
_________________________________________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Electrical Engineering Department 
Los Angeles, California 90095-1594 

 
 
 
 
 

UNIVERSITY OF CALIFORNIA   •   LOS ANGELES 

Low Temperature Plasma 
Technology Laboratory 

 

Time-varying impedance of the sheath on 
a probe in an RF plasma 

Francis F. Chen 
 
 
 
LTP-509         September, 2005 



Time-varying Impedance of the Sheath on a Probe in an RF Plasma 

Francis F. Chen 

Electrical Engineering Department, University of California, Los Angeles, 90095-1594 
 
 
 
 

ABSTRACT 
 

Langmuir probes used in radiofrequency (rf) discharges usually include 
compensation elements that minimize the effect of high frequency oscillations in 
plasma potential.  The design of these elements requires knowledge of the capaci-
tance of the sheath on the probe tip, a quantity which varies nonlinearly during the 
rf cycle.  Sheath capacitance has been studied previously for capacitively coupled 
discharges, where the rf is applied to the electrodes.  Here the problem is treated 
from the standpoint of a small probe in a fluctuating discharge.  This work differs 
from existing literature in that a) no step model is used, and the Debye sheath is 
treated exactly; b) the treatment is simple and analytic; c) the time-variation of the 
capacitance is explicitly shown; d) the results are applied to probe design; and e) 
cylindrical geometry is considered.  The rf frequency is assumed low enough that 
electron transit times can be ignored.  We find that when the rf excursions bring 
the sheath from the Child-Langmuir region into the Debye sheath or electron satu-
ration region, its capacitance has a strongly nonlinear behavior.    
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A.  Introduction 
 In the design of rf-compensated Langmuir probes for measurements in rf plasmas, it is 
necessary to know the capacitive coupling through the sheath of rf fluctuations in plasma poten-
tial.  The simple approach normally used is to consider the sheath to be a vacuum capacitor 
whose thickness is roughly estimated.  In plane geometry this thickness is not well defined, even 
if a sheath edge is well defined, because the thickness depends on the slope of the potential at the 
edge, and this depends on the transition to the presheath.  It is impractical to solve for the pres-
heath, since the solution depends on collisions and ionization and is specific to each discharge.  
More accurate treatments of rf sheaths can be found in the literature but are not always suitable 
for the present task.   

 Lieberman1,2 has given analytic solutions for the sheath on a driven electrode in a ca-
pacitively coupled plasma (CCP).  However, he used a model in which the electron density was 
approximated by a single step.  Godyak and Sternberg3 pointed out that high- and low-frequency 
approximations can be made depending on whether the rf frequency ω is larger or smaller than 
the ion plasma frequency Ωp, and they solved4 the high-frequency case for a CCP driven sym-
metrically relative to ground.  How the shape of the sheath changes during the rf cycle was com-
puted numerically by Zhang et al.5, with the result that large changes occur in the low-frequency 
case, the one treated in this paper.  However, they did not give the sheath capacitance explicitly. 

 Godyak3 showed that the sheath capacitance Csh depends only on the surface charge on 
the probe and can be calculated without solving for the sheath thickness numerically.  Sudit and 
Chen6 used this shortcut to calculate Csh.  In that work, however, they neglected the Debye 
sheath, treating only the Child-Langmuir (C-L) sheath, adding, rather inconsistently, the Bohm 
velocity at the sheath edge.  Here we solve the plane sheath problem consistently, showing ex-
actly what approximations were previously made, and also obtaining formulas from which the 
sheath capacitance can be calculated even when the probe is not biased far from the space poten-
tial.  To establish notation, we start with a brief review of plane sheath theory before applying it 
to the calculation of sheath capacitance as a function of time.  Cylindrical sheaths and the resis-
tive part of the sheath impedance will be treated at the end. 

B.   Plane sheaths in a nutshell 

1.  Basic equations 

 We start by defining a sheath edge s (Fig. 1) with Vs, ns, and vs denoting respectively the 
potential, density, and ion velocity there.  Following traditional practice, we set Vs = 0 in the ab-
sence of rf, and assume quasineutrality up to s so that ni(s) = 
ne(s) ≡ ns.  The ions enter the sheath with a unidirectional, 
monoenergetic velocity vs, whose Bohm value will be re-
covered in due course.  There is no artificial separation be-
tween the Debye sheath (where ne ≠ 0) and the Child-
Langmuir sheath (where ne = 0).  Defining  

        sV V V= − ,         (1)                                
where V  is the actual potential as Vs varies, we write Pois-
son’s equation as 

                     0

2

2 ( )e i
d e n n
dx

Vε = − .          (2) 

 

s p 

Debye 
sheath 

V0 V C-L 
sheath 

Fig. 1.  Geometry of a plane sheath.
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For Maxwellian electrons, we have 
          / eeV KT

e sn n e= .   (3) 

The ion velocity v is given by energy conservation 

 2 2½ ½ ( 0)sMv Mv eV V= + ≤  (4) 
so that 

 
1/ 2

2 2
s

eVv v
M

⎛ ⎞= −⎜ ⎟
⎝ ⎠

. (5) 

