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ABSTRACT 

 Classical theories of gas discharges have concentrated on the microscopic 
properties of collisions and diffusion coefficients, but few have considered the 
macroscopic observables such as the density and temperature profiles.  Since 
practical devices cannot be approximated by infinite cylinders, we consider finite 
cylinders with endplates.  There, the short-circuit effect permits electrons to be 
Maxwellian even in the presence of a DC magnetic field.  For uniform electron 
temperature Te and pressure p, the radial density profile is found to have a 
“universal” shape independent of p.  A code EQM is developed to solve for radial 
profiles when all quantities vary with r and includes ionization balance and 
neutral depletion.  The profile Te(r) depends on the type of discharge and is found 
for helicon discharges by iterating with the code HELIC.  Resulting n(r) profiles 
are flat or peaked on axis, as found in experiment, even when ionization is 
localized to the edge. 

I.  Introduction and ion motion 

 Partially ionized plasmas, known as gas discharges, have been studied for many decades 
but have taken on widespread interest now that they are used in the production of semiconductor 
circuits.  The literature on gas discharge theory is extensive.  Most theorists1,2 treat microscopic 
quantities such as cross sections and diffusion coefficients, since positive columns were the main 
source of early experimental data.  A few recent papers3 consider also the macroscopic quantities 
such as the steady-state density profile.  The difficulty is that the particular geometry of the 
plasma container (henceforth called “tube”) affects the results.  Here we sidestep the issue by 
adopting a simple model which retains only the essential features of a discharge while omitting 
effects which do not change the general nature of the solution.  A cylinder reduces the problem 
to one dimension, but there are no infinite cylinders.  We therefore assume the finite-length 
cylinder shown in Fig. 1.  The boundary conditions at the ends entail sheath theory.  

 

Fig. 1.  The assumed tube geometry. 
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 The cylinder has radius a and length L, and there is a uniform DC magnetic field (B-
field), in the z direction.  The B-field has intermediate strength such that the ion Larmor radius at 
electron temperature Te is much larger than a, and the electron Larmor radius much smaller than 
a.  We can then neglect the curvature of the ion orbits and the diffusion of electrons across B.  
We also assume Ti << Te so that Ti can be neglected.  The ion fluid equation is given by4 

 ( ) ( ) 0io iM n Mn en Mn en KT nν∇ ⋅ + ⋅∇ − + = × − ∇ ≈v v v v E v v B . (1) 

The terms on the right-hand side will be neglected, as explained above.  The first term on the left 
side represents ion drag due to ionization, since ions are born near zero velocity.  Though this 
term will be replaced by the equation of continuity, it is shown here because it conveniently 
avoids the task of keeping track of how ions born at each radius are accelerated by the radial 
electric field (E-field).  The ionization and charge-exchange collision probabilities are  

 ( ) ( ), ( ) ( ) /i ion c cx io nP r v r P r v r nσ σ ν≡ < > ≡ < > = . (2) 

The equation of continuity can be written 

 ( ) ( )n in nn P r∇ ⋅ =v , (3) 

where nn is the density of neutrals.  Eq. (1) now becomes 

 ( ) 0n i cM e Mn P P⋅∇ − + + =v v E v , (4) 

or, in one dimension, the ion equation of motion is 

 2 ( )s n c i
dv d

v c n P P v
dr dr

η= − + , (5) 

where we have dropped the subscript on vr and have used the usual definitions 

 ½, / , and ( / )e s ee KT c KT Mφ η φ≡ −∇ ≡ − ≡E . (6) 

The radial component of Eq. (3) is our ion equation of continuity: 

 
(ln )

( )n i
dv d n v

v n P r
dr dr r

+ + = . (7) 

II.  Electron motion 

 In our experiments on helicon waves, we always find that the electron distribution is 
Mawellian [Eq. (8)], even in a strong B-field.  If the density is peaked on axis, as it most often is, 
and if the plasma is ionized near the edge, how do the electrons get across B to the center?  They 
do this by the Simon short-circuit effect5.  Since real plasmas have finite length, they have 
endplates, and there are sheaths on the endplates.  This is shown in Fig. 2, where ionization 
occurs near the edge.  Electrons cross B very slowly, but those that follow the ions can be 
confined longer by thicker sheaths at the ends.  The electrons seem to cross the field with the 
ions, but they are actually confined by varying sheath drops as they bounce back and forth 
between endplates in nanoseconds.        

 
/

0 0
ee KTn n e n eφ η−= = . (8) 
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In Eq. (8) the temperature Te can vary with r as electrons are created at different radii by 
different RF field strengths, for instance. 
  

 

 Fig. 2.  The short-circuit effect. 
 

 III.  A “universal” profile 

 The derivative of Eq. (8) can be written 

 
(ln )d n d

dr dr

η= − . (10) 

Inserting this into Eq. (7) gives 

 ( )n i
dv d v

v n P r
dr dr r

η− + = . (11) 

With dη/dr solved from Eq. (5), this can be written 

 
2

2
( ) ( )n i c n i

s

dv v v dv
n P P n P r

dr r drc

 + − + + =  
. (12) 

Solving for dv/dr, we obtain the following ordinary, first-order differential equation for the ion 
fluid velocity v:  

 
2 2

2 2 2
( )s

n i n i c
s s

cdv v v
n P n P P

dr rc v c

 
= − + + + −  

. (13) 

Note that dv/dr diverges as v approaches cs, giving us a natural transition to the Debye sheath at r 
≈ a.   Numerical solutions of Eq. (13) can account for all quantities varying with r.   

