Low Temperature Plasma Technology Laboratory

Ion orbits in electron－shading damage
T．G．Madziwa－Nussinov，D．Arnush，and F．F．Chen

Paper submitted to
Plasma Processing Induced Damage Conference 2003

LTP－302
February， 2003

お积少。

Electrical Engineering Department
Los Angeles，California 90095－1594

ION ORBITS IN ELECTRON SHADING DAMAGE

Tsitsi Madziwa-Nussinov, Donald Arnush, and Francis F. Chen
Electrical Engineering Department, University of California, Los Angeles
Los Angeles, California 90095-1594, USA

In Hashimoto's ${ }^{1}$ hypothetical mechanism for electron shading damage, the photoresist at the tops of trenches and vias collects a negative charge from the thermal electrons, creating an electric field (E-field) which prevents electrons from reaching the trench bottom, where a "collector" is located. The ions, accelerated by the sheath electric field, are driven straight into the trench and impinge on the collector, charging it positive if it is isolated. The electric fields inside the trench can also deflect the ions into the sidewalls, causing notching and other deformations of the etch profile ${ }^{2}$. Though this mechanism is widely accepted, it has never been verified in direct experiment. The present effort is to test the hypothesis by scaling the submicron features to macroscopic size so that the currents and potentials inside the trench can be measured and compared with computations. This paper concerns the theoretical part of this work; namely, self-consistent computations of the E-fields and ion orbits inside the trenches.

Such a scaled experiment is possible because of the scale invariance of the governing equations. Let capped (\widehat{x}) quantities be dimensional and normal letters be dimensionless.
Poisson's equation is

$$
\begin{equation*}
\varepsilon_{0} \hat{\nabla}^{2} \widehat{V}=e\left(\hat{n}_{e}-\widehat{n}_{i}\right) \tag{1}
\end{equation*}
$$

With the usual definitions $\eta \equiv e V / K T_{e}, \lambda_{D}{ }^{2} \equiv \varepsilon_{0} K T_{e} / n_{e} e^{2}, c_{s}^{2} \equiv K T_{e} / M$, Eq. (1) can be written

$$
\begin{equation*}
\frac{\varepsilon_{0} K T_{e}}{n_{e} e^{2}} \bar{\nabla}^{2} \eta=\lambda_{D}^{2} \bar{\nabla}^{2} \eta=1-\left(n_{i} / n_{e}\right) \tag{2}
\end{equation*}
$$

Let s be the scale length of the gradient ∇, and define $\mathbf{r} \equiv \hat{\mathbf{r}} / s$, so that $\nabla^{2}=s^{2} \hat{\nabla}^{2}$, yielding

$$
\begin{equation*}
\nabla^{2} \eta=\frac{s^{2}}{\lambda_{D}^{2}}\left(1-\frac{n_{i}}{n_{e}}\right) \approx 0 \tag{3}
\end{equation*}
$$

In microtrenches, $s \ll \lambda_{\mathrm{D}}$; the r.h.s. can be neglected, and we need only solve Laplace's equation $\nabla^{2} \eta=0$ subject to the boundary conditions $\eta=\eta_{b}\left(\mathbf{r}_{b}\right)$ at $\mathbf{r}=\mathbf{r}_{b}$. The solution would be the same as that of the dimensional problem $\hat{\nabla}^{2} \eta=0$ with the boundary conditions $\eta=\eta_{b}\left(\widehat{\mathbf{r}}_{b}\right)$ at $\widehat{\mathbf{r}}=\widehat{\mathbf{r}}_{b}$. Thus, only the aspect ratio of the trench matters and not its absolute size, as long as the Debye length λ_{D} is $\gg s$. In other words, the space charge deep inside the sheath is negligible. The problem in the scaled experiment is to create a plasma with sufficiently large λ_{D}; this will be presented in another paper.

The ion trajectories are computed from

$$
\begin{equation*}
\frac{d^{2} \widehat{\mathbf{r}}}{d t^{2}}=-\frac{e}{M} \hat{\nabla} V=-\frac{e}{M} \frac{K T_{e}}{e} \nabla \eta=-c_{s}^{2} \widehat{\nabla} \eta . \tag{4}
\end{equation*}
$$

In terms of \mathbf{r}, this becomes $s^{2} d^{2} \mathbf{r} / d t^{2}=-c_{S}^{2} \nabla \eta$; and defining $\tau \equiv c_{S} t / s$, we have

$$
\begin{equation*}
d^{2} \mathbf{r} / d \tau^{2}=-\nabla \eta \tag{5}
\end{equation*}
$$

which has the same form as Eq. (4), regardless of s. Thus, the ion orbits are geometrically the same on any scale; only the time scale is changed. The computations are in these scaleindependent dimensionless units. Collisions are completely negligible.

