluctuations, φ̃f , dictates that the probe tip

draw no plasma current during all phases of the rf cycle. Sheath capacitance at the probe

tip, as mentioned earlier, can be neglected. In order to negate capacitive effects in the

coaxial measurement system, a capacitance neutralization technique was used as shown in

figure 11. Here, the probe tip is at an extremely high impedance dictated by the operational

amplifier. Driving the middle and center conductors at the same voltage alleviates any

capacitance along the length of the probe. The low amplifier output impedance drives any

small capacitance, C2stray, as well.

IV. RESULTS

A. Measurement Accuracy and Error

The probe placement error is estimated to be ±2mm over 6 cm, or about 3 percent.

Langmuir probe current-voltage (CV) traces were averaged over several shots. Plasma

parameters calculated from probe CV traces taken at different times for the same input

conditions showed an error of less than ten percent.
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Regarding measurement of fluctuating quantities, forty individual waveforms were stored

digitally for each data point. Standard deviations were ten to fifteen percent.

Individual mach probe waveforms were stored digitally. However, a computer program

tracked the real-time standard deviation; and it was kept to less than one percent.

Unless otherwise mentioned, presented data corresponds to measurements taken 33 cm

downstream of the antenna midplane in helium at 8 mTorr fill pressure. Rf input power

was kept at 2 kW at 13.56 MHz.

B. Equilibrium Plasma Parameters

Radial measurements of the equilibrium plasma parameters n0, Te, φ0, and φf are given

in figures 12 to 14. As the magnetic field is increased, n0(r) becomes more peaked while

Te, φ0, and φf are high at the lowest B0, decrease, and then increase slightly. Radial profiles

of Te show high electron temperatures at the plasma edge. Space potential profiles show

off-axis maxima above 300 G, while floating potential profiles remain relatively flat.

C. Fluctuation Measurements

Figures 15 to 18 give spectrograms of ion saturation biased probe signals and their

corresponding equilibrium plasma density as a function of magnetic field strength for the

gases used in this work. Note that the light ion gases, hydrogen and helium, show a peaking

in n0(B0) whereas heavier ion gases, neon and argon, show a saturation in n0(B0). This

has also been reported by Sakawa et. al. [10]. Detected fluctuation frequencies at higher B0

are ≤ 2 kHz. Figure 19 gives the dominant low frequency fluctuating quantities behavior

as a function of B0 in helium. This shows a critical B0 at which ñ and φ̃ begin to acquire

significant magnitudes.

Figures 20 and 21 give radial profiles of both equilibrium and fluctuating parameters

at different magnetic field strengths. For all cases, normalized ñ(r) and φ̃(r) have off-axis

maxima.
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D. Parallel Ion Flow Measurements

In these measurements, a positive mach number corresponds to a flow in the −ẑ direction

- toward flange number 1. All measurements were performed in helium. Figure 22 gives

radial mach number profiles at different B0. In all cases, the ion flow is very small compared

to the sound speed and reverses direction (from + ẑ to - ẑ), near the axis, above 1 kG

Figure 23 shows axial mach number profiles at different B0. Note the significant increase

of parallel ion flow under the antenna, toward flange 1, above 850 G.

E. Radial Flux

These measurements were performed in helium as well. Figure 24 shows the radial flux

measured at r = 2cm versus B0. An extremely large perpendicular flux is evident between

600 and 1200 Gauss.

V. DISCUSSION

The theoretical model included the effects of charge-neutral collisions and equilibrium

space potential profile on the accelerated ion acoustic wave dispersion relation assuming

cold ions (finite ion larmor radius effects were neglected). Thus, ion mass plays a role in

the growth rate without the addition of the magnetic viscosity tensor in the ion equations

of motion. For example, when the ion larmor radius is comparable to the perpendicular

wavenumber, k⊥ρ ≈ 1, it has been shown that damping of the mode will occur [20,24].

Furthermore, the effects brought about when ωR = ωEB can greatly affect the mode behavior.