Since ion flux is conserved, we have 

 
1/ 2

2
2, / 1i i s s i s s i s

s

eVn v n v n n v v n
Mv

−
⎛ ⎞

= = = −⎜ ⎟⎜ ⎟
⎝ ⎠

. (6) 

The positive, dimensionless potential η is defined as 

 ( ) / /s e ee V V KT eV KTη ≡ − − = − , (7) 

whereupon Poisson’s equation becomes                                                                                                                    

 
1/ 22

0
2 2 2

21
e

e e

s s

KT KTd e
n dx Mv

ηε η η
−

−⎛ ⎞
= + −⎜ ⎟⎜ ⎟
⎝ ⎠

. (8) 

Henceforth we use a Roman “e” for charge and an italic “e” for 2.718.  Normalizing x to the De-
bye length (with n = ns), 

 ( )1/ 22
0 / eD e sKT nλ ε= ;     ( ) / Dx sξ λ≡ −  (9) 

and defining the ion acoustic speed cs and the Mach number M as 

 1/ 2( / ) , /s e s sc KT M v c≡ ≡M , (10) 
Eq. (8) becomes simply 

 ( )
2 1/ 22

2" 1 2 /d e
d

ηηη η
ξ

− −= = + −M . (11) 

Multiplying by the integrating  factor η ' and integrating from ξ = 0, we obtain 

 ( )1/ 22 2 2½( ') 1 2 / 1 1e ηη η −⎡ ⎤ ⎡ ⎤= + − + −⎢ ⎥ ⎣ ⎦⎣ ⎦
M M . (12) 

Here we have used the sheath boundary condition η '(0) = 0.   

2.  Recovery of the Bohm sheath criterion 

 Since Eq. (12) has to be positive for all η, we can get a condition on M by expanding the 
r.h.s. for small η, up to order η2.   

 
( )2 2 2 2 4 2

2 2 2

½( ') 1 / ½ / 1 1 ½ 1

½ / ½ 0.

η η η η η

η η

⎡ ⎤ ⎡ ⎤= + − − + − + −⎣ ⎦⎣ ⎦

= − + ≥

M M M

M
 (13) 
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Hence, M ≥ 1, or vs  ≥ cs, which is the Bohm criterion.  We can now define the “sheath edge” to 
be that position s near the wall or probe where this condition is barely satisfied: vs  = cs.  Setting 
M = 1 in Eq. (12) and taking the square root, we obtain 

 
1/ 21/ 2' 2 (1 2 ) 2e ηη η −⎡ ⎤= ± + + −⎣ ⎦ . (14) 

This equation differs from previous work on Csh in that the electron density is not neglected or 
approximated. 

3.  Recovery of the Child-Langmuir law 

 For space-charge-limited ion emission, the electron terms are omitted, and η is infinitely 
large, since temperatures are zero.  Eq. (14) then becomes  

 ½ ¼ ¼ 3/ 4' 2 (2 ) , ' 2η η η η−= = . (15) 

Integrating from ξ = 0 to d / λD gives 

 3/ 4 3/ 4 3/ 2 3/ 2 2 1/ 2 23 9 92 , 2 2
4 16 8d d dη ξ η ξ ξ= = = . (16) 

Converting back to dimensional units, we have 

 
3/ 2 2

½ 2

0

ee 9 2
8

s

e e

nV d
KT KTε

⎛ ⎞⎛ ⎞− = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. (17) 

It is now convenient to express ns in terms of the ion current density J: 

 1/ 2 1/ 2e e ( / ) , / e( / )s s s e s eJ n c n KT M n J KT M= = = . (18) 

The normalizing factor KTe now cancels out, as it should, and we have 
 

 
1/ 2 3/ 2

0
2

( )4 2e
9

VJ
M d

ε −⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (19) 

which is exactly the Child-Langmuir law. 
 
4.  Relation to the plasma potential 

 Since the ions have a velocity cs at s, they must have gained an energy 2½ ½s eMc KT=  in 
the presheath, so that the potential V0 in the main plasma must be higher than Vs by ½KTe/e.  The 
electrons, if Maxwellian, would have a density higher by a factor e1/2 in the plasma than at the 
sheath edge.  Thus, ns = e−1/2n0 = 0.61n0.  Since λD was defined with ns

−1/2, its value would be 
decreased by e−1/4 = 0.78 if we had chosen to define it using n0.  The derivative η ' would be in-
creased by a factor e1/4 = 1.28.  However, once this is understood, it is not necessary to make any 
changes in the formulism. 

C.  Calculation of sheath capacitance 
 The charge on a capacitor is given by Q = CV.  From this, the sheath capacitance Csh can 
be written as 
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 sh s

p

C
A V

ρΔ=
Δ

, (20) 

where Ap is the probe area and ρs is the surface charge density on the probe.  Following Ref. 6, 
we use Gauss’s Law to obtain ρs = Dn, the normal component of ε0E = − ε0(−∇V).  The first mi-
nus sign comes from the fact that Dn is defined in the −x direction in Fig. 1.  Eq. (20) then be-
comes 

 0
0 0

sh

p D

C E d dV d d
A V dV dx d d

ε ηε ε
λ η ξ

⎛ ⎞Δ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠
. (21) 

Eq. (14) gives dη /dξ.  Taking its η-derivative, we obtain 

 
½

0
1/ 2½

1 (1 2 )
2 (1 2 ) 2

sh

p D

C e
A e

η

η

ε η
λ η

− −

−

+ −=
⎡ ⎤+ + −⎣ ⎦

, (22) 

where we have taken the + sign because the ion density (the first term in the numerator) has to be 
larger than the electron density (the second term) once the Bohm criterion is satisfied.  Here it is 
understood that η is evaluated at the probe, so that e( ) /p s eV V KTη = − − .  This equation is valid 
for all Vp below the space potential even if η is small.   

