Personal tools
Home Events Events Archive 2012 On the capacity of rate constrained wireless systems or how many simultaneous users with minimum rate constraints can a wireless network support under fading conditions?

On the capacity of rate constrained wireless systems or how many simultaneous users with minimum rate constraints can a wireless network support under fading conditions?

— filed under:

What
  • Visitor Seminars
When Feb 22, 2012
from 02:00 PM to 03:30 PM
Where ENGR. IV Bldg. Tesla Room 53-125
Add event to calendar vCal
iCal

Ravi R. Mazumdar

 

University Research Chair Professor

Dept. of Electric and Computer Engineering 

University of Waterloo, Canada

 

 

 

Abstract:

Traditionally capacity issues in wireless systems have been posed as finding the maximum rate that is supportable under a given power budget. A simple solution to this problem is to transmit to the user with the best channel at maximum power and then determine the rate. However, in practice users have throughput delay tradeoffs in that they have minimum rate requirements that will allow them to obtain guarantees on delays when they have channel access. Meeting minimum rate guarantees opens up power to be shared amongst users who can achieve their minimum rates and thus more than one user can be allowed.

 

In this talk I will present results on the maximum number of simultaneous users that can be supported under independent fading conditions. In particular, a power allocation scheme is proposed to maximize the number of active terminals in fading multi-user channels in which a minimum rate must be maintained for all active users. It is assumed that receivers and transmitters have perfect channel state information. Both uplink and downlink scenarios are considered and under the assumption of independent Rayleigh fading channels for different terminals, the optimal number of active terminals is asymptotically obtained as the total number of users, n, is large enough. For broadcast channels with successive interference cancellation at receivers and multiple access channels with joint decoding at the receiver, the maximum number of active terminals is shown to be arbitrarily close to  with probability approaching one, where  and  denote total transmit power and the minimum rate respectively, and  represents the background noise variance.

 

We then look at the more general setting of multihop ad hoc networks and study how many simultaneous links can be supported and determine the sum rate capacity when there are a large number of nodes. This allows us to estimate the scaling law for achievable rate in multi-hop wireless networks. For small networks where fading rather than path loss is dominant the number of rate constrained active links is  where  while for wide area networks with fading and path loss the number of active links is .  The proofs involve several interesting properties related to order statistics.  Joint work with Hengameh Keshavarz (U of S and B, Iran) and Rahul Roy (ISI).

 

Biography:

The speaker was educated at the Indian Institute of Technology, Bombay (B.Tech, 1977), Imperial College, London (MSc, DIC, 1978) and UCLA (PhD, 1983).  He is currently a University Research Chair Professor in the Dept. of ECE at the University of Waterloo, Ont., Canada where he has been since September 2004. Prior to this he was Professor of ECE at Purdue University, West Lafayette, USA where he continues to be an Adjunct Professor.He is a Fellow of the IEEE and the Royal Statistical Society. He is a recipient of the INFOCOM 2006 Best Paper Award and was runner-up for the Best Paper Award at INFOCOM 1998.  His research interests are in modeling, control, and performance analysis of both wireline and wireless networks, and in applied probability and stochastic analysis with applications to queueing, _ltering, and optimization. 

 

For more information please contact Prof. Vwani Roychowdhury (vwani@ee.ucla.edu)

Document Actions