Based on measurements, φ̃/Te envelope data correspond to azimuthal mode numbers of

1 to 10, validating a modal picture of the wave behavior as given in the theory. Furthermore,

as the theory has shown, the parallel wavenumber is most likely small; since for large kz,

the mode is stable, and collisions or even shear do not de-stabilize the mode. Furthermore,

ωR is very high at large kz, and the measured frequency is low (≤ 1− 2 kHz).
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A. Mode Identification

In what follows, the behavior of the observed mode will be interpreted in terms of the

resistive drift and Kelvin-Helmholtz instabilities, with a general discussion of the effects

of the singularity in kr(r). Since νen/ωc, νin/Ωc � 1 in this experiment, the Simon-Hoh

mechanism plays an insiginificant role.

Resistive drift mode

The experimentally observable characteristics of this mode are given as [24]

• driven by density gradient.

• ñ/n0 amplitude is maximum at maximum in radial density gradient.

• the phase velocity of the wave goes as vDe: the electron diamagnetic drift velocity.

• amplitudes of ñ/n0 and φ̃/Te are approximately equal.

• αnφ remains relatively constant with radius unless collision rate changes along the

radius.

Kelvin-Helmholtz instability

The observable characteristics of the Kelvin-Helmholtz instability [32] are

• driven by azimuthal velocity shear (shear in vEB).

• ñ/n0, φ̃/Te amplitudes are maximum in velocity shear region.

• αnφ varies as shear layer is crossed.

• Amplitude of ñ/n0 < φ̃/Te.

• ωR ≈ (0.2− 0.5)× vEB(max)/r.

Referring to figure 20, the characteristics outlined above for the drift wave can be verified

in the measured parameters at B0 = 300G. Note first that the magnitudes of ñ/n0 and φ̃/Te
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are relatively equal, and that the maximum in ñ/n0 does seem to correspond to the maximum

in density gradient. The φ̃/Te profile shows a second maximum close to r = 0, but this is at

a point where ñ/n0 is minimum. At the location of high potential and density fluctuations,

the measured perpendicular wavenumber, kθ, follows a monotonic profile corresponding to

m ≈ 3. The angle between ñ and φ̃ is not constant in this region, however, but does

show a monotonic behavior. An azimuthal mode number of 3, combined with the measured

density profile and temperature, gives a drift frequency of 13.3KHz compared to a measured

frequency of ≈ 11KHz. The rotation direction is +θ̂, which corresponds to the electron

diamagnetic drift direction. The space potential profile varies only slightly over the radius.

Interestingly enough, the magnitude of ñ/n0 also appears where a slight “kink” in the space

potential profile exists. However, the relatively equal magnitudes of ñ/n0 and φ̃/Te and the

measured frequency point toward a resistive drift wave mode.

In figure 21, the radial space potential profile changes from relatively flat to a region

where it increases about 25V over 4cm starting at r = 2cm. Profiles of ñ/n0 and φ̃/Te both

reach maxima at that location as well. The magnitude of φ̃/Te is about 5 times greater

than ñ/n0. The angle between ñ and φ̃ changes rapidly in this region and kθ goes from

rapidly changing to +θ̂ rotation with m ≈ 1 − 3. The rotation corresponds to the E × B

direction from r = 2 − 6cm (which is also the electron drift velocity direction). However,

the frequency characteristic in the region from 2 to 6cm is

fEB ≈
1

2π

(1− 3)

r

25/0.04

0.06

or roughly 50−150KHz. This is a factor of 10−50 greater than the measured frequency

of 2 − 3.5KHz. The drift frequency in this case is ≈ 20KHz. Aside from the frequency

discrepancy, it appears that the Kelvin-Helmholtz mechanism dominates here.

Similar arguments can be made for all of the radial fluctuation profile data taken, with

the result that the observed instability does not lend itself completely to either mechanism.
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B. kr Singularity

The possible effects of the singularity in kr(r) when ωR = ωEB were discussed earlier.

These included local mode conversion, which must always go to a shorter wavelength mode.

However, short wavelengths are relatively stable in terms of the theoretical model presented

here. Reference to figure 25 shows that in the general region of magnetic field strength cor-

responding to enhanced radial transport, it does not appear to play a role. In magnetic field

regions of negligible radial transport, the possibility of the singularity becoming important

exists at a radial location where significant gradients also exist.

C. Growth Rate and Losses

The growth rate calculated from the slab model for helium and its correlation with ñ

and φ̃ are shown in figure 19 as a function of B0. Note how the maximum growth rate

corresponds strongly with the maximum in φ̃ and the point where ñ drastically jumps.

