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1. Introduction

The robustness of speech communication depends on a structural hierarchy that is deeply
embedded with redundancy. This structure exists in our |:1|1th1:1§¢ — sentences, phrases,
words, syllables, phonemes — as well as in the rapidly varving acoustic details that cue
these perceptions. Together, the stages of this hierarchy form a web of partially orthogonal
dimensions. In typically noisy situations the listener is unlikely to perceive each of these rep-
resentational units in explicit detail. Instead, partially corrupted cues are readily filled-in
with expectations derived from other stages in the hicrarchy: the listener may miss the pho-
netic segment but still reconstruct the word (or miss the word, but understand the gist of the
phrase, etc.).

This chapter demonstrates that a similar redundancy exists for the detection of voicing in
noise. Specifically, after power spectrum cues are removed, listeners can use amplitude mod-
ulation cues to detect voicing at low signal-lo-noise ratios.

Because of this redundancy, amplitude modulation cues in voiced speech provide a
salient, robust sensation of pitch that may be instrumental in recagnizing speech in noise. In
the current study, three psychoacoustic models are used to predict the temporal modulation
transfer function (TMTF) and the detection of voicing for high-pass filtered naturally spoken
fricatives in noise. Computational models based on waveform-envelope statistics and modu-
lation filtering properties predict the TMTF data with a high degree of precision, and models
derived from a summary autocorrelogram representation fit both the TMTF and high-pass
filtered data sets.

1.1 Voicing in Speech Analysis and Automatic Recognition

During voiced speech, the vibration of the vocal folds excites time-varying resonances of
the vocal tract. Given a sequence of feature vectors representing log-magnitude, spectral
estimates of the vocal-tract transfer function across time, most automatic speech recognition
(ASR) systems use a hicrarchy of non-stationary stochastic models operating at progres-
sively longer intervals of speech analysis (10-30 ms) and statistical modeling (at the repre-
sentational level of the phonetic segment, word. phrase and sentence) to ascertain what was
most likely 1o have been said [17]. However, ASR systems rarely use pitch or voicing infor-
mation in this process.

Instead. the signal processing for feature vector extraction usually reflects some form of
deconvolution. attempting to shield vocal-tract transfer-function estimates from the impact
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of the driving function. Lincar prediction, for example. is used with a predictor polynomial
that is significantly shorter than the anticipated gloutal periodicity. Similarly, when homa-
morphic analysis is used for ASR, the high-quefrency cepstral terms (which can represent
the periadic ripple across the spectral estimate resulting from a harmonic driving function),
are ignored. Using Mel-frequency cepstral coefficients (MFCC), the initial spectral estimate
is first averaged (in time) over multiple pitch periods and then integrated across frequency,
providing an approximation of auditory frequency selectivity, The output is then logarithmi-
cally compressed and the discrete cosine transform is used to partially decorrelate the log-
magnitude spectral estimate across frequency. Higher-order terms in the resulting cepstral
vector are ignored. Integrating across time and frequency reduces the variance of the spectral
estimate, and together with the truncated cepstral vector, nearly eliminates periodic source
information.

Deconvolution is an important step for isolating the phonetic information about
“what was said.” from aspects of the prosodic information pertaining to “how it was said.”
But as the first processing stage it may be eliminating large parts of the perceptually salient
information used by humans to identify and recognize speech in noisy environments,

Speech communication has evolved to be robust in noise. Redundancies are, therefore,
ubiquitous. Perceiving speech under noisy conditions requires an intelligent use of the
potentially unreliable, albeit redundant, multi-dimensional cues spread over wide-ranging
time scales. While deconvolution must oceur somewhere in the recognition process, blindly
climinating a potential wealth of redundant cues may not be appropriate for the first stage of
processing. Thus, rigid blind deconvolution in this first stage is unlikely to be optimal,

1.2 Pitch Perception

Processing voicing information in speech requires analyzing the harmonic structure asso-
ciated with a quasi-periodic vocal driving function and might therefore be considered as an
aspect of pitch perception.

