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Abstract

This paper presents a scheme for distributed auto-
matic speech recognition. A Hidden Markov Model
(HMM)-based speech recognition system with a Mel
Frequency Cepstral Coefficients (MFCC) front end
was used in the evaluation. The goal was to achieve
good recognition performance while compressing the
MFCC feature vectors. Compression rates and recog-
nition performance for both a digit and en alphabet
database are reported. Compared to a scheme of rec-
ognizing speech encoded by low bit rate encoders, and
previously-reported schemes, our method can achieve
good recognition performance with bilrates lower than
1 kbps, using low encoding complexity. The encoding
algorithms developed are scalable, allowing bitrate and
recognition performance trade-offs, and can be com-
bined with unegqual error protection or prioritization to
allow graceful degradation of performance in the pres-
ence of channel errors.

1 Introduction

In this paper we study speech compression for dis-
tributed speech recognition, where speech is first ac-
quired and then transmitted to a remote recognition
engine. An example of this situation would be that of
a user employing a portable wireless device to access
a remote speech-driven application. In this situation
recognition may be too expensive computationally to
be performed at the portable device. Other exam-
ples include distributed web applications where a sin-
gle centralized recognition database is kept for security
or scalability reasons [1].

Given the reduced channel bit rate available in
typical applications (especially mobile ones) compres-
sion will be required to transmit speech to the re-
mote recognizer. However, current speech coding tech-
niques focus on preserving the perceptual quality of
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the speech. Thus when recognition, rather than play-
back, is the ultimate objective, it is desirable to modify
the coding techniques so that they maximize recog-
nition performance rather than preserve perceptual
quality.

In our approach we assume that Hidden Markov
Model (HMM) based recognizers are being used with a
Mel Frequency Cepstral Coefficient (MFCC) [2] front
end. As in previous work [3, 4] we assume the client
extracts the MFCCs and then compresses the coef-
ficients to transmit them to the recognition engine.
We present a complete compression algorithm based
on scalar quantization, linear prediction [4], entropy
coding and coefficient pruning. Unlike previous work
[3, 4], our coding algorithm is scalable, that is, it is
possible to reduce the coding rate (for example if the
channel conditions worsen and additional channel cod-
ing is needed), at the cost of some decrease in the
recognition performance. Scalability is achieved by
changing the quantization step size to reduce the num-
ber of coefficients transmitted. In addition to scala-
bility, the proposed technique achieves similar recog-
nition performance at lower rates, and with signifi-
cantly lower complexity, than previously proposed ap-
proaches.

2 Compression of MFCCs

The encoding algorithms presented in this section
were developed assuming that the feature vectors used
by the speech recognizer are 12 MFCCs derived from
every frame of the speech utterance. However, these
results can be easily extended to cases where the num-
ber of MFCCs in a frame is not 12, or when derivatives
are used along with the MFCCs.

MFCCs computed from speech are represented by
floating point numbers (32 bits precision is typical).
Clearly, it is to be expected that reductions in the
precision through quantization will be possible with-
out affecting the recognition performance. In addition,
the MFCCs are derived from speech utterances that



have been segmented using overlapping Hamming win-
dows. Due to this overlap it is reasonable to expect
that MFCC sets corresponding to adjacent frames will
exhibit high correlation. We exploit this correlation
by using linear prediction, where a given MFCC in
a frame is predicted from the corresponding MFCC
in one or more past frames. Single-step prediction
seems a reasonable choice given that the time overlap
occurs only between adjacent frames, and indeed our
experiments showed that the gain in applying multi-
stage prediction was limited. Thus, in what follows
we consider only single step linear prediction, where
each MFCC is predicted only from the corresponding
MFCC in the previous frame. Note that while quanti-
zation of MFCCs for speech recognition has been pre-
viously considered in [3] and [4], our approach provides
better performance at similar or lower complexity. For
example, (3] uses scalar quantization (uniform and
non-uniform) and product vector quantization (VQ)
techniques but does not use either entropy coding or
linear prediction. In [4] a one step linear prediction
is used along with a 2-Stage VQ that achieves a fixed
rate of 4 kbps. This approach lacks scalability and
has a significantly more complex encoder than the ap-
proaches we present here. Finally, neither [3] nor [4]
employed entropy coding, which, as will be shown, can
improve further the compression gains at low bitrates.

