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Abstract

While non-stationary stochastic techniques have led to sub-
stantial improvements in vocabulary size and speaker inde-
pendence, most automatic speech recognition (ASR)
systems remain overly sensitive to the acoustic environ-
ment, precluding robust widespread applications. Our
approach to this problem has been to model fundamental
aspects of auditory perception, which are typically
neglected in common ASR front ends, to derive a more
robust and phonetically relevant parameterization of
speech. Short-term adaptation and recovery, a sensitivity to
local spectral peaks, together with an explicit parameter-
ization of the position and motion of local spectral peaks
reduces the error rate of a word recognition task by as
much as a factor of 4. Current work also investigates the
perceptual significance of pitch-rate amplitude-modula-
tion cues in noise.

1. Introduction

Most modern speech recognition systems include an ini-
tial signal processing front end which converts the (1-D)
speech waveform into a sequence of time-varying feature
vectors, and a statistical pattern-comparison stage which
chooses the most probable phoneme, syllable, word,
phrase, or even sentence, given that sequence of feature
vectors [11.

In the front end, the speech signal is typically divided in
time into nearly-stationary overlapping (10-30 ms) frames.
Short-time spectral estimations of each consecutive frame
form the sequences of time-varying feature vectors ana-
lyzed by the pattern matching stage. One common form of
spectral estimation involves integrating an initial power
spectrum estimate which is weighted by bandpass-filter
functions whose bandwidths approximate those of auditory
filters. The magnitude of the power estimates from each fil-
ter are then compressed using a logarithmic function. The
resulting spectral estimates reflect two of the most studied
aspects of auditory signal processing: frequency selectivity,
and magnitude compression.
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In Figure 1, sequences of spectral estimates are dis-
played as a spectrogram. The spectral estimate for each
frame can be roughly decorrelated (across filter number)
using a discrete cosine transform (DCT). After the DCT,
the resulting cepstral vectors, called Mel-frequency ceps-
tral coefficients (MFCC), are efficient representations of
the Mel-warped log-magnitude power-spectrum.
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Figure 1: Mel-frequency spectrogram at 10 dB SNR.

Hidden Markov models (HMM) provide a generalized
statistical characterization of the non-stationary stochastic
process represented by the sequences of feature vectors.
Each element of the vocabulary (word, syllable, or phone)
is modeled as a Markov process with a small number of
states. The model is hidden in the sense that the observed
sequence of feature vectors does not directly correspond to
the current model state. Instead, the model state specifies
the statistics of the observed feature vectors. State transi-
tions are often limited so that the model can either stay in
its current state or move forward to the next. In this way,
each state is used to characterize statistics for a particular
temporal segment of the vocabulary element. In word-
based recognition, the first state might characterize the
beginning of the word, and the last state might characterize
the end, etc.

For a continuous-density HMM, multi-variate distribu-
tions of the feature vector, and the state-transition probabil-
ities are estimated for each state. An efficient iterative
process (the forward/backward algorithm) is used to
increase the likelihood of the current model, given a train-
ing set of exemplars corresponding to that model.

Although the number of possible state sequences grows
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exponentially with the number of frames in the exemplar,
all possible paths must merge into the small number of
states at each point in time. Because of the assumed first-
order Markov structure, observation probabilities and state
transitions are only a function of the current state, and not
the path taken to get there. Therefore, the partial forward
probabilities of observing the first N frames of the exem-
plar and ending at a specific state can be inductively com-
puted from the N-1 forward probabilities. A similar
iterative process is used to obtain backward probabilities of
observing the last M frames.

Combining the forward and backward probabilities pro-
vides an estimate for the probability of making each state
transition while observing each frame, given the entire
exemplar. By averaging across all exemplars in the training
set, new estimates for the state-transition probabilities are
obtained. Similarly, parameters of the distributions (means
and covariances of the feature vectors for each state) are
estimated by weighting the observed feature vectors by the
probabilities of having been at that state during the time of
that feature vector.

Recognition performance is, therefore, largely depen-
dent on a good statistical match between the test and train-
ing feature-vector sequences. Because most systems use
short-time spectral estimates, distortions introduced by
additive noise, or by a mis-match between the training and
testing channels, considerably degrade recognition perfor-
mance. One general approach to this problem is to find a
parametric adjustment of the multi-variate distributions
given the current acoustic environment {e.g. 2]. A more
pragmatic approach is simply to train the models in an
environment that is a reasonable match to the expected test-
ing environment.

In the current paper three general approaches are used:
1) the front-end signal processing is augmented to include
short-term adaptation and a sensitivity to local spectral
peaks; 2) the frequency position and motion of the local
spectral peaks are explicitly tracked and then parameter-
ized by the HMM; and 3) two sets of models are used in
parallel: one characterizing clean training data and the
other characterizing noisy training data. The first two
approaches attempt to focus the recognition task on phonet-
ically relevant aspects of the sequences of short-time spec-
tral estimates, while the third technique provides some
adaptation of the statistical characterization for the
expected acoustic environment.