In 1951, Licklider proposed a “duplex™ theory [11] to account for many properties of
pitch perception, including the perception of the missing fundamental (or residue pitch), as
well as the pitch of modulated noise. Licklider envisioned neural machinery that measured
the running temporal autocorrelation in each auditory frequency channel. The sensation of
pitch, he proposed, is associated with the common periodicities observed across channels.

In 1984 Lyon was able to simulate an implementation of the duplex theory, labeling the
graphic output a correlogram [12]. Since then, Meddis and colleagues [13] [14] have for-
malized the simulations and included a final stage that adds the running autocorrelations
across each channel generating a summary correlogram. Cariani and Delgutte have also
shown that similar processing of measured auditory-nerve impulses is sufficient to predict
miany clissic pitch pereeption phenomena [2). Other rescarchers have replaced the autocor-
relation function with different mechanisms that measure the temporal intervals in each
channel (e.g. [15] [4] [5]).

In general (and as shown in Licklider’s original sketches achieved without the aid of
computational simulation), simulations using these models provide a graphical output that
correlates well with pitch. The time lag of the peak in the summary correlogram is usually
found to be the reciprocal of the frequency of the perceived pitch and the height of the peak
15 often correlated with pitch salience. With few exceptions however, the models are not used
to predict psychoacoustic just-noticeable-differences (jnds) with general stimuli, Together
with the lack of a clearly identified physiological substrate for the implementation of the
required timing measurements, this line of research remains somewhat of an “open-loop.”
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1.2 Perception of Amplitude Modulation

Processing voicing information in speech might also be thought of as a form of ampli-
tude modulation perception.

In 1979, Viemeister applied a linear systems approach to the detection of acoustic enve-
lope fluctuations [21]. His model was first fit to data describing the detection of sinusoidal
amplitude modulation of wideband noise and then used to predict the detection of other har-
monic envelopes. Motivated by the close relationship between standard deviation and auto-
correlation, Viemeister's model used the standard deviation of a demodulated envelope as
the statistic to predict human performance. Although this measure does not characterize the
perceived pitch of the amplitude modulation, a more sophisticated simulation involving
auwtocorrelation was not required to accurately fit the detection data, More recently. this
model has been extended to predict other amplitude modulation detection data [19] [20].

In 1989, Houtgast measured modulation masking that suggested explicit neural modula-
tion filtering [8]. Narrow-bandwidth noise modulators were found to mask the perception of
sinusoidal modulators in a manner similar to the spectral masking of tones by narrow-band
noises. Modulation tuning has also been measured physiologically [e.g.. 9]. However, other
modulation masking experiments, using sinusoids, have been less conclusive [19] [1]. None-
theless, a model of modulation filtering has been implemented and shown 10 be correlated
with many aspects of amplitude-modulation perception [3].

In essence, modulation filtering replaces the single low-pass filter in the envelope statis-
tic model with a second bank of filters. The modulation filtering simulations also include a
better approximation of auditory filtering than the single band-pass filter used in the enve-
lope statistic model.

Therefore, there are at least three modeling approaches which may be helpful for analyz-
ing the periodic envelope fluctuations in voiced speech: autocorrelation or interval-based
temporal processing, the measurement of an envelope statistic and explicit modulation filter-
ing. To choose among them, implementations of each were first fit to predict TMTF data and
then each was used to predict the discrimination of voicing for strident fricatives in noise.

2. A Strident Fricative Case Study

Fricatives are generated by forcing air through a sufficiently narrow constriction in the
vocal tract, resulting in a turbulent, noise-like source. With voiced fricatives the vocal folds
also vibrate, adding low-frequency encrgy to the spectrum. The relative level of the first har-
monic, compared with that of the adjacent vowel, has been shown to serve as an effective
indicator of voicing distinctions for fricatives [ 18] [16].