To quantize the MFCCs (or the prediction er-
rors after linear prediction) we use two different
scalar quantization techniques, namely, entropy con-
strained scalar quantization (ECSQ) [5] and uniform
scalar quantization (USQ). In the ECSQ approach
the quantizer is designed by minimizing, for each in-
put in the training set, a cost function of the form
C=D+A*R where D and R are the distortion
and rate, respectively, and A is a Lagrange multiplier,
which is a non-negative real number that is used to
control the rate-distortion trade-off. Given that the
statistics are different we designed different quantizers
for each MFCC. Moreover, different quantizers were
used depending on whether the coeflicient was coded
directly, or the error after linear prediction was coded
instead. As a simpler alternative, we used USQ to
quantize the prediction errors after linear prediction.
The same quantization step size can be used for all the
coefficients if the prediction errors are divided first by
their corresponding standard deviation, which can be
computed during training.

One of our main goals in designing this system was
to introduce scalability and thus enable a trade-off be-
tween recognition performance and bit-rate. A simple
approach to achieve scalability is to transmit only a
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subset of the 12 MFCCs. Thus some coefficients are
“dropped” at the encoder, and set to zero at the de-
coder s0 that the recognition algorithm need not be
modified, even if the number of coefficients transmit-
ted varies over time. The relative importance of each
MFCC can be determined experimentally by observ-
ing the degradation in recognition performance over
a large training set when each coefficient is dropped.
The coefficient that results in the largest drop in recog-
nition performance when being set to zero is thus
deemed the most important coefficient. For the TI46-
Word digit database and the TI46-Word alphabet
database, the coefficients were ordered, from least im-
portant to most important, as 11,10,9,6,8,4,5,7,1,3,2,0
(i-e., 11 would be dropped first, then 10 and 50 on) and
(10,11,8,9,6,7,4,5,1,2,3,0), respectively. This approach
is denoted “ad hoc pruning” in our experiments.

Since the speech recognizer has been trained with a
full set of coefficients, ad hoc pruning may result in sig-
nificant loss in recognition, especially when many co-
efficients are dropped for each frame. In addition, im-
proving the performance of a pruning technique may
require to select a different subset of coefficients to
be pruned for each frame, which would then require
overhead information to be sent to the decoder. As a
simple alternative we use USQ with a dead zone (mid-
thread quantizer) to quantize the prediction errors for
all coefficients. Scalability is possible by changing
the quantization step size: coarser step size results
in lower rate and vice versa, while in the ECSQ case
a completely different quantizer would have to be de-
signed for each rate. Moreover, whenever a prediction
error is quantized to zero we use the predicted value for
that coefficient (rather than setting the coefficient to
zero), which tends to affect less the recognition perfor-
mance than pruning the coefficient altogether. Thus,
USQ offers the advantages of low complexity encod-
ing, simple design (no training is required) and easy
scalability.

It should be noted that different frames can con-
tain a different number of non zero coefficients based
on the values of the prediction errors. Since the pre-
diction errors are scaled by the pre-computed stan-
dard deviations and the higher MFC prediction errors
have larger standard deviations, it is more likely that
the prediction errors for the higher MFCCs be quan-
tized to zero. This is desirable because, as mentioned
above, the lower MFCCs tend to be more important
for recognition. Because we use a Huffman coder to
entropy encode the USQ indices, the lowest bitrate
achievable is 1 kbps (the minimum is 1bit/coefficient,
which corresponds to 12bits/frame, with one MFCC



frame being computed every 12 ms). To achieve lower
bitrates, a bitmap can be transmitted to the decoder
to indicate the position of the non-zero coeflicients in
every frame, and the non-zero coefficients can be en-
tropy coded by the Huffman coder. The bitmap can
be efficiently encoded using run length coding.

3 Experimental results
3.1 Experimental conditions

An HMM based recognizer (HTK2.1) was used
to test the MFCC encoders developed in Section 2.
The speech utterance was segmented using overlap-
ping Hamming window of length 24 ms, with adja-
cent windows separated by 12 ms. 12 MFCCs de-
rived from each segment of the speech utterance were
used as the front-end. A left to right HMM with 4
states and 2 Gaussian mixtures was trained with un-
quantized MFCC front-end data, for each utterance.
Diagonal covariance matrices were used. The train-
ing was done using two states of maximum likelihood
(ML) and expectation maximum (EM). The baseline
performance was determined by recognizing speech
with unquantized MFCCs. The MFCC encoders pro-
posed were tested with recognition experiments using
encoded MFCCs. As comparison, experiments were
performed on speech which had been coded by two
low-bit speech encoders MELP (2.4 kbps) and FS-10
(CELP, 4.8 kbps). In this case, MFCCs were com-
puted from the decoded speech. Better recognition
performance may be possible by using waveform based
speech coders (PCM, ADPCM), but these would re-
quire much higher bitrates (64 kbps, 32 kbps). So
these high rate speech coders were not considered in
our evaluation. Comparison was also done using meth-
ods similar to those reported in [3] and [4].

