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ABSTRACT

Changes in spectral characteristics are important cues for
discriminating and identifying speech sounds. These changes
can occur over very short time intervals. Computing frames
every 10 ms, as commonly done in recognition systems, is not
sufficient to capture such dynamic changes. In this paper, we
propose a Variable Frame Rate (VFR) algorithm. The algorithm
results in an increased number of frames for rapidly-changing
segments with relatively high energy and less frames for steady-
state segments. The current implementation used an average data
rate which is less than 100 frames per second. For an isolated
word recognition task, and using an HMM-based speech
recognition system, the proposed technique results in significant
improvements in recognition accuracy especially at low signal-
to-noise ratios. The technique was evaluated with MFCC vectors
and MFCC vectors with enhanced peak isolation {4].

1. INTRODUCTION

In most speech-processing systems, speech signals are first
windowed into frames; frames are typically 20-30 ms in duration
and the frame step size is 10 ms. This is especially true for
HMM-based automatic speech recognition (ASR) systems. The
justification for such a segmentation is that speech signals are
non-stationary and exhibit quasi-stationary behavior at the
shorter durations.

It is known, however, that certain acoustic attributes of the
speech signal can be manifested at very short durations (see for
example, [3]). Such attributes may be critical for the
identification and discrimination of speech sounds.

In this study, we propose a variable frame-rate (VFR) approach
for analyzing speech signals. The technique results in an
increased number of frames when the spectral characteristics of
the signal change significantly and less frames otherwise. The
frame step size can be as low as 2.5 ms. The algorithm can be
implemented such that the average data rate of the system is the
same, less, or greater than the fixed data rate approach that is
typically used in ASR systems.

For an isolated word, HMM-based, recognition task, the
proposed technique results in significant improvements in
recognition accuracy especially at low signal-to-noise ratios. The
technique was evaluated with MFCC vectors and MFCC vectors
with enhanced peak isolation [4].

The technique proposed in this paper differs from the VFR
techniques in [2] and [5]. Both papers did not evalvate their
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systems in the presence of background noise. In addition, in [2],
the focus was on using VFR to reduce the data rate of the system
while keeping the frame step size at 10 ms, and thresholds were
chosen in an ad hoc manner. In [5], a theoretically-motivated
VFR system was proposed, but the evaluation was only done
with a DTW recognition system and did not show improvement
in recognition accuracy.

2. MOTIVATION AND PRELIMINARY
EXPERIMENTS

In a previous study {1}, we examined the acoustics and
perception of the place-of-articulation for the highly confusable
nasal consonants /m, n/ in pre-stressed syllable-initial position
with the vowels /a, i, w/. The database was collected at UCLA
and consists of speech tokens by 2 male and 2 female talkers with
8 repetitions per syllable (192 tokens in total). The sampling rate
was 16 kHz. Perceptual experiments were conducted both in
quiet, and in the presence of additive white Gaussian noise
(AWGN) and speech-shaped noise. Results showed that formant
transitions, in general, play a larger role in identifying place than
the murmur. Specifically, perceptual thresholds were correlated
with the duration and relative amplitudes of the formant,
especially F2, transitions which in turn were vowel dependent.
For example, the duration of the F2 transitions in /na/ syllables
were the longest, as shown in Table 1, and with relatively high
energy leading to very robust perception of the sound in noise. In
addition, /ma/ syllables were robust even though F2 transition
was short, but the amplitude of F2 relative to F1 was the largest
of all syllables.

ma mi mu na ni nu

19 20.8 16.6 57.5 19.3 12.9

Table 1. Average F2 transition in millisecond for
different syllables. Measurements were done manually.

To compare human and machine nasal recognition, an
experiment was conducted using the HMM-based ASR system
from Entropics Inc. (HTK 2.0). Endpoint detection using energy
and zero-crossing measures was used. Each HMM model had 6
states. Training was done with half of the utterances, and testing,
with the other half. The feature vector used was the Mel-
Frequency Cepstral Coefficients (MFCC) with first and second
derivatives. The window (Hamming) length was 25 ms and the
frame step size was 10 ms. The noise in all the experiments is
additive speech shaped noise. If the system is trained and tested
with clean data, high recognition accuracy is achieved (90
percent). If the system is trained with clean data and tested with
noisy data, recognition scores deteriorate. For example, at a SNR
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of 3 dB, the recognition accuracy is 52 percent; the
corresponding confusion matrix is shown in Table 2. The /Ca/
syilabies are the most robust in noise and we attribute that result
to the more pronounced formant transitions for those syllables.
We speculate that the deterioration in recognition accuracy for
/Ci/ syllables, in particular, is attributed to their very short and
weak formant transitions.

ma mi mu na ni noo | Correct
rate (%)
ma 13 0 0 3 0 0 81.2
mi 0 0 0 2 6 8 0.0
nu 1 0 2 8 0 5 12.5
na 0 0 0 16 0 0 100
ni 0 1 0 1 8 6 50.0
nu 0 0 0 5 0 11 68.8

Table 2. Nasal recognition results. Trained with clean
data, and tested with additive speech shaped noise at a
SNR=3dB.
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Figure 1. MFCC vectors around the transition of a /ma/
utterance. (a) Window step size = 10ms. (b) Window
step size = 2.5ms.