2.1 Characterizing [s] and [z]

For our study, the strident fricatives [s] and [z]. along with the vowels [a]. [i] and [u)
were recorded as CV syllables from four talkers. Figure 1 compares average log-magnitude
spectral estimates for [s] and [z]. The voiced [z] has low-frequency energy not present in the
[5].

Current ASR systems use the presence of low-frequency spectral encrgy to discriminate
these sounds. However, there are situations where this particular spectral cue can be
obscured (e.g. a high-pass channel or with a competing low-pass noise).

Figure 2 shows examples of the temporal waveform for [s] and [z]. after each has been
high-pass filtered above 3 kHz, Without low-frequency spectral components, the low-fre-
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Figure 1 A comparison of average spectral estimates for [s) and [#] spoken by both male and female speakers,

quency pitch-rate information is represented in the envelope of the high-frequency, noise-
like carrier. These figures provide evidence that the vibrating vocal folds can modulate the
pressure source that drives the turbulence for a voiced fricative. The modulated noise source
leads to a potentially redundant voicing cue in a spectral region with significant speech
energy. ASR systems that integrate spectral estimates over multiple glottal periods do not
distinguish such sounds, while human listeners can distinguish them even at low signal-to-
noise rutios {see Section 4).

2.2 Perceptual Measurements

To measure the perceptual sensitivity to this potential voicing cue, the discrimination of
these sounds wis measured in wide-band noise. The syllable-initial fricatives were tempo-
rally isolated from the adjacent vowel, and high-pass filtered above 3 kHz. Durin e the per-
ceptual tests, tokens were centered within a one-second span of spectrally Alat noise.

Adaptive tests [16] were used to track the perceptual discrimination of the isolated frica-
tive as a function of SNR at two @' levels. For each trial, the subject was required to identify
a randomly chosen token as either [s] or [z]. Feedback was provided. The initial SNR was
sufficiently high that the fricatives were clearly distinguishable for all subjects. The SNR
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Figure 2 Examples of temporal waveforms after high-pass filtering.

was increased after an incorrect response and decreased after either two or three consecu-
tively correct responses. (A reversal is defined as a change in the direction of the SNR step).
The SNR step size started at 4 dB, and was reduced to 2 dB after the first reversal, and to |
dB after the third. The average of the SNR at the next 6 reversals provided an initial thresh-
old estimate. If the variance in this cstimate was less than 2 dB. the measurements stopped.
otherwise the experiment continued for up to 6 more reversals. The average of three such
measurements provided a final threshold estimate for each subject, When 2 (or 3) correct
responses are required, the threshold estimate converges to a 70.7% (or 79.4% ) correct
response rate. For this experiment, these correspond to o values of 1.09, and 1.64, respec-
tively, Four audiometrically normal subjects participated in the experiment. Average thresh-
olds across these four subjects are shown together with model predictions in Figure 10
below.,

3. AM-Detection Mechanisms

The task in this experiment requires detecting periodic envelope Auctuations, which
become increasingly weak with the addition of noise, Perhaps the most direct approach is to
model this perceptual process using an envelope statistic.

2.1 Envelope Statistic

Figure 3 shows a block diagram of the signal processing in an envelope-statistic model.
This classical approach reduces auditory processing to the following steps: auditory filtering
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Figure 3 Schematic illustration of the emvelope detection process used in the current study.

(measured along the basilar membrane). half-wave rectification (approximated in inner-hair-
cell transduction) and low-pass filtering (computed throtghout the higher levels of auditory
processing). From an engincering perspective, the band-pass filter selects a channel, while
the half-wave rectifier serves as a non-linearity that modulates the carrier down to DC, with
the low-pass filter tracking the envelope.

The model’s sensitivity to amplitude-modulated wideband noise increases with a broad-
ening of the bandwidth in the initial filter, while the reduction of sensitivity with increasing
envelope frequency is mostly determined by the final low-pass filter.

