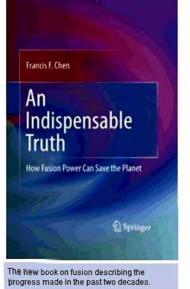
iter newsline

27 May, 2011 -#178

Fusion Energy: Not a pipe dream -Sabina Griffith


<< return to Newsline #178

Bookmark

Al Gore's book and video *An Inconvenient Truth* raised the public consciousness about the dangers of global warming and climate change. Another book has now been published that intends to convey the message that there is a solution. "A solution not only to global warming caused by anthropogenic emissions of carbon dioxide, but also to the depletion of fossil fuels and to the wars in the Middle East related to our dependence on their supply of oil," says Francis F. Chen, the author of *An Indispensable Truth*.

In 1954, Francis "Frank" Chen was among Lyman Spitzer's first 15 employees at Princeton's Project Matterhorn, now known as PPPL. There, he instituted experiments on linear machines that led to the discovery of resistive drift waves, whose mechanism he worked out while on sabbatical at Fontenay-aux-Roses, France, in 1962-63. Two other young physicists were there at the same time: Paul Rebut and Robert Aymar, who later were instrumental in designing ITER. At UCLA since 1969, Frank opened up research on laser fusion, laser accelerators, and low-temperature plasmas. He never lost interest in magnetic fusion, however, and decided that the greatest need was to explain fusion to the public. This book is his first attempt.

"Most legislators and journalists have regarded fusion as a pipe dream with very little chance of success," Chen writes in his introduction. "They are misinformed, because times have changed. Achieving fusion energy is difficult, but the progress made in the past two decades has bee

progress made in the past two decades has been remarkable. The physics issues are now understood well enough that serious engineering can begin." In his book, he gives in-depth and detailed information on why he believes this to be so.

view printable version

Written "for a variety of readers, from green enthusiasts with no science background to Scientific American magazine subscribers," Chen's book gives a comprehensive summary of the stakes of climate change and energy supply—and how controlled fusion fits into the picture. "I tried to give a concise, impartial picture of the facts," Chen writes, admitting that he himself is not an expert on climate topics. "Here I am out of depth. I get my information from the same newspapers, magazines and websites that you do. But I think it is important to put fusion in the proper context within the general scheme of the world's future."

An Indispensable Truth is both an entertaining and an informative book that manages to explain the complexity of plasma physics without using formulas. "This is an important book for anyone who wishes to understand the greatest challenge we face,"

writes Steven Cowley, Director and CEO of the Culham Centre for Fusion Energy, UK and one of the book's reviewers. "Frank Chen makes the science of fusion and energy clear, compelling, and hugely enjoyable."

This book can be ordered from Amazon.com for between \$36 and \$50 (price varies).. A digital version can be seen on Springer.com (search "Indispensable") A Kindle edition is available for \$39.46 at Amazon.com

Determined to tell the "indispensable truth" about fusion energy: Francis "Frank" Chen.

AN INDISPENSABLE TRUTH

HOW FUSION POWER CAN SAVE THE PLANET

FRANCIS F. CHEN

TABLE OF CONTENTS^{*}

Preface	i
Prologue. Toward a sustainable world	ii

PART I

WHY FUSION IS INDISPENSABLE

Is global warming real?1-1Physics of temperature change1-4Quantifying global warming1-5Evidence for climate change1-6Paleoclimate1-6Computer modeling1-8Modern data1-9Global temperature rise1-10Disasters and catastrophes1-13Sea level rise1-13The Guif Stream1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1The energy deficit2-2Energy units2-2Energy forecasts2-2What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9Coal and carbon management2-13	Chap. 1. The evidence for climate change	1-1
Quantifying global warming1-5Evidence for climate change1-6Paleoclimate1-6Computer modeling1-8Modern data1-9Global temperature rise1-10Disasters and catastrophes1-13Sea level rise1-13The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Is global warming real?	1-1
Quantifying global warming1-5Evidence for climate change1-6Paleoclimate1-6Computer modeling1-8Modern data1-9Global temperature rise1-10Disasters and catastrophes1-13Sea level rise1-13The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Physics of temperature change	1-4
Paleoclimate1-6Computer modeling1-8Modern data1-9Global temperature rise1-10Disasters and catastrophes1-13Sea level rise1-13The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9		1-5
Paleoclimate1-6Computer modeling1-8Modern data1-9Global temperature rise1-10Disasters and catastrophes1-13Sea level rise1-13The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Evidence for climate change	1-6
Modern data1-9Global temperature rise1-10Disasters and catastrophes1-13Sea level rise1-13The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy torecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9		1-6
Global temperature rise1-10Disasters and catastrophes1-13Sea level rise1-13The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Computer modeling	1-8
Disasters and catastrophes1-13Sea level rise1-13The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Modern data	1-9
Disasters and catastrophes1-13Sea level rise1-13The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Global temperature rise	1-10
The Gulf Stream1-15The One Degree effect1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy forecasts2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	—	1-13
The One Degree effect1-15Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Sea level rise	1-13
Floods and droughts1-17Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	The Gulf Stream	1-15
Effect on oceans1-19Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	The One Degree effect	1-15
Weather extremes1-20Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Floods and droughts	1-17
Hurricanes and typhoons1-22Slowing the inevitable1-23Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Effect on oceans	1-19
Slowing the inevitable Notes, Chap. 11-23 1-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power The energy deficit2-1Energy units2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Weather extremes	1-20
Notes, Chap. 11-33Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Hurricanes and typhoons	1-22
Chap. 2. The future of energy I: Fossil fuels2-1Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Slowing the inevitable	1-23
Backbone power2-1The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Notes, Chap. 1	1-33
The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Chap. 2. The future of energy I: Fossil fuels	2-1
The energy deficit2-2Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Backbone power	2-1
Energy units2-2Energy consumption2-2Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9		2-2
Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9		2-2
Energy forecasts2-5What drives the increasing demand?2-5Where does the energy go?2-7Energy reserves2-9	Energy consumption	2-2
Where does the energy go?2-7Energy reserves2-9		2-5
Energy reserves 2-9	What drives the increasing demand?	2-5
	Where does the energy go?	2-7
Coal and carbon management 2-13	Energy reserves	2-9
	Coal and carbon management	2-13
Cap and trade 2-14	Cap and trade	2-14
Carbon sequestration 2-15	Carbon sequestration	2-15
Oil and gas pipedreams 2-18	-	2-18
Deep drilling 2-19	Deep drilling	2-19
Arctic drilling 2-20	Arctic drilling	2-20