A frame step size of 10 ms may not be sufficient to capture
dynamic changes. To illustrate this point, Figure 1 shows plots of
MFCC vectors along a 100 ms segment surrounding the formant
transition region in a /ma/ syllable. The frame Iength is 20 ms,
but the frame step size is 10 ms in (a) and 2.5 ms in (b). Speech
is pre-emphasized and MFCC vectors are liftered. Note that the
murmur and steady-state region of the vowel are represented by
(perhaps an unnecessarily large) number of MFCC vectors, while
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the critical formant transition region (13 ms) is only represented
by one vector with a 10 ms frame step size and 2 (distinct)
vectors when the step size is reduced to 2.5 ms.

3. VARIABLE FRAME RATE (VFR)
METHOD

3.1 The Algorithm

From the analysis described above, it is clear that computing
frames every 10 ms is not adequate for representing rapidly
changing segments although it is sufficient for representing
relatively steady and long ones.

One solution to this problem is increasing the frame rate, but this
would unnecessarily increase the computational load of ASR
systems and is not needed for steady segments. Instead, we
propose a variable frame rate method in which the frame rate
varies as a function of the spectral characteristics of the signal.

Using MFCC feature vectors, the variable frame rate algorithm is
implemented as shown in Figure 2.

First, speech is analyzed with frame lengths of 25 ms (Hamming
window) and a step size of 2.5 ms. We refer to these frames as
the “dense frames”. Second, the difference (d(i), where i is the
time index,) between every two adjacent “dense frames" is
calculated. The average of these differences is then calculated
over the whole utterance. Third, based on the weighted
differences, some frames are kept and others are discarded. In
particular, “dense frames™ around a formant transition will be
kept, while at the steady part of the signal, frames will be picked
sparsely.

It is important to note that the distance d(i) is calculated as the
energy weighted Euclidean MFCC distance: first the Euclidean
distance of the MFCC vectors of two adjacent frames are
calculated, then it is weighted by (E - B), where E is the log
energy of that frame, and B is a constant offset. This is different
from the method proposed in {2] where the Euclidean MFCC
distance was used. Energy weighting is important so that
segments which exhibit changes but are low in energy are
discarded, since they may not be noise robust. Our previous
experiments have shown a clear relationship between the energy
of formant transitions and perceptual noise robustness. In
addition, our pilot ASR experiments using Euclidean MFCC
distance did not yield high recognition accuracy in noise.

The two parameters @, the threshold, and B, log energy offset, are
chosen experimentally. The choice of o will determine the
average data rate. For example, if o is 4 (ratio of the 10 ms step
size and the dense step size of 2.5 ms), then the resulting total
number of frames will be nearly the same as that in a front-end
with a frame step size of 10 ms. If o is larger than 4, then the
average data rate will be less than 100 frames per second and
vice versa. In our implementation, o was chosen to be 6.8. The
log energy offset § was set to be the average E (over the entire
utterance) divided by 1.5.



Calculate MFCC vectors with a 25 ms frame length
and a 2.5 ms step size.

Calculate d(i), weighted Euclidean distance of MFCC
vectors, between frame [ and frame i+ 7.

Y

Calculate the average distance d from d(i), this can be
done locally or, in our case, to the whole utterance.

v

Calculate the threshold € for “frame picking” as
0=0*d, where o is a parameter that determines the
average frame rate.

Perform “frame picking”. Locally accumulate d(i) from
time n (A=A+d(i), i=n, n+1, n+2....n+k...). Whenever
A exceeds 0 at time n+k choose the frame at n+k, reset
and restart the accumulation from n+k.

Start this process from n=1, and repeat to the last frame
of the utterance, the resulting frames are the variable
frame rate MFCC vectors (VRMFCC).

Figure 2. Flow chart of computing variable frame rate MFCC
vectors.

3.2 An Example of VFR Analysis

Figure 3 illustrates how frames are picked for the utterance /ma/
as spoken by a male speaker. Part (a) shows a time waveform of
the utterance. The upper part of (b) plots d(i), the weighted
feature distance between two adjacent frames - with a step size of
2.5 ms - and the Jower part shows the result of the frame-picking
algorithm where each bar indicates that a frame has been chosen
for recognition. Note that near the transition region from the
consonant to the vowel d(i) is large. For this example, 50 out of
200 dense frames are picked. Around the transition region, all the
dense frames (spaced by 2.5 ms) are kept while in the steady-
state part of the vowel, only 3-4 frames, out of 20 frames, are
selected corresponding to a step size which is larger than 10ms.