The computational grid is shown in Fig. 1. A block of dielectric with $\varepsilon \approx 4$ is surrounded by a vacuum sheath region bounded by a conductor representing the sheath edge, S dimensionless units away. In practice S is much larger than the feature size and its value is not significant. The bottom of the dielectric block is the substrate being etched, and the trench grows in the direction of increasing y. The bottom surface would normally be photoresist and is divided into cells x_{j}, while the trench walls are divided into smaller cells y_{j}. The dielectric has width $2 \mathrm{~L}=$ 14 and height $\mathrm{H}=10$, while the trench has width 2 W and depth D , with aspect ratio $\mathrm{A}_{\mathrm{R}}=2 \mathrm{~W} / \mathrm{D}$. Ions are injected vertically from the $V=V_{\mathrm{s}}$ surface at $y=0$ with the Bohm velocity c_{s}. The "bottom" of the trench (at the top) is covered with a collector at potential V_{c}.

The electrons are assumed to be Maxwellian and follow the Boltzmann relation

$$
\begin{equation*}
n_{e} / n_{s}=\exp \left[\left(V-V_{s}\right) / T_{e V}\right], \text { where } T_{e V} \equiv K T_{e} / e \tag{6}
\end{equation*}
$$

and $n_{\mathrm{e}}=n_{\mathrm{i}}=n_{s}$ at the sheath edge.. As long as $V_{\mathrm{c}}<0$, electrons are in a repelling potential everywhere, and this relation holds in any geometry. The potential on a floating surface is found by equating the electron and ion fluxes. The electron flux is

$$
\begin{equation*}
\Gamma_{e}=n_{e} v_{r}=n_{s} \exp \left[\left(V-V_{s}\right) / T_{e V}\right] v_{r}, \text { where } v_{r}=\left(K T_{e} / 2 \pi m\right)^{1 / 2} \tag{7}
\end{equation*}
$$

is the random thermal velocity normal to a surface. The ion flux at $y=0$ is simply

$$
\begin{equation*}
\Gamma_{0} \equiv \Gamma_{i}(0)=n_{S} c_{s}=n_{S}\left(K T_{e} / M\right)^{1 / 2} . \tag{8}
\end{equation*}
$$

In the absence of a trench, the substrate surface at $y=6$ charges to the usual floating potential given by $\Gamma_{i}(6)=\Gamma_{i}(0)=\Gamma_{\mathrm{e}}$:

$$
\begin{equation*}
\left(V_{f}-V_{s}\right) / T_{e V}=-\ln (M / 2 \pi m)^{1 / 2} \approx-4.68 \text { for argon } \tag{9}
\end{equation*}
$$

We now set $V_{\mathrm{s}}=0$, so that the computation is in a grounded box. Since V_{s} is $\approx-1 / 2 T_{e V}$ relative to the plasma, V_{f} is $\approx-5.18 T_{\mathrm{eV}}$ relative to the plasma or $\approx-15 \mathrm{~V}$ for $K T_{\mathrm{e}}=3 \mathrm{eV}$ in argon.

In the computation, let N be the number of ions $\left(\approx 10^{4}\right)$ emitted at $y=0$ over a surface area LZ per unit time, where Z is a length in the z direction. The emitted ion flux is $\Gamma_{0}=N / L Z=$ $n_{\mathrm{s}} c_{\mathrm{s}}$. If N_{j} ions strike a surface cell of width Δx_{j}, the ion flux to that cell is $\Gamma_{\mathrm{i}, \mathrm{j}}=N_{\mathrm{j}} / \Delta x_{\mathrm{j}} \mathrm{Z}$. The ratio of this to the undisturbed flux Γ_{0} is then

$$
\begin{equation*}
R\left(x_{j}\right)=\left(N_{j} / N\right)\left(L / \Delta x_{j}\right)=F\left(x_{j}\right)\left(L / \Delta x_{j}\right), \tag{10}
\end{equation*}
$$