 The error in neglecting the Debye sheath6 can now be calculated.  With a large negative 
probe bias so that η >> 1, the fraction F in Eq. (22) becomes 

 
½ ½-½ ½ 3/ 2(1 2 ) (1 2 ) 1 (1 2 ) (1 2 )F η η η η

− −
⎡ ⎤ ⎡ ⎤= + + − = + − +⎣ ⎦ ⎣ ⎦ . (23) 

This can be expanded in the small quantity ε ≡ 1/(2η) to obtain 

 
1/ 2

3/ 4 1/ 2 3/ 4 1/ 23 31 ... 1 ½ ...
2 4

F ε ε ε ε ε ε
−

⎛ ⎞ ⎛ ⎞= − + − ≈ + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (24) 

Thus the capacitance is approximately 

 
3/ 4

0
½ ½

(2 ) 1 11
22 (2 )

sh

p D

C
A

ε η
λ η

− ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. (25) 

Apart from notation, this is the same as Eq. (17) of Ref. 6 if one approximates ns with ½n0 (Sec. 
A4).  The correction term in Eq. (25), which modifies the Child-Langmuir sheath for the incident 
ion velocity, is not small.  At the floating potential, η is about 5, so that term is ≈0.16.  For 
smaller η (Vp closer to space potential) the expansion fails, and one should use the exact equation 
(22), which includes the Debye sheath.  Physically, Eq. (25) tells us that the sheath capacitance 
increases as η decreases⎯that is, as the sheath gets thinner⎯more or less as predicted by the 
Child-Langmuir law.  There is, in addition, a dependence on Te and n0 through λD.   

 Figure 2 shows computations of Csh vs. η comparing the exact formula of Eq. (22) with 
the approximate formulas of Eqs. (25) and (28).  At large η, all the curves show a decrease of Csh 
with η as the C-L sheath thickness increases.  The exact curve shows a peak at small η as the 
probe enters the Debye sheath, and it falls at smaller η as the thickness of the Debye sheath in-
creases to ∞ as Vp reaches the space potential.  Approximations that do not include the Debye 
sheath do not have this feature.  The approximation (25) that includes the ion velocity at the 
sheath edge is somewhat better than the C-L approximation (28), which does not.  The improve-



 6
ment is not great, since the series in Eq. (24) converges very slowly with η −½.  At the floating 
potential either approximation is reasonably good, but they fail when the Vp moves closer to Vs.  
Figure 3 shows the expected variation of Csh with density. 
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D.  Effect of RF 

1.  Range of validity 
In rf discharges, an electric field is applied to the plasma either by an electrode or by an 

external antenna.  This E-field can drive electrons towards a wall.  The sheath drop there must 
then increase to repel enough electrons to maintain a neutral plasma, and the plasma potential V0 
must rise.  As the rf changes sign, V0 will rise and fall unsymmetrically, since the current through 
a Coulomb barrier varies exponentially with voltage.  The harmonic content of V0 oscillations 
will vary in different devices.  Godyak and Piejak7 showed that the 2nd harmonic will dominate 
in a CCP with electrodes driven symmetrically relative to ground4.  In a normal CCP with one 
electrode near ground, the fundamental rf frequency ω will dominate.  In a cylindrical induc-
tively coupled plasma (ICP), the E-field is ideally everywhere parallel to the walls, so that no 
oscillating wall sheaths develop, but asymmetries in antenna construction, ports on the walls, and 

Fig. 2.  Sheath capacitance vs. normalized probe bias according to the exact formula (⎯), 
its Taylor expansion ( ), and the Child-Langmuir formula ( ). 
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Fig. 3.  Variation of dc Csh with density.
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capacitive coupling can cause V0 oscillations at the fundamental frequency ω.  In helicon dis-
charges, an E-field at ω is an intrinsic property of the helicon wave.  To simplify the problem, we 
will treat one frequency at a time and assume that Vs, the sheath-edge potential, follows the oscil-
lations in V0.   

The dc sheath theory given above is applicable only if the sheath comes into equilibrium 
at each phase of the rf.  This requires, first, that the rf frequency frf be low enough that the elec-
trons respond instantaneously; this is a good assumption.  Second, the frequency must be low 
enough that the ions traverse the sheath before it changes, and their rf motion need not be taken 
into account3,5.  If the sheath thickness is about 5λD, the ion transit time t through the sheath is  

 
1/ 2 1/ 2

0
2

0

55 / 5 e
D s

e p

KT Mt c
KTn e

ελ
⎛ ⎞ ⎛ ⎞

≈ ≈ =⎜ ⎟ ⎜ ⎟⎜ ⎟ Ω⎝ ⎠⎝ ⎠
, (26) 

Ωp being the ion plasma frequency.  The rf period τ  = 1/ frf =  must then be >> 2t, yielding 

 /10rf pf << Ω . (27) 

At n0 = 1012 cm-3, Ωp is ≈2 × 108 sec-1, so that frf must be << 20 MHz.  This is marginally accept-
able at 13.56 MHz, and the condition is not met at lower densities even at that frequency.  Fortu-
nately, the value of Csh need not be known exactly in practical applications. 