Figures 16 and 15 show the growth rate calculated from the slab model along with the

corresponding spectrogram of ñ fluctuations and n0 versus B0 profiles for helium and hydro-

gen respectively. Note the strong correlation between the onset of low frequency fluctuations,

maximum in growth rate, and fall-off in density.

Parallel and perpendicular escape times were calculated from the measurements of par-

allel flow and perpendicular flux and presented in figure 26. This shows that between 700

and 1100 Gauss, the perpendicular escape time is between 10 and 100 times smaller than

the parallel escape time. This correlates with

• the theoretical maximum predicted growth rate in helium from the slab model (fig-

ure 16)

• the point at which the measured ñ/n0 begins a dramatic rise (figure 19(a))

• the location of maximum φ̃/φ0 (figure 19(b))
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• the flattening in the n0 versus B0 profile (figure 16)

This result alone, however, does not fully explain the observed n0 decrease at the highest

magnetic fields. Note that the density steadily decreases with increasing B0 above 1KG,

whereas τ⊥ and τ|| are larger than τ|| measured under the antenna. It is possible for the ions

to gain increased energy from large electric fields in the antenna near field. The distance

which an ion must travel to escape is decreased because the antenna is closer to one end of

the plasma chamber. This shows that the ions could be escaping more effectively in the axial

direction at higher magnetic fields. Thus, at high magnetic field strengths, figure 26 reveals

that both radial and axial loss rates can contribute to the overall loss. These results describe

the observed density versus magnetic field strength characteristic in this experiment.

VI. CONCLUSIONS

The observed behavior of the plasma density as a function of magnetic field is now

understood in terms of an instability. Up to a critical magnetic field strength the plasma

density increases monotonically. High frequency instabilities resembling the resistive drift

mode are present, but do not affect losses significantly. The increase in plasma density

with B0 in this region corresponds to antenna coupling and wave energy deposition. As the

critical magnetic field value is reached, an azimuthally rotating low frequency electrostatic

instability grows and eventually gives rise to enhanced radial transport with a magnitude

sufficient to significantly degrade plasma confinement. As B0 is increased even further, the

instability is still present, but the radial transport is much lower in magnitude. In this

region, enhanced axial loss dominates the radial loss as ions created at the antenna with

sufficient axial velocities to again significantly degrade the plasma confinement.

Identification of the observed instability is not straightforward; it exhibits characteristics

of both resistive drift and Kelvin-Helmholtz instabilities and is most likely a complex com-

bination of the two. The instability arises from the accelerated ion acoustic wave branch, as

determined from the dispersion relation. Measured frequencies were somewhat lower than
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that predicted by the slab theory, and the role of the singularity in kr(r) when ωR = ωEB

is not yet completely understood. Theoretical growth rates predicted for different ion mass

show excellent correlation with observed equilibrium density decrease and measured fluctu-

ation amplitude maxima as a function of magnetic field strength, and onset of maximum

fluctuation amplitude for low frequencies in spectrograms of ñ versus B0.
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VII. FIGURE CAPTIONS

Figure 1. Equilibrium plasma density versus magnetic field strength in a helicon source.

R-antenna, 8 mTorr fill pressure, 2 kW input power.

Figure 2. Signal from a 5 turn ∂B/∂t probe connected via a center tapped 1 : 1 transformer

to an analog storage oscilloscope. The signal frequency is 13.56 MHz. Vertical and

horizontal scales are 20 mV and 1 mS per division respectively.

Figure 3. Two branches of equation 30 in the limit of zero collisions and φ0, φ
′
0 → 0.

Figure 4. (a) frequency and (b) growth rate, γI = ωI/2π, versus B0 with ion mass as a

parameter. kx = ky = 30/m, kz = 0.15/m, νen = 107, ν⊥ = ν|| = 103, first derivative

multiplier on φ0 (ef1) = 150, second derivative multiplier on φ0 (ef2) = 100, Te = 5

eV . The plasma density profile is represented as n′0/n0 = 1/a where a is the radial

boundary (6 cm).