where $F\left(x_{\mathrm{j}}\right)$ is the fraction of all ions that end up in cell x_{j}. Fluxes $\Gamma\left(y_{\mathrm{j}}\right)$ to the trench wall are normalized similarly. The electron flux $\Gamma_{\mathrm{e}, \mathrm{j}}$ to a cell is $n_{s} v_{r} \exp \left(V_{j} / T_{e V}\right)$. Equating this to the ion flux $\Gamma_{\mathrm{i}, \mathrm{j}}=n_{\mathrm{s}} c_{\mathrm{s}} R\left(x_{\mathrm{j}}\right)$ and using Eq. (9), we find for floating potential of that cell

$$
\begin{equation*}
V\left(x_{j}\right)=T_{e V}\left[\ln \left(F_{j} L / \Delta x_{j}\right)-4.68\right] \text { relative to the sheath edge. } \tag{11}
\end{equation*}
$$

Ion orbits are computed first with all the insulating surfaces at V_{f} and the collector at V_{c}. N_{j} is then found, and the potential distribution $V\left(x_{\mathrm{j}}\right)$ is calculated and used in the first iteration. The ion orbits are then recalculated, giving data for the next iteration. This is continued until N_{j} and $V\left(x_{\mathrm{j}}\right)$ converge to steady values. When no ion falls on a cell, Eq. (11) diverges. In that case, we assume that the cell actually receives one ion or a fraction of an ion, resulting in $V\left(x_{\mathrm{j}}\right) \approx$ -40 V . The results are not sensitive to this approximation. Figure 2 shows the distribution of ions N_{j} to the cells y_{j} on the trench wall after several iterations; the entrance is on the left, and the collector on the right. In some cases, $V\left(x_{\mathrm{j}}\right)$ does not converge but oscillates between two or three patterns after 25 iterations. This is caused by the fact that ions are kinematically shielded from some cells, and the location of these cells depends on the fields from the previous iteration.

Fig. 3

Fig. 4

Figure 3 shows equipotential lines for $V_{c}=-40 \mathrm{~V}$ and $\mathrm{A}_{\mathrm{R}}=7$ (not to scale). It is seen that the E-fields are concentrated near the trench entrance, and the interior is almost field-free. Thus, the ions receive a kick as they enter and then coast to the collector. Since the E-fields are affected by the shape of the corner, we have rounded it into an arc, as shown in Fig. 4. This has a large effect on the ion distribution on the sidewall, as seen in Fig. 5.. To test this further, we

$\boldsymbol{V}_{\mathbf{c}}$	Corner	\mathbf{N}	To sidewall	To collector
-18 V	Square	10593	$21(0.2 \%)$	$830(7.8 \%)$
-18 V	Curved	10606	$31(0.3 \%)$	$1201(11 \%)$
-26 V	Square	10593	$34(0.3 \%)$	$813(7.7 \%)$
-26 V	Curved	10606	$0(0.0 \%)$	$1201(11 \%)$

$\boldsymbol{V}_{\mathbf{c}}$	S.W.	Coll.	AR	S.W.	Coll.
-18	65	778	3	65	778
-22	57	785	5	34	1005
-26	44	822	7	17	1184
-40	32	834			
-60	0	866			

Fig. 5
Fig. 6
added small bumps to the arc section, and these affect the ion orbits also. Thus, as the photoresist shape changes during an etch, the ion orbits change. Figure 6 shows the ion distribution as V_{c} is varied at $A_{\mathrm{R}}=3$ and as A_{R} is varied at $V_{\mathrm{c}}=-18 \mathrm{~V}$. In general, there are so few ions hitting the sidewall that they cannot cause changes in the etch profile. The situation is clear in the sample orbits shown in Fig. 7. On a real scale, the ion trajectories are almost straight; very few hit the sidewalls. When the y-axis is shrunk by a factor

20 (Fig. 5b), it is seen that the field of the collector affects the ions before they enter the trench. The sidewall cells at the entrance are shielded from the ion flux--an ion-shielding effect.

Fig. 8a`

Fig. 8b

We have also examined cases where part of the sidewall is conducting or the collector is large (Fig. 5a) and also when there are neighboring trenches (Fig. 5b). The general result is that the field lines are straighter and there are fewer sidewall ions when the collector or AR is large.

[^0]
[^0]: ${ }^{1}$ K. Hashimoto, Jpn. J. Appl. Phys. 33, 6013 (1994).
 ${ }^{2}$ G.S. Hwang and K.P. Giapis, J. Vac. Soc. Technol. B 15, 70 (1997).