3.2 Modulation Filiering

A schematic overview of an implementation of modulation filtering is shown in Figure 4.
Building from the envelope-detection processing above, the model includes multiple 4th-
order gammatone filters [15) which provide a reasonable approximation of auditory filtering,
and replaces the single low-pass filter with a second filterbank that analyzes the envelope
Spectrum.

The frequency response for the modulation filters used (Qzgp of 2,and -12 dB DC gain)
was adapted from [3]. For each filter the implementation used a second-order pole and a
first-order (real) zero at DC. The distance of the zero to the unit circle was set to meet the
DC specification. The resulting frequency responses are shown in Figure 5,

Both the modulation filtering and the envelope-detection model compute the magnitude
of the fluctuations of the envelope of the acoustic waveform. As stated previously, the pri-
mary difference is that modulation filtering assumes a second, filtering stage tuned to differ-
ent envelope modulation rates. Figure 6 compares the processing output of these two models
to a noise carrier with no modulation, as well as one with 56% modulation [20 log{m) =5 dB
depth]. Although the standard deviation of the input is the same for the modulated and
unmodulated cases, the outputs of both models exhibit relatively more fluctuation in the
modulated case.

3.3 Correlational Analysis

An overview of the correlational analvsis is shown in Figure 7. This is an implementation
of Licklider's model [11] together with a final stage that adds correlation estimates across
channels [13] [14]. The first stage is the same gammatone approximation of cochlear filter-
ing. used above. The transduction stage includes half-wave rectification, low-pass filtering,
and a 2nd-order Butterworth high-pass filter with a cut-off of 4 Hz. Running autocorrelations
are computed in each filter channel and the results are summed across channels.

Our implementation of running autocorrelation for each channel involves two stages.
First, the instantaneous product of the current input, and a version of the input delayed by the
mterval, T, is computed for all time and all values of 1:

X (0x) = x(t) xft-x).
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Figure 4 A schematic illustration of the modulation filtering performed in the current study,

Second, to form a running autocorrelation estimate, these sequences are low-pass filtered
(For each value of 1) to below one half of the final correlation sampling rate:

XAtT) =X (00) * by, (1),

[n the evaluations below, the correlation sampling rate was 25 Hz, and hypd 1) was imple-
mented as a 6th-order Butterworth filter with a -3 dB point at 10 Hz. That is, after the Jow-
pass filter, the running autocorrelations were sampled every 40 ms and then summed across
frequency channels to generate a sequence of summary correlogram estimates.

As described above, the position of the peak in the summary correlogram has often been
shown 10 be correlated with the reciprocal of the perceived pitch (in units of frequency).
although some models utilize the entire waveform of the summary correlogram [13] [14].
Our analysis represents a compromise between these two approaches. For each sample of the
summary correlogram, our statistic is the maximum difference. across all delay values T,
between the summary correlogram values at delays of T and 1/2:

statistic = max fse(t) - sc(t/2)], (0 <t < 20 ms),

With a sinusoidal envelope, this difference peaks at a value of 1, equal to the period of the
sinusoid. Figure 8 includes examples of this decision statistic using the same noise carrier,
but with either no modulation or with 56% modulation (i. e . 5 dB depth) at 100 Hz. In the
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Figure 5 Responses of the modulation filerbank . Each filwer is implenwenied mstng a complex pole and a
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Figure 6 Comparisons of the amplitude modulation detection models. Dashed lines indicate standurd devia-
tions, The modulation filtering plots show the outputs of six auditory channels, 2ach filtered by a
modulation filter centered at 100 He.

modulated case. the first peak (after zero delay) in the summary correlogram occurs at the
period of the modulation, 10 ms. When there is no modulation, the summary correlogram
approximates an impulse. Adding the individual correlation estimated across channels
reduces some of the variance: consistent modulation patterns across channels add together,
while inconsistent ones generally cancel each other. However, considerable variation

remains across summary correlogram samples (shown in the lower half of Figure 8) due 10
the stachastic nature of the carrier.