 This being the case, we may use Eq. (25) without the correction term; the error entailed 
was discussed in Sec. C.  In dimensional units, this is 

 
3/ 4

0
5 / 4

( )

2
p s p

sh
D e

A e V V
C

KT
ε
λ

−−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. (28) 

In the absence of rf, the capacitance is6 

 
3/ 4

0
0 5 / 4

( )

2
p s p

D e

A e V V
C

KT
ε
λ

−
⎡ ⎤−

= ⎢ ⎥
⎢ ⎥⎣ ⎦

, (29) 

where the overbar denotes the dc values.   

2.  Uncompensated probe 

a)  Small rf fluctuations.  In the presence of rf, consider first a probe or small electrode 
connected directly to a dc power supply, giving Vp = pV .  Let Vs oscillate at frequency ω: 

 sins s rfV V V tω= + . (30) 

The capacitance is then given by  

 
3/ 4

0
sin

1 rf
sh

s p

V t
C C

V V
ω

−
⎛ ⎞

= +⎜ ⎟⎜ ⎟−⎝ ⎠
. (31) 

In addition to Csh changing with probe voltage, it also changes during an rf cycle.  If Vrf is small, 
Eq. (31) can be expanded and averaged over an rf cycle.  We then find that < Csh> differs from 
C0 only in second order in /( )rf s pV V V− .   
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b)  Large rf fluctuations.  A more likely situation, however, is that Vrf is larger than 

s pV V− , which can be as small as 2KTe/e as the probe I – V curve is swept, while Vrf can exceed 
100V.  In that case, Eq. (31) shows that Csh has a pole and becomes complex when the bracketed 
quantity goes negative.  This cannot happen physically, however.  When Vs comes close to Vp, a 
the probe draws a large electron current, raising the mean plasma potential sV .  Thus, sV  has to 
increase, keeping the bracket positive.  Since sV  is no longer constant and the approximation η  
>> 1 is not always valid, we must use the exact equation (22): 

 
½

0
1/ 2½

1 (1 2 )
2 (1 2 ) 2

sh

p D

C e
A e

η

η

ε η
λ η

− −

−

+ −=
⎡ ⎤+ + −⎣ ⎦

. (32) 

Under normal circumstances, η is always positive if the probe is biased below Vs.  The denomi-
nator is positive if the Bohm criterion is satisfied (Sec.  B2), and the numerator is always positive 
since its leading term in a Taylor expansion is η2.  Recall that η is defined as 

 e sin ( )rf s p
e

V t V V
KT

η ω⎡ ⎤= + −⎣ ⎦ . (33) 

If sinωt is positive or only slightly negative so that η remains positive, electron saturation is 
never reached, and Eq. (32) is still correct.  For more negative values of sinωt, η would become 
negative unless sV  increases.  The amount of this increase depends on the geometry.  To keep the 
plasma neutral, the electron flux to the probe cannot exceed the ion flux to the walls.  For sim-
plicity, we neglect the ion flux to the probe and the electron flux to the walls.  The electron flux 
to the probe is 
 ½

0 ( 0), ( / 2 )e p r r eJ A n v e v KT mη η π−= ≥ = , (34) 

where vr is the electrons’ random thermal velocity.  The ion flux to the walls of area Aw is 

 ½ ½
0 ( / )i w s s w eJ A n c A e n KT M−= = . (35) 

The minimum value of η is thus given by equating these two fluxes: 

 min

1/ 2
0e

2
p r p e

w s s w e

A n v A KTe M
A n c A m KT

η

π
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

, (36) 

 
2

min 2
1 1 ln
2 2

p

w

AM
m A

η
π

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (37) 

Note that “e” here is not the unit charge “e”.  From Eq. (33), sV must rise to the value 

 minsin ( / e)s p rf eV V V t KTω η= − − .    (38) 

For rf phases such that sinωt is negative and large enough that η < ηmin in Eq. (33), the sheath 
capacitance is given by Eq. (32) with η replaced by ηmin.  Thus, for large Vrf, Csh obeys Eq. (32) 
for only part of the rf cycle.  When sinωt swings sufficiently negative, sV  rises to keep the 
plasma neutral, and Csh remains constant during that part of the rf cycle.   
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Note, however, that  Eq. (34) is valid only for η ≥ 0.  Electron saturation is reached at η  

= 0, and Je remains at the value Apn0vr.  That means that ηmin  must be non-negative and the ar-
gument of the logarithm in Eq. (37) must be > 1/e.  If the probe area is so small that it can draw 
saturation electron current without raising Vs, then the sheath vanishes, having infinite thickness.  
Indeed, if we replace η by ηmin = 0 in Eq. (32), we find that Csh has the indeterminate form 0/0, 
which can be seen to approach 0 by taking the derivatives of the numerator and denominator.   