^{*} These page numbers are only approximate because of last minute changes and automatic repagination by MS Word and Adobe Acrobat.

Shale oil	2-20
Tar sands	2-21
Oil from algae	2-23
Gas hydrates	2-23
Notes, Chap. 2	2-25
Chap. 3. The future of energy II: Renewable energy	3-1
Introduction	3-1
Wind energy	3-1
The birds and the bats	3-2
The growth of wind	3-3
When is a megawatt not a megawatt?	3-5
Size matters	3-7
Offshore wind farms	3-9
Blade design	3-10
How turbines work	3-11
The fossil footprint	3-12
Energy storage	3-13
Meshing with the grid	3-14
The bottom line on wind	3-15
Solar energy	3-15
The nature of sunlight	3-15
Ways to use solar power	3-16
Panels on every rooftop	3-18
Photovoltaic panels	3-19
Dangers	3-20
Central station solar power	3-20
Solar thermal plants	3-20
Fossil footprint	3-22
Solar photovoltaic plants	3-23
Storage and transmission	3-24
Is large-scale solar power really feasible?	3-25
How photovoltaics work	3-26
Silicon solar cells	3-29
Thin-film solar cells	3-34
Fossil footprint and environmental issues	3-36
Ideas on the horizon	3-39
Organic solar cells	3-40
Dye-sensitized solar cells	3-41
Quantum-dot solar cells	3-41
Thermoelectric solar energy	3-42
Geo-engineering	3-43
The bottom line on solar	3-44
Energy for transportation	3-49
Hydrogen cars	3-49
A hydrogen economy?	3-49
How to carry hydrogen	3-49
Anatomy of a fuel cell	3-50
•	

Sources of hydrogen	3-52
Bottom line on hydrogen cars	3-53
Electric cars and hybrids	3-54
Efficiencies of gas and electric cars	3-54
Gas-electric hybrids	3-55
Plug-in hybrids	3-56
Batteries	3-58
How batteries work	3-59
Supercapacitors and Pseudocapacitors	3-61
Summary of electric cars	3-63
Biofuels	3-63
Nuclear power	3-66
Importance of nuclear power	3-66
How nuclear reactors work	3-66
The cast of characters	3-67
The chain reaction	3-67
Moderation is the key	3-68
Isotope separation	3-68
Inside a nuclear reactor	3-68
Types of reactors	3-69
Liquid-metal fast breeder (LMFBR)	3-69
Reactor control	3-70
Fuel reprocessing	3-70
Radioactive waste storage	3-70
Nuclear proliferation	3-71
Nuclear accidents	3-72
Future reactors	3-72
Fission-fusion hybrids	3-74
Other renewables	3-76
Hydroelectricity	3-76
Geothermal	3-76
Wave and tide energy	3-77
Biomass	3-77
Wild schemes	3-78
Notes on Chap. 3	3-79

