Personal tools
Home Events Events Archive 2011 Strong-confinement silicon photonics: from telecom-grade signal processing to light-powered nanomachines

Strong-confinement silicon photonics: from telecom-grade signal processing to light-powered nanomachines

— filed under:

What
  • Visitor Seminars
When Oct 28, 2011
from 04:00 PM to 05:00 PM
Contact Name
Add event to calendar vCal
iCal

Milos Popovic

Department of Electrical Engineering

University of Colorado at Boulder

Friday, October 28, 2011 at 4:00-5:00pm

Room 38-138 Engineering IV Bldg


Abstract: Microphotonic circuits based on strong confinement raise the prospect of dense photonic integration on a chip, highly energy efficient on-chip communication links, and of novel device concepts based on unique device physics and topologies that become practical in this regime, including optical nonlinear effects and optical forces.  In this talk, I will describe the demonstration of telecom-grade filters and hitless wavelength switches in strong-confinement microphotonics.  I will also talk about device concepts based on localized destructive mode interference and a new, unidirectional guided Bloch wave, that enable efficient waveguide crossings, modulators, and other optically efficient contacted structures.  I will describe recent efforts to integrate silicon photonics with advanced CMOS electronics in the front end CMOS process, and will show the first demonstrations of photonic devices in 65nm and 32nm CMOS technology with no process changes, compatible with microprocessor grade state-of-the-art CMOS.  These developments are the first results of current research on deeply integrated photonics in both processor and DRAM technology.

 

 

Biography: Miloš Popović is an Assistant Professor and Donnelly/GE Faculty Fellow in the Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder.  He received his B.Sc.E. degree in Electrical Engineering from Queen’s University, Canada in 1999, and his M.S. and Ph.D. degrees at Massachusetts Institute of Technology in 2002 and 2007.  His research interests include theory and design of integrated photonic devices for telecom and on-chip interconnect applications, CMOS photonics integration, nanooptomechanical devices based on light forces, and nonlinear photonics.

 

For more information, please contact Dr. Eric Diebold (ediebold@ucla.edu)

Document Actions