Personal tools
Home Events Events Archive 2013 Energy-efficient VLSI Signal Processing for Wideband Spectrum Sensing in Cognitive RadiosEnergy-efficient VLSI Signal Processing for Wideband Spectrum Sensing in Cognitive Radios

Energy-efficient VLSI Signal Processing for Wideband Spectrum Sensing in Cognitive RadiosEnergy-efficient VLSI Signal Processing for Wideband Spectrum Sensing in Cognitive Radios

— filed under:

What
  • PhD Defenses
When Jun 04, 2013
from 02:30 PM to 04:00 PM
Where Engr. IV Bldg. Tesla Rm. 53-125
Contact Name
Add event to calendar vCal
iCal

Tsung-Han Yu

Advisors: Professor Dejan Marković and Professor Danijela Čabrić

 

Abstract

With the rapid increases in the number of wireless devices, fixed spectrum allocation has shown to be a major limitation to the evolution of wireless technologies. Cognitive radio (CR) allows opportunistic spectrum access by searching and utilizing temporally and spatially unused spectrum, provided that CR users do not cause interference to the primary users of the spectrum. Spectrum sensing over a wide bandwidth increases the probability of finding under-utilized spectrum for cognitive radios. However, the realization of wideband sensing is challenging because strong primary users introduce large dynamic range and spectral leakage to adjacent unused bands.

This work presents an algorithm-architecture co-design framework for wideband spectrum sensing. The suppression of spectral leakage is achieved by multitap-windowed FFT processing, which also enables reduced sensing time. The sensing time and detection threshold are adapted according to channel-specific spectral leakage, enabling reliable wideband detection within constrained sensing time. Power and area cost of the compute-intensive FFT block is minimized by using parallelism, radix factorization, and compact delay lines. A per-channel floating point data processing for large dynamic range signal is employed for power and area saving. A partial PSD estimation scheme that performs energy detection on only the band-of-interest further improves the energy efficiency. Two chips have been designed to demonstrate these concepts. Techniques developed in this dissertation enable energy-efficient chip implementation of advanced wideband signal processing for cognitive radios.

 

Biography

Tsung-Han Yu received the B.S. and M.S. degrees in Electrical Engineering from National Taiwan University, Taipei, Taiwan, in 2005 and 2007, respectively. He is currently a Ph.D. candidate in the Electrical Engineering Department at UCLA. His research is focused on digital integrated circuits and architectures for communication signal processing.

Document Actions