In summary, we see that Csh varies in a very complicated way in the presence of Vrf.  
There are four cases:  i) If Vrf is so small that Vs never oscillates below pV , Csh is affected only in 
higher order.  ii) For larger Vrf, Csh will vary nonsinusoidally with the phase of the rf.  iii) If Vrf is 
very large, sV  will be changed by the probe current so as to keep η positive, and Csh will reach a 
limiting value during part of the rf cycle.  iv) If the probe is very small, ηmin itself will saturate at 
the value 0.  These cases are illustrated in Figs. 4−6.  Figure 4 compares Csh computed using Eq. 
(32) with that using Eq. (31).  At Vrf = 6V, the excursions are small enough that η does not enter 
the region to the left of the peak in Fig. 2, and is near the limit of case (i).  At Vrf = 8V, that re-
gion is entered when sinωt ≈ −1, and the exact solution shows a dip in Csh.  This dip reaches 0 at 
Vrf = 9V, since e(Vs − Vp) starts at 3 KTe = 9V, and Vrf is just sufficient to bring Vs down to Vp at 
its extremum.  This is case (ii). 
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Fig. 4.  Variation of Csh through two rf cycles for Vrf  = 6 and 8V(0-to-peak).  The solid curve (⎯) is the exact solu-

tion, and the dashed curve (- - -) the C-L approximation.  Parameters are n = 1012 cm-3, KTe = 3 eV,  and ηdc = 3. 

 Figure 5 shows case (iii), when η is limited by ηmin, but ηmin is still above the dc value of 
η = 3.  The “exact” solution of Eq. (32) is compared with that when the ηmin cutoff is imposed by 
the fact that Vs is dragged upward by the probe current.  This rare case happens only when the 
plasma chamber is small, so that the ratio Aw/Ap in Eq. (37) is not very large.  However, we have 
observed experimentally that the shift is sV  is larger than expected from the calculation above, so 
that case (iii) may occur for larger values of Aw/Ap. 
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3.  Partially compensated probe 
 The most common way to deal with rf 
fluctuations in V0

 is to use tuned inductors 
and auxiliary floating electrodes, a method 
tried by Gagne and Cantin8,9 and further de-
veloped by Godyak et al.10, Sudit and Chen6, 
and Mahony et al.11  A partially compensated 
probe is shown in Fig. 7.  The probe tip is 
located at P.  The sheath capacitance Csh 
connects it to the space potential Vs.  A choke chain with impedance Zck consisting of inductors 
and their stray capacitances filters out the rf fluctuations sV from the resistor Rm across which the 
probe current is measured.  The value of Rm is small and can be neglected in this discussion.  
Ideally, the probe tip then fluctuates with sV  so that the applied dc voltage Vp is the only voltage 
between the probe and the plasma.  Ignoring the stray capacitance Cs for the moment, we see that 
Csh and Zck form a voltage divider, and the rf signal at P is  

 ck
p s

ck sh

ZV V
Z Z

=
+

, (39) 

 
where Zsh is –j/ωCsh.  To suppress rf pickup, therefore, |Zck| must be much larger than |Zsh| so that 

pV  follows sV  closely.  To get probe I – V characteristics unaffected by sV  requires 

 (e / )( ) 1rf e s pKT V Vη = − << , (40) 
where  
 (e / )( )dc rf e s s p pKT V V V Vη η η= + = + − − . (41) 

From Eq. (39) with sV  ≈ rfV , the requirement is7 

 
e e

1rf rfsh sh

e ck sh e ck

V VZ Z
KT Z Z KT Z

≈ <<
+

. (42) 

To get an order of magnitude, we can use Eq. (29) to estimate Csh.  For typical parameters Ap = 
.047 cm2 (0.15 mm diam × 1 cm long), KTe = 3 eV, n = 1012 cm-3, this gives C0 = 42 pF and |Zsh| 
= 280 Ω at 13.56 MHz.  Here we have assumed pV  near floating potential, so that pV − sV  ≈ 5.  If 

rfV  = 100V, we would require |Zck| >> 10 kΩ, or |Zck| ≥ 100 kΩ.  At lower densities, this value 
increases as n−½.  To get an impedance this high usually requires using tuned chokes whose self-
resonance is at the rf frequency.   

4.  Fully compensated probe 

A choke chain alone, however, is insufficient because of the stray capacitance Cs of the 
short wire between the probe tip and the choke chain7,6.  If Cs connects P to ground, it effectively 
decreases the value of |Zsh|.  If Cs connects P to the plasma through a ceramic probe insulator, it 
has little effect, since it simply adds a small amount to Csh.  If sV  varies in space, there may be a 
small difference between the sV  sampled by Cs and that seen by the probe tip, but this cannot be 
a large effect. 

     Fig. 7.  Isolation of a probe with a choke. 
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However, in a real situation, it was found6 that |Zc| ≈ 200kΩ gave insufficient rf isolation 

even if a metal probe shaft 
was not used.  In this case, an 
auxiliary electrode or “com-
pensation electrode” of large 
area Ax (and hence large Cx), 
is required to detect the rf 
changes in V0.  Figure 8 
shows the probe circuit with 
both sheaths included6.  Here 
Csh is on the probe tip and Cx 
is on the auxiliary electrode.  
The latter is coupled to the 
probe through the relatively large capacitor Ccp.  Cx is given by Eqs. (32) and (33) but with a lar-
ger area Ax, large enough to satisfy Eq. (42) even if Zck is bypassed by the stray capacitance Cs1. 