Figure 5. (a) frequency and (b) growth rate behavior of the accelerated ion acoustic wave

branch for cylindrical (points) and slab (lines) models in the absence of an equilib-

rium space potential profile. B0 = 1kG, νen = 108, ν⊥,|| = 0. For the slab model,

kx = 60/cm, ky = 30/cm. The density profile in the cylindrical model is parabolic:

n(r)/n0 = (1− r/a)2.

Figure 6. (a) frequency and (b) growth rate versus B0 for both models (cylindrical - points,

slab - lines). kz = 0.5/m, νen = 108, ν⊥,|| = 103. In the cylindrical model, Φ0 = 5 and

the density profile is identical to that of figure 5. For the slab model, kx = 52, ky =

16.7, ef1 = 5, and ef2 = 25.

Figure 7. Radial wavelength bunching as the singularity in kr(r) is approached. (a) ωR −

ωEB, (b) Re[φ̃(r)], and (c) Im[φ̃(r)]. ω = 2π(479.4 − i 154.3), B0 = 1kG, νen =

108, ν⊥,|| = 103. Density profile is identical to that of figure 5.
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Figure 8. Effect of ion collisions on the singular nature of |kr(r)|. (a) kr(r) for kz =

0.25/m, νen = 107, ω = 2π(7725 + i 674). (b) the left singular point with ν⊥,|| as a

parameter.

Figure 9. Experimental apparatus. The total plasma chamber is 15.2 cm in diameter

and 1.65 m in length. The main section is Pyrex while the microwave section is

nonmagnetic stainless steel; and they are connected via mating flange number 2. Gas

is fed into the chamber through a 1/4-inch diameter port located on flange number 1.

Figure 10. Probe used to measure the fluctuation induced radial flux.

Figure 11. Triaxial probe with capacitance neutralization circuit.

Figure 12. Radial density profiles at different B0. The vertical scale for each graph is

1013/cm3.

Figure 13. Radial electron temperature profiles with B0 as a parameter. The vertical scale

for each graph is eV .

Figure 14. Radial space and floating potential profiles as B0 is varied. Space potential

profiles are upper traces in all graphs. The vertical scale for each graph is V .

Figure 15. Spectrogram of ñ fluctuations in dBm versus B0 in hydrogen. A Langmuir

probe was placed at radial access port number one and biased to −100 V at r = 2.5 cm.

The density profile (points connected by a line), and theoretical instability growth rate,

γI , (line) versus B0 are given below. H = −14 dBm and L = −23.5 dBm.

Figure 16. Same as figure 15 but for helium. H = −7.1 dBm and L = −24.1 dBm.

Figure 17. Same as figure 15 but for neon. H = −10.1 dBm and L = −24.5 dBm.

Figure 18. Same as figure 15 but for argon. H = −9.9 dBm and L = −26.1 dBm.
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Figure 19. Fluctuation characteristics as a function of B0 in helium. (a) ñ/n0. (b)

tildeφ/Te. (c) αnφ. (d) Measured fundemental frequency (line) and measured kθ

(points connected by a line).

Figure 20. Radial profiles of fluctuating quantities at 300 G. (a) ñ/n0 (points connected

by a line) and n0 (line). (b) φ̃/Te (line), φ0 (points), and smooth fit to φ0 (dashed

line). (c) αnφ. (d) Measured fundemental frequency (points) and measured kθ (line).

Figure 21. Radial profiles of fluctuating quantities at 600 G. (a) ñ/n0 (points connected

by a line) and n0 (line). (b) φ̃/Te (line), φ0 (points), and smooth fit to φ0 (dashed

line). (c) αnφ. (d) Measured fundemental frequency (points) and measured kθ (line).

Figure 22. Mach number radial profiles at different B0. Measurements were taken at radial

access port number 1.

Figure 23. Mach number axial profiles at different B0. Measurements were taken at r = 0.

Shaded regions corresponds to the antenna location.

Figure 24. Measured radial flux versus magnetic field strength. Measurement taken at

radial access port number 1 at r = 2 cm.

Figure 25. Comparison of calculated fEB radial profile with the measured fundemental

frequency radial profile. fEB was calculated from a third order polynomial fit to the

measured space potential profile and assuming an appropriate m number from the

data (1 or 3).

Figure 26. Parallel and perpendicular confinement times. τ|| at radial access port number

1 (dashed line), τ⊥ at the same location (line), and τ|| under the antenna (points

connected by a line).
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