	4-1
Fission and fusion: vive la difference!	
Binding energy	4-1
Fission and fusion reactions	4-2
How fusion differs from fission	4-4
The size of energy	4-4
How fusion works	4-5
Plasma: the shining gas	4-6
Designing a magnetic bottle	4-9
What is a magnetic field?	4-9
How can a magnetic field hold a plasma?	4-11
The hole in the doughnut	4-13
Why the field lines have to be twisted	4-14
	4-17
Notes on Chap. 4	4-21
Chap. 5. Perfecting the magnetic bottle	5-1
Some very large numbers	5-1
Instabilities: the fly in the ointment	5-4
Hot plasma as a superconductor	5-4
How plasma moves in electric fields	5-5
The Rayleigh-Taylor instability	5-6
Stabilization by sheared fields	5-8
•	5-10
	5-12
Chap. 6. The remarkable tokamak	6-1
A special kind of torus	6-1
Kink instability and the Kruskal limit	6-2
Mirrors, bananas, and neoclassicism	6-4
Turbulence and Bohm diffusion	6-7
The culprit: microinstabilities	6-10
The drift instability mechanism	6-12
•	6-16
Notes on Chap. 6	6-18
Chap. 7. Evolution and physics of the tokamak	7-1
Magnetic islands	7-1
Sawtooth oscillations	7-4
Diagnostics	7-5
Self-organization	7-6
Magnetic wells and shapely curves	7-6
Evolution of the D-shape	7-8

PART II

HOW FUSION WORKS AND WHAT IT CAN DO

How to heat a plasma to unearthly temperatures	7-10
Mother Nature lends a hand	7-14
Bootstrap current	7-14
The isotope effect	7-16
The Ware pinch	7-16
Zonal flows	7-17
Time scales	7-19
High confinement modes	7-20
The H-mode	7-20
Reverse shear	7-22
Internal transport barriers	7-23
Notes on Chap. 7	7-27
Chap. 8. A half-century of progress	8-1
What have we accomplished?	8-1
Fits, spurts, and milestones	8-3
Computer simulation	8-8
Unfinished physics	8-11
ELMs	8-11
Fishbones	8-12
Disruptions	8-13
The tokamak's limits	8-17
The Greenwald limit	8-17
Beta and the Troyon limit	8-17
Big Q and little q	8-18
The confinement scaling law	8-19
ITER: Seven nations forge ahead	8-20
Notes on Chap. 8	8-28
Chap. 9. Engineering: the big challenge	9-1
Introduction	9-1
The first wall and other materials	9-2
The first wall	9-2
The divertor	9-5
Structural materials	9-7
Blankets and tritium breeding	9-8
What is a blanket?	9-8
The role of lithium	9-9
Blanket designs	9-10
Helium Cooled Ceramic Breeder	9-11
Helium-Cooled Lithium-Lead	9-12
Dual-Cooled Lithium Lead	9-13
Maintenance and operation	9-15
Tritium management	9-15
Tritium self-sufficiency	9-15
Tritium basics	9-16
The tritium fuel cycle	9-17
Superconducting magnets	9-18

Introduction	9-18
ITER's magnet coils	9-18
The supply of helium	9-20
High-temperature superconductors	9-21
Plasma heating and current drive	9-21
Introduction	9-21
Neutral beam injection	9-21
Ion cyclotron heating	9-21
Electron cyclotron heating	9-22
Lower hybrid heaing	9-23
Remaining physics problems	9-24
Edge Localized Modes	9-24
Disruptions	9-25
Alfvén wave instabilities	9-26
Operating a fusion reactor	9-26
Startup, ramp-down, and steady-state operation	9-26
Maintaining the current profile	9-27
Remote handling	9-27
Fusion development facilities	9-28
IFMIF: International Fusion Materials Irradiation Facility	9-28
Fusion ignition tokamaks	9-29
High Volume Neutron Source	9-29
Fusion Development Facility (FDF)	9-30
A spherical tokamak FDF	
Fusion power plants	9-31
Commercial feasibility	9-31
Power plant designs	9-32
The cost of electricity	9-36
Methodology	9-36
Important dependences	9-37
Cost levelization / discounting	9-38
The cost of fusion energy	
Notes on Chap. 9	9-42
Chap. 10. Fusion concepts for the future	10-1
Advanced fuel cycles	10-1
Stellarators	10-3
Wendelstein	10-4
Large Helical Device	10-5
Benefits of non-axisymmetry	10-6
Compact stellarators	10-7
Spherical toruses	10-8
Spherical tokamaks	10-8
Spheromaks	10-11
Magnetic mirrors	10-12
How mirrors work	10-13
Ioffe bars and baseball coils	10-13
Mirror machines	10-15
Axisymmetric mirrors	10-16

Direct conversion	10-17
Magnetic pinches	10-17
Reversed-field pinch	10-17
Field-reversed configuration	10-19
Z-pinches	10-22
Plasma focus	10-23
Inertial confinement fusion	10-24
Introduction	10-24
General principles	10-25
Instabilities	10-25
Glass lasers	10-26
Other lasers	10-28
Target designs	10-28
Direct and indirect drive	10-29
Reactor technology	10-31
Pulsed power	10-32
Hoaxes and dead ends	10-34
Cold fusion	10-34
Bubble fusion	10-34
Muon fusion	10-34
Astron	10-35
Electrostatic confinement	10-36
Migma	10-36
Ultimate fusion	10-36
Notes on Chap. 10	10-38
Chap. 11. Conclusions	11-1
Scientific summary	11-1
Cost of developing fusion	11-1
Conclusion	11-4
Epilogue	11-4
Notes on Chap. 11	11-5