 As far as the probe is concerned, pV  is driven by the compensation electrode and is given 
by Eq. (39) with Zx in place of Zsh: 

 ck
p s

ck x

ZV V
Z Z

=
+

. (43) 

The requirement of Eq. (42) is then relaxed to 

 1rf rfx x

e ck x e ck

eV eVZ Z
KT Z Z KT Z

≈ <<
+

, (44) 

and |Zck| can be smaller by the ratio Ax / Ap.  If Ax is large enough, it may not be necessary to use 
resonant chokes.  For instance, if Ap ≈ .05 cm2, and Ax ≈ 5 cm2 (0.5 cm diam × 3 cm long), |Zck| 
can be reduced a factor 100 below the 100 kΩ calculated in the previous example.  However, 
note that Csh depends on 1/λD ∝ √n.  If n ≈ 109 cm-3 instead of 1012 cm-3, |Zsh| is increased by a 
factor of 32, and |Zck| of order 30 kΩ is still required. 

5.  Generation of harmonics 

 Since Csh varies with Vs, the rf probe current will be non-sinusoidal, and harmonics of the 
rf frequency will be generated.  To estimate this, we use the approximate formula  (31): 

 
3/ 4

0
sin

1 rf
sh

s p

V t
C C

V V
ω

−
⎛ ⎞

= +⎜ ⎟⎜ ⎟−⎝ ⎠
. (45) 

The ac electron current to the probe is given by  

 ( / )e sh sI C dV dt= . (46) 

From Eqs. (30) and (45), we obtain 

 ( )
3/ 4

0
sin

1 cosrf
e rf

s p

V t
I C V t

V V
ω

ω ω
−

⎛ ⎞
= +⎜ ⎟⎜ ⎟−⎝ ⎠

. (47) 

Fig. 8.  Equivalent circuit of a compensated probe (from Ref. 1). 
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For sufficiently small Vrf, Taylor expansion gives 

 ( )0 0
sin sin 23 31 cos cos

4 8
rf rf

e rf rf
s p s p

V t V t
I C V t C V t

V V V V
ω ω

ω ω ω ω
⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
. (48) 

When the expansion is valid, the 2nd harmonic is smaller than the fundamental by a factor6 

 3
8

rf

s p

V
V V−

. (49) 

This is, of course, valid only for very small values of Vrf.  To see the effect of a more exact calcu-
lation, we have Fourier analyzed the fairly smooth curve of Fig. 4b, representing a Vrf of only 
8V.  The Fourier fit up to the 8th harmonic are shown in Fig. 9.  The non-zero coefficients an of 
sin(nω t) and bn of cos(nω t) are given relative to that of the fundamental, a1.  The largest har-
monic, the 2nd, has 13% amplitude in this case.  The leading term in eI  is still given by Eq. (48). 
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Fig. 9.  A Fourier fit to the exact curve of Fig. 4 for Vrf = 8V.  The harmonic amplitudes relative to the fundamental 

are shown. 

6.  The sheath resistance 
 The real part of Zsh , corresponding to the particle current to the probe, is also nonlinear.  
We consider only the electron current, since the ion current is comparatively constant and is not 
greatly changed by fluctuations in Vs.  For a Maxwellian distribution the electron current is given 
by Eq. (34): 
 ( ) /

0e s p ee V V KT
e p rI A n v e −= − . (50) 

The sheath resistance is defined by 

 /shR dV dI= , (51) 

so that, in the absence of rf, the dc resistance is given by 

 1 / ( ) (e / ) | |sh e p e eR dI d V KT I− = = , (52) 

with Vs = sV = constant.  At the floating potential, |Ie| is equal to Ii, and Rsh there is given by 
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½

2 2 ½ 2
0 0

( )1 1 1( )
e e e e e

e e e e
sh f

i s s p s p p

KT KT KT eMKTR V
I n c A e n c A A n−= = = = . (53) 

Note that the “e” in italics is not the unit charge.  As the probe bias pV  increases, |Ie| increases, 
and Rsh decreases from this value exponentially.   

 In the presence of rf, Vs will oscillate and be given by sins s rfV V V tω= + .  If the probe is 

uncompensated, Vp will remain at pV .  The I – V curve will oscillate horizontally, and its slope 
will change, causing Rsh to change nonlinearly during the rf cycle.  Its value is still given by Eqs. 
(52) and (50) if Vs is given its unsteady value.  If the probe is rf compensated, as Sec. D4, Vp will 
follow Vs, and the slope of the I – V curve will not change as much.  Rsh is still given by Eqs. (52) 
and (50) if Vs − Vp is given its compensated value.  From Eq. (43) we obtain 

 sin x
s p rf

ch x

ZV V V t
Z Z

ω− =
+

. (54) 

The instantaneous sheath resistance from Eqs. (52), (50), and (54) can now be written 

 

e sin

0e e

x
s p rf

e ch x

ZV V V t
KT Z Z

e
sh

p r

KT eR
A n v

ω
⎡ ⎤

− − +⎢ ⎥+⎢ ⎥⎣ ⎦
= . (55) 

The same proviso on negative values of sinωt that make the exponent positive applies here, but 
with good compensation this should not happen.  The dynamic impedance of a plane sheath in a 
strong rf environment is then given by  

 /sh ch shZ R j Cω= − , (56) 

in which the resistive and reactive elements have been treated in detail above. 
 