2. Adaptation

The firing patterns of auditory neurons show clear evi-
dence of adaptation [3]. In response to a long-duration tone
pulse, a single neuron provides a strong onset response

which then decays with time to a weaker steady-state
response. After the offset of a tone pulse, the neural
response initially drops below its resting rate, and then
slowly recovers. While the neuron is still recovering, the
onset response to a similar second pulse will be weaker
than it was to the first. The decaying response after onset is
often called adaptation, and the increasing response after
offset is called recovery. Adaptation and recovery are mea-
sured throughout the nervous system at a wide variety of
rates, but recovery is often 3-4 times slower than adaptation
[4]. For this work we focus on the adaptation and recovery
which are significant at phonemic and syllabic rates (10-
200 ms). Figure 2 shows a simulated response to two iden-
tical pulses. Notice the weaker onset response to the second
pulse.
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Figure 2: An adapting response.

Psychoacoustic experiments provide evidence of adapta-
tion for the complete auditory system. Although healthy
human hearing has a dynamic range of over 100 dB, for-
ward masking experiments reveal that over short durations,
the usable dynamic range is significantly smaller, and
largely dependent on the immediately preceding context.
More specifically, when a brief probe tone follows a long-
duration masking tone, the detection threshold for the
probe can be considerably higher than it would have been
without the masker. The increase in the probe threshold, or
the amount of forward masking, is dependent on the level
and duration of the masker, and on the delay between the
masker and probe.

An interesting trend in this data indicates a faster recov-
ery of the amount of forward masking with greater amounts
of forward masking, or a complicated level-dependent
adaptation [5]. However, this complexity is not necessary.

Our adaptation mechanisms add an exponentially adapt-
ing logarithmic offset to a logarithmically scaled input [6].
A target offset is determined from the (logarithmic) differ-
ence between the input and a compressive input/output
function. At each point in (discrete) time the distance to the
target offset is reduced by a fixed percentage.

With long-duration maskers, we assume complete adap-
tation by the time of the offset of the masker. Incremental
recovery rates and the compressive I/O slopes can then be
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determined from forward masking thresholds measured for
different masker levels and probe delays. Similarly, incre-
mental adaptation rates are determined from forward mask-
ing experiments that vary the duration of the masker [7].

In our ASR front end, spectral estimates are obtained for
approximate auditory filters every 10 ms. The log output
from each filter is then processed by an independent adap-
tation stage. Therefore, the adaptation stages operate at the
frame rate, incrementally adjusting a linear offset every 10
ms. Figure 3 shows a spectrogram after the adaptation pro-
cessing.
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T
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Figure 3: Spectrogram after adaptation.

3. Peak isolation

When comparing perceptual differences between syn-
thesized vowels, the frequency position of spectral peaks is
more significant than the bandwidths of the peaks and their
relative amplitudes [8]. In addition, the vowel percept is
largely unaffected by high-pass, low-pass, or band-pass fil-
tering. On the other hand, short-time spectral estimates
used for speech recognition are significantly influenced by
filtering, and by the relative amplitudes and bandwidths of
local spectral peaks.

Physiologically, a local spectral peak can dominate the
temporal firing patterns of primary auditory neurons with
center (or best) frequencies within an octave of the peak
[9]. Similarly, suppression and lateral inhibition mecha-
nisms are believed to improve the contrast of neural regions
that map frequency to place, again highlighting the fre-
quency position of local spectral peaks [10].

In earlier ASR systems that used explicit spectral dis-
tance measures, bandpass liftering the cepstral vector
improved recognition performance [11]. Because the ceps-
tral vector represents a frequency transformation of the log-
magnitude spectral estimate, bandpass liftering reduces the
weighting of relatively slow or fast changes (with fre-
quency) across the spectral vector. The ‘medium-rate’
changes that remain are influenced more by the frequency
positions of the vocal-tract resonances, and less by the
overall level, the long-term average spectrum of the talker
in the channel, and fast changes due to numerical artifacts.

With statistical speech recognition, fixed scaling of the

observation vector has no influence on performance. Means

and covariances are scaled in both training and testing, and
the final likelihoods are unaltered. Bandpass cepstral lifter-
ing also changes the level of one spectral peak as a function
of other spectral peaks in that estimate, and symmetrically
emphasizes spectral valleys as much as peaks.

Modification of the cepstral liftering process addresses
these issues [6]. A cepstral vector is first obtained from the
original spectral estimate using a DCT. The cepstral vector
is bandpass liftered, and an IDCT is used to obtain a modi-
fied spectral estimate. Peaks in the original spectral esti-
mate are generally above zero, while valleys are below. The
modified spectral estimate is half-wave rectified. Peaks in
the modified spectral estimate are then scaled to the height
of the original spectral estimate at that frequency position.
A DCT of the modified, rectified, and scaled spectral esti-
mate is used to obtain a final cepstral vector. In Figure 4, an
IDCT has been used to show the spectral estimate implied
by the final cepstral vector.
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Figure 4: Peak isolation.