4. Comparing Predictions

The temporal modulation transfer function (TMTF) is a measure of auditory sensitivity
to amplitude modulation as a function of modulation frequency. More specifically. the mini-




B. P, Sirope and A. A, Alwan ! Perception of Pirch-Rate Amplirnde Modulanion in Naise an

1 B

Hif) Spectral Fillering |

| HWR || HwWR HWA
B 5505 BTk L iy
= HPF HPF | HPF

b

W
| I
Ty | —= Ty | Ty ek Ty
| weE [ i

g e " | |—™ 721_""“ T2
o Bl— |1y —» G| —= T3
B B B I e Dl S

)
/

S¥
D
D

L]
L]
L]

¥
i‘a
;
{

AC AC AC summany
correlogram

é_ we [ | — | | —m Ty | —= TN.-J IL'I,
2 — -t
L

L=]

-

LPF

AC delay line

Fizure 7 Overview of the correlational processing. Inset shows avtocorrelanon delav-line dewal.

mum detectable sinusoidal amplitude modulation depth is typically measured as a function
of modulation frequency using wide-band noise carriers.

Each of the three models was initially adjusted to predict TMTF measurements derived
from previous studies [20] [3]. The resulting models were then used to predict the discrimi-
nation thresholds for the high-pass filtered [s] and [2] tokens in noise. Because the natural
fricatives are non-stationary all three models were evaluated using multiple measurements in
time (or multiple “looks™) [22].

For the envelope-statistic model, the best match was found using an initial filter band-
width of 3 kHz, centered at 5.5 kHz. With these parameters. the filter approximated a
matched-filter for the high-pass filtered [s] and [z] segments. The low-pass filter was a 1s1-
order Butterworth with a cut-off of 90 Hz. The normalized fourth-moment statistic [19] [20]
wits used.

To obtain multiple measurements in time, the output of the envelope detection mecha-
nism was segmented using partially overlapping. 50-ms windows that had 10-ms raised-
cosine onsct and offsets, as well as a 30-ms steady-state center. The windows were incre-
mented by 40 ms, The window length was chosen to ensure multiple periods in each window
for the pitch-frequency range of interest. By modulating the DC offwet in the envelope, the
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Figure 8 Samples of the correlogram output and super-imposed examples of the summary correlogram deci-
sion statistic. Input signals are the same as in Figure 6

shape of the window can dominate measurements using the standard deviation or the fourth-
moment. Therefore, the DC offset for each 50-ms window was removed before weighting by
the raised-cosine and then added back before computing the statistic.

Threshold predictions were obtained by using the difference in the decision statistic in
signal and non-signal intervals over 100 simulations in order to estimate d' for each “look
Assuming independence of individual measurements, a total detection d” was estimated as
the length of a 4" vector containing all looks [7]. With a stimulus duration of 500 ms used for
the TMTF data, the vector included 12 elements (or looks). A line was fit to the log of total
d’estimates as a function of the log of the modulation depth. From this line, the modulation
threshold was estimated from the point where the line crossed the d” threshold of 1.26
tracked in the perceptual TMTF measurements [20]) [3).

With the modulation filtering and correlation models, the initial filtering stage was six,
dth-order gammatone filiers with center frequencies range between 4.28 Hz and 6 97 kHz.
Filters overlapped at their half-power points, and the bandwidths were set using the equation
described in [6]. To predict the TMTF data using modulation filtering only the modulation
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filter tuned to the probe envelope frequency was considered. When predicting the fricative
data two modulation filters centered at 120 Hz and 200 Hz were used. The windowing
applied to the envelope-detection simulatnions was also used for the modulation filtering. The
standard deviation was the measured statistic.