E.  Cylindrical geometry 

A compensation electrode is usually large enough compared with λD that the sheath on it 
can be treated as planar.  A wire probe tip, however, is likely to be made with radius Rp smaller 
than or comparable to λD in order for the orbital-motion-limited probe theory to be applicable.  In 
that case, the probe sheath has to be treated in cylindrical geometry.  In the electron retardation 
region, Poisson’s equation (11) is replaced by the cylindrical version12 of the Allen-Boyd-
Reynolds13 (ABR) equation 

 -½1 d d J e
d d

ηηρ η
ρ ρ ρ ρ

−⎛ ⎞ = −⎜ ⎟
⎝ ⎠

,    
0

1 1
e2 2

i

D s

IJ
n cλπ

≡ , (57) 

where ρ = r / λD.  This equation is not amenable to an analytic solution suitable for probe design.  
It has to be integrated from infinity, and it does not make sense14 to define a sheath edge where vi 
= cs.  Furthermore, the ion current Ii has to be assumed at the outset. 

 Although we cannot easily extend the plane results for the retardation region to cylinders, 
we can treat the region of electron saturation.  When Vp > Vs so that η < 0, electrons are acceler-
ated toward the probe.  Their thermal velocities will cause those with high angular momentum to 
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     Fig. 5.  Comparison of the “exact” solution (- - -) with that imposed by ηmin as Vrf is increased (⎯).  The Vrf = 
8V case is the same as in Fig. 4.  The ratio Aw/Ap is only 100 here. 

Figure 6 shows case (iv) when Aw/Ap has a more normal value of 2800/0.047 (an 0.015 ×  
1 cm diam probe in a 30-cm diam × 30 cm high chamber).  In this case, the large Vs oscillations 
quickly bring Vs down to Vp whenever sinωt is negative, and ηmin → 0 for a large portion of the 
rf period.  Csh also goes to 0, corresponding to the left edge of the exact curve in Fig. 2.  The only 
difference between the curves is that the “exact” equation (32) has no solution for η < 0, while 
“cutoff” solution replaces η with ηmin = 0.   
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Fig. 6.  Behavior of Csh for small probes and large Vrf.  The “exact” solution ( ) does not exist where the “cutoff” 

solution (⎯) gives Csh = 0. 

 

The sudden jumps in Csh would give rise to high harmonics in the probe current.  These 
jumps are an artifact of the plane-geometry idealization.  In cylindrical geometry the electron 
current does not saturate abruptly but slowly grows as the electron sheath expands.  The curves 
in Fig. 6 should be smoothed out, but we shall see in Sec. E that the situation is not simple.  In 
the next two sections, we examine methods devised to avoid the complicated behavior of Csh by 
limiting the effective Vrf to small values. 
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orbit the probe and miss it; they cannot be treated as a cold fluid, as we did with the ions.  The 
equations have been solved numerically by Laframboise15, but these specific results cannot be 
applied to the general case.  However, if Rp / λD is small enough, it is possible to use the conven-
ient Orbital-Motion-Limited (OML) theory of Mott-Smith and Langmuir16, as summarized by 
Chen17.  The orbits of particles spiraling in to an attractive probe are calculated using energy and 
momentum conservation as in Sec. B1, but in the case of electrons one cannot neglect their en-
ergy spread at the sheath edge.  For a Maxwellian distribution at r = s, the OML result for satura-
tion electron current is 
 , 0e sat p rI A en v F= , (58) 

where vr is given by Eq. (34), and F is the function 

 ½ ½1 erf ( ) [1 erf( ) ]F e η η
ε

−≡ Φ + − Φ − , (59) 

in which  
 2 2/ 1, /(1 ) , /( 1)pR sε η ε η η ε−≡ < Φ ≡ − Φ − = − . (60) 
 

Here η is still defined by Eq. (7) and is negative for Vp > Vs, so that the arguments of the error 
functions 

 
2

00

2erf( )
x t

x
xx e dt
π

−
→≡ ⎯⎯⎯→∫  (61) 

are real.  The sheath radius s has to be arbitrarily assumed, since there is no Bohm criterion for 
electrons when Te > Ti.  However, it turns out that F is extremely insensitive to ε for all ε  > 10, a 
fact that Langmuir could not point out because he did not have personal computers.  We may 
therefore take the s → ∞ limit of Eq. (59), obtaining 

 ½ ½2( ) ( ) [1 erf( ) ]F e ηη η η
π

−= − + − − . (62) 

Note that at the space potential η = 0, F → 1 and F'(η) → −1, so that Ie,sat joins smoothly onto 
the transition region [Eq. (34)].  An ideal OML probe curve is shown in Fig. 10.  At Vs = 0, the 
junction at Vs is smooth for a cylindrical probe but abrupt for a plane probe.  As Vrf oscillates 
with amplitude 6V, the probe bias Vp effectively oscillates relative to this curve between the lim-
its shown.  In this case, Vrf is large enough that the probe enters the electron saturation region 
during part of the rf cycle, but Ie does not change discontinuously, as it does in the plane case.  