 To see the nature of this equation, we first normalize v to cs, 

 / su v c≡ , (14) 

obtaining 

 2
2

1
1 (1 / )

1
n

i c i
s

ndu u
P u P P

dr r cu

  = − + + +  −  
. (15) 

We next define 
 ( ) 1 ( ) / ( )c ik r P r P r≡ +  (16) 
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to obtain 

 2
2

1
(1 )

1
n

i
s

ndu u
P ku

dr r cu

 
= − + + −  

. (17) 

The coefficient in the last term can be removed by normalizing the radius r to ρ: 

 ( / )n i sn P c rρ ≡ , (18) 

whence 

 2
2

1
1

1

du u
ku

d uρ ρ
 = + − −  

. (19) 

Note that all the properties of the plasma are contained in k(r), and the only relevant property is 
the ratio Pc/Pi, which occurs only in the nonlinear term arising originally from the ⋅∇v v term in 
Eq.(1).     

IV.  Solutions for uniform Te and pressure p (constant k) 

 Pressure is given here in mTorr, where 1 mTorr corresponds to nn = 3.3 × 1013 cm-3.  
Figure 3 shows solutions of Eq. (19) for three different values of k.  Each curve of u goes to 
infinity at a different radius ρa, which is to be identified with the sheath edge at r = a.  If we 
rescale ρ in each case so that ρa corresponds to r = a, all the curves become identical regardless 
of k, as shown in Fig. 4.  These profiles are universal in the sense that they do not depend on the 
size a of the plasma or the pressure p, since k is independent of nn. 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
ρ

V
 /

 C
s ρ aρ aρ a

       

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
r / a

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

n/n0

eV/KTe

v/cs

 
         Fig. 3.  Solutions of Eq. (19) for three values of k.           Fig. 4.  The “universal” profiles. 

 Temperature and pressure cannot be varied independently because of ionization balance.   
Consider a cylindrical shell of width dr at r.  The total input of ions into the shell per unit length 
(with ne = ni = n) is 

 
( )

2 ( ) ( ) ( )T
n ion e

dn r
rdr n r n r v T

dt
π σ= ⋅ ⋅ < >  (20) 

 
The total outflow from the shell is 
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 [ ]( ) 1
2 [ ( ) ( )] 2 ( ) ( )]Tdn r d

rdr n r v r rdr rn r v r
dt r dr

π π− = ∇ ⋅ = ⋅ . (21) 

Equating these gives 

 ( )1
( )n i e

d
rnv n P T

nr dr
= . (22) 

When this is solved with Eq. (17) for a dimensional discharge radius r, only one value of KTe 
will have u  → ∞ at r ≈ a.  This is shown in Fig. 5.  Repeating this for various pressures yields 
the familiar curves of Fig. 6 showing the inverse dependence of KTe on p for various a.  These 
curves account for local dependences, whereas previously only radial averages could be used.    
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Since Te varies with p, radial profiles are no longer independent of pressure.  Figure 7 shows the density 
profiles at three pressures when the corresponding Te′s are used.   
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Fig. 7.  Density profiles at three pressures, computed with the corresponding KTe given in Fig. 5 for a = 2.5 cm. 

 

V.  Further developments       

Fig. 5.  Profiles of u(r) in a 2.5-cm radius, 10-
mTorr argon discharge.  Only one value of Te 
gives the right position for the sheath edge. 

Fig. 6.  Relation between Te and pressure in 
argon discharges of various radii.   
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 So far, we have the mechanism for calculating equilibrium profiles for given functions 
Te(r) and nn(r), but these are not yet specified.  To obtain nn(r), neutral depletion was computed 
in our full paper6 by using a simple model.  An example of the results is shown in Fig. 8 
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 To obtain Te(r) requires knowing the ionization mechanism and, therefore the type of 
discharge.  We have used the helicon discharge, since a code HELIC has been devised by 
Arnush7 to describe these discharges in detail.  We have written a code EQM to solve the 
equations given in this paper.  This code provides equilibrium n(r) and nn(r) profiles as inputs to 
HELIC, and the latter then computes Te(r).  By iterating between EQM and HELIC, we can show 
that n(r) always peaks on axis, in agreement with experiment, even though power deposition 
Pr(r) is at the edge due to the Trivelpiece-Gould mode.  Physically, n(r) must peak at the 
center, since the Boltzmann relation then requires the potential to peak there, leading to an 
outward pointing E-field to drive the ion out radially.  Ion loss by axial diffusion at temperature 
Ti would be too slow.               

VI.  Summary 

 The old problem of “anomalous skin depth”, in which plasma densities peaking at the 
center can be created by RF energy applied only at the edge, has been solved.  The endplates of 
finite-length plasmas are treated with sheath theory.  Automatic adjustments of the sheath drops 
during the approach to equilibrium create an inward E-field that drives ions into the center.  
After equilibrium is reached, the plasma density is peaked at the center, or at least flat and not 
hollow, so that an outward E-field pushes the ions outward when radial losses dominate over 
axial ones. 
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Fig. 9.        Curves of n(r) (–—) and Pr(r) 
(- - -), obtained by iteration of EQM with 
HELIC, for a 15-mTorr helicon discharge 
at 65G with 400W of RF at 13.56 MHz 
and an m = 0 antenna. 

 Fig. 8.  Neutral pressure profiles (solid 
lines) for argon discharges in a 5-cm diam 
tube with initial pressures p0 = 1, 5, and 10 
mTorr at 400K.  The corresponding plasma 
density profiles peaked at 1012 cm-3 are 
shown by the dashed curves. 
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