Personal tools
Home Events Events Archive 2014 3D Nanopillar Optical Antenna Avalanche Detectors

3D Nanopillar Optical Antenna Avalanche Detectors

— filed under:

  • PhD Defenses
When Feb 18, 2014
from 09:30 AM to 12:00 PM
Where Engr. IV Bldg, Tesla Room 53-125
Contact Name
Add event to calendar vCal

Pradeep Senanayake
Advisor: Prof. Diana L. Huffaker


Avalanche photodetectors (APDs) are essential components in active imaging systems requiring both ultrafast response times to measure photon time of flight and high gains to detect low photon fluxes. APDs improve system Signal to Noise Ratio by combining photon detection and amplification eliminating the need for front end amplifiers. An emerging trend in active imaging focal plane array technologies is reducing the pixel pitch (detector volume) for higher resolution images. However, there is an inherent trade-off between reduced detector volume and APD figures of merit.

This talk will focus on the design, fabrication and electro-optic characterization of a novel detector architecture "3D Nanopillar Optical Antenna Avalanche Detectors" (3D-NOAADs) for shrinking both the absorption and multiplication volumes using  III-V nanopillars, while enhancing the optical absorption via a self aligned 3D plasmonic antenna. Wavelength tuning and hybridization of the optical absorption  via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed. Photo-generated carrier transport from the absorption region into the multiplication region and subsequent impact ionization  will also be discussed. Single pixel 3D-NOAADs exhibit substantially lower excess noise factors compared to bulk, low breakdown voltages ~ 8 V and gain-bandwidth products > 100 GHz.


Pradeep Senanayake is a PhD candidate in the Electrical Engineering Department at the University of California Los Angeles (UCLA). He received his BS degree in Electrical Engineering from San Jose State University in 2007, MS degree in Electrical Engineering from UCLA in 2009. His research interests includes plasmonic light absorption and carrier transport in nanoscale avalanche photodetectors.

Document Actions