 Eqs. (58) and (62) give Ie without the need for solution of Poisson’s equation to get V(r).  
Whether a collisionless electron coming from infinity hits the probe or not depends only on its 
initial energy and angular momentum regardless of the shape of V(r).  The requirement Rp << λD 
stems from the fact that n has to be small enough that there is no absorption radius Ra inside of 
which all electrons are collected, thus increasing the effective probe radius from Rp to Ra.  To 
calculate Csh, however, Eq. (21) requires a knowledge of η(ρ), which is not available from the 
OML theory.  Note, however, that the solution given by Eqs. (58) and (62) is self-similar; the 
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Fig. 10.  An ideal OML curve for a cylindrical probe with Rp = .0075 and L = 1 cm.  The argon plasma has KTe  = 

3eV and n = 1011 cm-3.  The dashed line is the saturation electron current for a plane probe.  The effective excursion 
of Vp is shown for Vrf = 6V and η0 = 1. 

only scalelength is given by Rp.  The ratio Ie / Rp depends only on η.  Thus, as Rp changes, the 
picture is the same, and only the scale changes.  All the particle trajectories have the same shape, 
and therefore the surface charge density ρs is proportional to Ie / Rp, and hence to F(η).  Let  

 1( / )s e pI Aρ τ= , (63) 

where τ1 is a constant with the dimensions of time.  Eqs. (20), (58), and (63) then give  

 ( )1 0
e esh s

r
p e

C d d n v F
A dV KT d

ρ τ
η

= = − . (64) 

With Eqs. (9) and (34), this can be written 

 0
1

1 '( )
2

sh
p

p D

C F
A

ε ω τ η
λπ

= − . (65) 

Differentiating Eq. (62) gives 

 ½'( ) {1 erf[( ) ]}F e ηη η−= − − − , (66) 

where η is negative.  The sheath capacitance in electron saturation is therefore 

 ½0
1

1 {1 erf[( ) ]}
2

sh
p

p D

C e
A

ηε ω τ η
λπ

−= − − . (67) 

One might think that the unknown constant τ1 can be evaluated by matching smoothly to the so-
lution for η > 0, but this is not the case.  In the limit η → 0,  

 0
1

1 0
2

sh
p

p D

C
A

ε ω τ
λπ

= ≠ , (68) 

whereas Csh at the space potential has to vanish because there is no sheath.  Actually, Csh has to 
drop to zero even from the electron saturation side.  If Ti is finite, though very small, it begins to 
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be collected when −η is small, and Eq. (67) is no longer valid.  Csh will fall to zero as in Fig. 2, 
but much more steeply, in a voltage range scaled to Ti rather then Te.  Although the absolute 
magnitude of Csh is not known, we can show its behavior according to Eq. (67) in Fig. 11.  There 
is still a discontinuity at η = 0, but it is so spiky that it will not be seen, and Csh will vary much 
more smoothly than in Fig. 5 when Vrf brings η into the electron saturation region. 
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Fig. 11.  Behavior of Csh of a cylindrical electron sheath (⎯);  the magnitude is approximate.  Also shown for com-

parison is Csh for a plane ion sheath (− − −) from Fig. 2.  Both curves dip to 0 at the space potential. 

 The statement that the sheath vanishes at Vp = Vs does not hold when there is a dc mag-
netic field.  The probe then casts a shadow, and particles are depleted from the tube of force in-
tercepted by the probe.  The space potential inside the tube is different from that outside, and it 
varies in a way that depends on the diffusion, classical or anomalous, of electrons across the B-
field into the tube.  Since Vp cannot be Vs everywhere, there is always going to be a sheath, and 
Csh cannot vanish as it does for an infinitesimal probe in a B-field-free plasma. 

 A solution for Csh in the Child-Langmuir approximation for cylinders (η >> 1) is also 
available18, but the series solution is quite cumbersome.  For emission from a thin wire out to a 
sheath edge, Langmuir18 showed that the solution is insensitive to s / r for s / r > 10.  This may 
not be true for ion emission from the outer cylinder rather than the inner one.  In any case this C-
L solution cannot be connected to the electron retardation region without numerical integration. 

F.  Conclusion 

 Both the real and imaginary parts of the sheath impedance of a Langmuir probe vary 
nonlinearly with rf fluctuations in space potential.  An equation for the time-dependent sheath 
capacitance in plane geometry is derived including both the Child-Langmuir and Debye sheaths.  
Inclusion of the Debye sheath leads to violent oscillations of the sheath capacitance which may 
lead to generation of many harmonics of the rf frequency.  For a cylindrical probe the sheath ca-
pacitance is given for the electron saturation region, but the transition region requires numerical 
integration.  The effect of rf on probe characteristics can be minimized with an appropriate com-
pensation circuit, whose parameters are specified.   

 This work was partially supported by the National Science Foundation Grant No. DMI-
0115570. 
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