As observed previously [3]. the modulation filtering was too sensitive to predict human
performance without adding a large amount of internal noise. To obtain the best match to the
TMTF data, internal noise was added both before and after modulation filtering.

Using the correlation model, the peak distance statistic described above was measured
every 40 ms for the summary correlogram. To approximale the shape of the TMTF data, the
first-order, low-pass filter was used with a cut-off frequency at 280 Hz.

TMTEF threshold predictions for all three models are shown in Figure 9. Each model pro-
vides a reasonable prediction across this frequency range. Predicting the voicing detection
thresholds for the natural, non-stationary, fricatives in noise required finding the fricatives
(or more specifically finding the voicing in the fricative) within the 1-second interval of
noise. For all model predictions below, only the three consecutive temporal segments that
maximized the difference from the background noise were analyzed, providing three tempo-
ral looks per token, Total ¢ values were then estimated as a function of SNR.

Figure 10 shows the d' estimates for each model’s prediction of the discrimination of the
high-pass filteced [s] and [2] tokens in noise. The model based on correlations provided the
best prediction.

5. Modeling Implications

The envelope statistic was not sufficient. by itself, to discriminate reliably between [s]
and [z] (even at relatively high SNR values) because this measurement does not distinguish
the periodic voicing cues in [z] from the aperiodic fluctuations in [s]. Both the modulation
filtering and the awocorrelation processing include specific modulation tuning and as a
result more accurately fit the observed data.

Reasons for the difference in performance between these two models are less clear. and
could be specific to these simulations. By reducing the amount of internal noise, the modula-
tion filtering model provides a better estimate of the [s] and [z] data, but over-estimates the
TMTF sensitivity. One primary difference is that the autocorrelation mechanism integrates
correlation estimates across frequency, while the modulation-filtering simulations use the
more general assumption that each output ::nrrq:_k'.rrnndﬁi Lo an ir‘:l.J:u‘i‘.h:nd-.:nl measurement. Inte-



126 B. P Strope and AL A Alwan ! Perceprion aof Pitch-Rete Amplitede Modilation in Noiye

-
-

| |
204 ;

I 1.6

1.0 iR
=T ]
ir & porcephual data 3
C'. 5 i 30 eneelope statishe 1

33— moculaton lifenng
Ay summary coreiogram

T e

5 0 15
SNR (dB)

Figure 10 Discriminating high-pass filtered [<] and [z): data are an average across four subjects,

grating correlation estimates across frequency channels de-emphasizes envelope compo-
nents uncorrelated across frequency in favor of correlated components. Another difference is
that the correlation simulations uses a low-pass filter to limit sensitivity, while the modula-
tion simulation incorporates internal noise,

It is interesting to note that if the auditory system does include a cross-channel interval-
based representation, redundancies in this representation are likely to make it inefficient to
maintain across many regions of the pathway. Efficient decorrelation of the (potentially
smooth and periodic) sunmmary correlogram might approximate a cosine transform. Such
penodic transformations exist in other perceptual systems [23]. In this case the decorrelated
representation would have many of the properties of the (demodulated) output of a modula-
tion filterbank. The difference is that the envelope analyzed is first processed to identify
commeon correlations across a broad frequency range.

6. Conclusion

This chapter has identified a secondary temporal cue that can reliably distinguish
between [s] and [2] on the basis of voicing. This amplitude-modulation cue had not been
identified in previous studies of voiced fricatives [18] [16]. Once the cue has been identified
it is not clear what processing should be used (o reliably extract it. Three possibilities were
investigated in this study.

While cross-channel, interval-based processing has been quite successful in predicting
many properties of pitch perception. we have shown that these mechanisms can also predict
TMTEF thresholds and the detection of voicing for high-pass filtered fricatives in noise. Sim-
ulations using envelope-statistic and modulation-filtering models fit TMTF data, but do not
predict the isolated speech data,
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