4. Parameterizing peak position and motion

Together, adaptation and peak isolation provide a strong
response to onsets and spectral transitions, and highlight
the position of local spectral peaks. Although feature vec-
tors obtained from this processing may characterize per-
ceptually salient aspects of the speech signal, the
phonetically relevant position and motion of local spectral
peaks [8] is only characterized implicitly. That is, the spec-
tral estimates depend on the position of the spectral peaks,
and the HMM’s state sequences provide some characteriza-
tion of the spectral peak motion, but these potentially
robust attributes of the speech signal are not characterized
directly in the statistical pattern matching process.

A three-stage processing scheme is introduced to esti-
mate the position and motion of the local spectral peaks.
These estimates augment the feature vector used for statis-
tical recognition. Local spectral peaks are first identified in
each frame by finding local maxima in the spectral estimate
obtained after cepstral liftering. For each peak, the fre-
quency and log-magnitude level from the corresponding
point in the original spectral vector is stored. Figure 5.a
shows the position of the spectral peaks.

Two stages are used to group the local peaks based on
their spectro-temporal proximity. The first uses dynamic
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programming to connect the peaks into threads. Each peak
in each frame connects to the closest thread that extends to
at least one of the last two frames. If the closest frequency
distance is more than roughly 10% of the entire (warped)
frequency range, then a new thread is started. When no
peak connects to a given thread for two consecutive frames,
that thread is ended. Figure 5.b shows a moving seven-
point second-order polynomial fit to each thread. Fre-
quency-derivative estimates from the moving polynomials
are stored for each peak.

a) Initial peaks
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Figure 5: Peak positions and motion.

The final stage reduces the representation of the threads
into three tracks, which are assigned center frequencies, or
DC offsets, equally spaced on the warped frequency scale.
At each frame, each track is incrementally adjusted toward
the closest thread in that frame. The increment of adjust-
ment is a sigmoidal function of the magnitude of the origi-
nal peak. Tracks, therefore, update more quickly to
stronger peaks. With no input, a track drifts back toward its
center frequency. The tracks are finally low-pass filtered
below a cut-off of 15 Hz. An identical process is used to
track the frequency derivative estimates from the threads.

Figure 5.c-d show the resulting frequency positions and
derivatives.

5. Recognition evaluations

A discrete-word recognition task was used to evaluate
the robustness of a variety of processing schemes. Digits
from the TI-46 database were used at a random offset
within roughly two seconds of silence. This requires the
system to isolate the speech from the background.

Each digit was modeled using a six-state left-to-right
HMM with continuous Gaussian densities. The forward/
backward algorithm was used to estimate feature-vector
means and state transition probabilities. A diagonal covari-
ance estimate, from the entire training set, determined a
global observation variance. Models derived from both
clean and noisy data were used simultaneously, with the
most probable model determining the digit recognized.

For all processing schemes, the feature vector included
12 cepstral coefficients (cy was excluded), and 13 cepstral
derivatives. Three peak frequencies, and two frequency
derivatives were also included in the ‘threaded’ evalua-
tions. The frequency derivative of the highest peak was
excluded because it had little variance.
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Figure 6: Recognition error rates.

Background noise, shaped to match an estimate of the
long-term average speech spectrum, was added to corrupt
the speech signal for these evaluations. In addition to evalu-
ations using linear prediction cepstral coefficients, Mel-fre-
quency cepstral coefficients, and the relative-spectra
(RASTA) technique [12], tests were performed using
MFCC with five common techniques that are intended to
improve feature-vector robustness: spectral subtraction,
spectral scaling, non-linear spectral scaling, cepstral mean
subtraction, and cepstral normalization. The top two of
these last five are included in Figure 6.
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6. Amplitude modulation cues

Short-time spectral estimates for speech recognition are
averaged over a few pitch periods to minimize any influ-
ence of the periodic glottal pulses in voiced speech. How-
ever, a case study comparing the perception of [s] and [z] in
noise shows that listeners can use pitch-rate amplitude-
modulation cues for phonetic discrimination.

Figure 7.a is a spectrogram of the two syllables: “sue
z00.” In a typical ASR system, the presence of low-fre-
quency energy during the voiced fricative [z], would
largely distinguish that sound from the unvoiced fricative
[s]. Preliminary data indicate that listeners, on the other
hand, are able to distinguish these sounds at a low SNR
even after the signal is high-pass filtered above 3 kHz. In
Figure 7.b, notice the pitch-rate amplitude-modulation cue
in the temporal waveform of [z] after high-pass filtering.
We are currently parameterizing models to predict the per-
ceptual sensitivity to this cue, and are working to incorpo-
rate the model’s response into an ASR system.
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Figure 7: Amplitude modulation cues.

7. Conclusion

Current speech recognition systems characterize
sequences of short-time spectral estimates as a non-station-
ary stochastic process. The techniques used to obtain the
short-time spectral estimates provide rough approximations
of two fundamental aspects of auditory perception: fre-
quency selectivity and magnitude compression. Incorporat-
ing computationally simple mechanisms which reproduce
other aspects of auditory perception, may increase the
robustness and the phonetic relevance of the speech param-
eterization used for speech recognition. In this paper,
mechanisms which provide adaptation and spectral peak

isolation, together with an explicit statistical characteriza-
tion of the position and motion of spectral peaks signifi-
cantly improve the robustness of a discrete word
recognition system.
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