3.3 Recognition with the VFR Front End

The variable frame rate method was used in ASR experiments
using the nasal database described in Section 2, and the
TIDIGITS database. In the experiments, the performance of the
recognition system with two feature vectors were compared:
MFCC, and MFCC vectors with peak enhancement [4] (hereafter
referred to as MFCCP). First and second derivatives of these
features were used. Training was done using clean data while
testing was done with either clean or noisy data.

Results for the nasal recognition experiment are shown in Table
3. Clearly, the variable frame rate approach together with a
method for enhancing spectral peaks, gives the best performance
at low SNRs.
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The VFR method was also used with the database “Studio
Quality Speaker Independemt Connected Digit Corpus”
(TIDIGITS). Each left to right digit HMM model had 4 states, 2
mixtures, and a diagonal covariance matrix. 80 utterances from
80 speakers, (40 male and 40 female) were used to train each
model. Test data were from the other 32 speakers (half male and
half female).
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Figure 3. (a) The waveform of a /ma/ utterance. (b) The

upper panel is the normalized d(i) distance, and the
lower panel shows which frames were kept.

Clean | SNR=15dB 5dB 0dB
MFCC 90 89 68 34
MFCCP 96 91 77 68
VRMFCCP_ | 100 96 81 71

Table 3. Percent correct rates from different front-ends
using the nasal database.

We compared MFCC and MFCCP with their variable frame rate
versions. The results are shown in Figures 4 and 5 and is
summarized in Table 4. The results clearly illustrate that applying
the VFR method to each feature vector improves recognition
performance especially at low SNRs. Increasing time resolution
for rapidly changing segments, while keeping the time resolution
low for steady parts, results in improved robustness.
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Figure 4. Recognition results expressed by word percent
correct for MFCC and variable frame rate MFCC using
the TIDIGITS database.
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Figure 5. Recognition results expressed by word percent
correct for MFCC, MFCC with peak isolation (MFCCP),
and its variant frame rate version (VRMFCCP) using the
TIDIGITS database.

4. SUMMARY AND CONCLUSION

Changes in spectral characteristics are important cues for
discriminating and identifying speech sounds. These changes can
occur over very short time intervals. Computing frames every 10

.ms, as commonly done in ASR systems, is not sufficient to

Percent SNR=20 | 10dB 5dB 3dB 0dB

correct dB

MFCC 96.87 86.83 | 70.85 | 65.20 | 56.43

MFCCP 97..81 96.55 {9342 | 8840 | 77.74

VRMFCCP | 97.49 97.18 95.92 94.36 | 89.03
Table 4. Recognition results summary for MFCC,

MFCCP and VRMFCCP front ends using the TIDIGITS
database.
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capture such dynamic changes. In this paper, we propose a
Variable Frame Rate (VFR) algorithm. The algorithm results in
an increased number of frames for rapidly-changing segments
with relatively high energy and less frames for steady-state
segments. It can be implemented such that the average data rate
is the same, less, or more than a fixed 100 frames per second data
rate. The current implementation used an average data rate which
is less than 100 frames per second. For an isolated word
recognition task, and using an HMM speech recognition system,
the proposed technique results in significant improvements in
recognition accuracy especially at low signal-to-noise ratios. The
technique was evaluated with MFCC vectors and MFCC vectors
with enhanced peak isolation [4].

The novel properties of the proposed VFR algorithm are 1) using
energy weighted MFCC distance, 2) allowing a frame step size as
low as 2.5 ms, and 3) a novel method for frame selection.

Acknowledgement

Work is supported in part by NSF and NIH.

5. REFERENCES

[1} Abeer Alwan, Jeff Lo, and Qifeng Zhu “Human and
Machine Recognition of Nasal Consonants in Noise”,
Proceedings of the 14th International Congress of Phonetic
Sciences, Vol. 1, p. 167-170, 1999.

Ponting, K.M. and Peeling, S.M. “The use of variable frame
rate analysis in speech recognition.” Computer Speech and
Language Comput. Speech Lang. (UK), vol.5, (no.2), April
1991. p.169-79.

Kenneth Stevens, Acoustic Phonetics, MIT Press, 1998.
Strope, B. and Alwan, A. 1997. “A model of dynamic
auditory perception and its application to robust word
recognition”, IEEE Trans. on Speech and Audio Processing,
Vol. 5, No. 5, p. 451-464.

Young, S.J. and Rainton, D. “Optimal frame rate analysis
for speech recognition.” IEE Colloquium on Techniques for
Speech Processing (Digest No.181), London, UK. 17 Dec.
1990, p.5/1-3.

(2

(3]
(4]

(51