Recognition experiments were done for two
databases, the TI46-Word digit database, which con-
tains discrete uttecances of digits and the TI46-Word
alphabet database, which consists of discrete utter-
ances of letters. The MFCC encoders proposed were
designed based on the front-end data from the digit
database and the same encoders were used for both
databases. The HMM training was done with 80 ut-
terances from 4 male and 4 female speakers (80 ut-
terances from 8 male speakers) and the total number
of test utterances used was 3320 (1260) for the alpha-
bet (digit) experiment. Test utterances were from the
same speakers of the training data, but different ut-
terances.
3.2 Discussion and Conclusions

From Figures 1 and 2, it can be observed that the
USQ technique, achieves recognition performance of
80.18% and 98.74% at bitrates of 0.95 kbps and 1.02
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kbps for the alphabet and digit databases respectively.
The respective recognition performances with unquan-
tized MFCCs were 82.86% and 99.79%. This shows
that while the degradation in recognition performance
by encoding the MFCCs is small there are substantial
savings in the bitrate. The advantage obtained by
encoding the MFCCs as opposed to encoding speech
and extracting the MFCCs from the decoded speech
can be seen by using standard low bitrate speech
coders for the same databases. A MELP speech en-
coder at 2.4 kbps achieved 75.15% and 98.85% recog-
nition performance and a FS-10(CELP) speech coder
at 4.8 kbps achieved 74.31% and 95.25% recognition
performance for the alphabet and digit database re-
spectively. It is clear that the recognition-rate perfor-
mance of the MFCC encoders proposed is better than
recognition-rate performance of the speech coders con-
sidered. This gain in recognition performance and re-
duction in bitrate required is not surprising because
the speech coders have been optimized to preserve the
perceptual quality of the speech, while the MFCC en-
coders are designed to maximize recognition perfor-
mance.

Comparing the results obtained with previously
proposed techniques, it can be observed from Fig-
ures 1, 2 and 3 that the methods proposed in this
paper outperformed an algorithm similar to that re-
ported in [3]. While the recognition performance of a
VQ based technique, similar to that proposed in 4], is
good, this method has the disadvantages of higher bi-
trate and higher encoding complexity, when compared
with the methods proposed in this paper.

It is also evident from Figures 1 and 2 that the com-
bined recognition-rate performance of USQ is better
than the recognition-rate performance of ECSQ. This
indicates that implicit pruning (by increasing the step
size of the quantizers) of the MFCCs gives better re-
sults when compared to ad hoc pruning. The scalabil-
ity of the proposed methods can be seen from Figures 1
and 2, which show the trade off in bitrate and recog-
nition performance. By accepting lower recognition
performance, we can operate at a lower bitrate (with
more bits available for channel coding); this feature
will be useful in situations where the channel condi-
tions are varying such as in wireless communications.

The reduction in complexity at the client side by
using our method can be seen from Table 1. Run-
ning the speech recognizer locally would require sig-
nificant more computation and memory than quan-
tization. For example recognition requires almost a
factor of 3 more computation time than USQ.

The experiments on coefficient pruning offer several
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Figure 1: Recognition performance of the different en-
coders for alphabet database. Numbers next to the
points indicate the number of coefficients retained.
The scalability of the encoders can be seen by the
Bitrate/Recognition performance tradeoff. Recogni-
tion performance with MELP was 75.15% and with
FS-10 was 74.31%. The recognition performance with
unquantized MFCCs was 82.66%.

Speech recognition
0.156 s

ECSQ
0.067 s

UsSQ
0.047 s

Table 1: Cpu time (in seconds, on a sun worksta-
tion) required to recognize a utterance from the digit
database, and time required to encode it. The times
shown for ECSQ and USQ also include the time for
entropy coding, as well as the time required to com-
pute the MFCCs (also included in speech recognition).
The encoding and recognition times can be expected
to be much higher for a portable device.

interesting conclusions. It is observed that all MFCCs
are not equally important for recognition. Also the im-
portance of the coefficients varies from frame to frame.
A reasonable conclusion that can be drawn from the
results is that lower MFCCs are more important than
the higher MFCCs. A clearer understanding of the ef-
fect of quantization and coefficient pruning on recog-
nition will enable development of optimal solutions for
joint compression and recognition of speech.
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Figure 2: Same information as in Figure 1 except that
the database is the digit database. Recognition per-
formance with MELP was 98.85% and with FS-10 was

95.25%. The recognition performance with unquan-
tized MFCCs was 99.79%.
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Figure 3: Recognition results with techniques based
on scalar quantization[3] on the alphabet database
and linear prediction and vector quantization[4] on the
digit database.
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