Probing Unconventional Electron Landau Levels with Strong Interaction Effects in Atomically Thin Transition Metal Dichalcogenides

Speaker: Ning Wang
Affiliation: Hong Kong University of Science and Technology

Abstract: Atomically thin transition metal dichalcogenides (TMDCs) are emerging as a new platform for exploring many-body effects. Coulomb interactions are markedly enhanced in these materials because of the reduced dimensionality and large effective masses. Although many-body excitonic effects in TMDCs have been extensively studied by optical means, not until recently did probing their strongly correlated electronic effects become possible in transport. In this talk, I demonstrate our recent experimental study on quantum transport of few-layer WSe2 and MoS2 with unconventional electron Landau levels (LLs) and strong interaction effects. We fabricate high-quality n-type MoS2 and p-type WSe2 devices and study their valley-resolved SdH oscillations relevant to the spin-valley locked massive Dirac electron LLs. Encapsulating these TMDCs in ultra-clean hexagonal boron nitride sheets effectively eliminates impurity scattering and provides clean interfaces for making high-quality low-temperature ohmic contacts. Few-layer WSe2 and MoS2 field-effect devices with mobilities up to 20,000 cm2/V s have been achieved at cryogenic temperatures. We observe interesting quantum Hall transport phenomena involving the Q valley, Γ valley and K valley, such as the Q valley Zeeman effect in all odd-layer MoS2 devices and the spin Zeeman effect in all even-layer MoS2 devices and highly density-dependent quantum Hall states of Γ valley holes below 12T, whose predominant sequences alternate between odd- and even-integers. By tilting the magnetic field to induce Landau level crossings, we show that the strong Coulomb interaction enhances the Zeeman-to-cyclotron energy ratio from 2.67 to 3.55 as the density is reduced from 5.7 to 4.0×1012 cm-2, giving rise to the even-odd alternation. With decreasing the carrier density in the conductance band (K valley) of few-layer MoS2, we observe LL crossing induced valley ferrimagnet-to-ferromagnet transitions, as a result of the interaction enhancement of the g-factor from 5.6 to 21.8. Near integer ratios of Zeeman-to-cyclotron energies, we discover LL anti-crossings. Our results provide compelling evidence for many-body interaction effects in few-layer WSe2 and MoS2.

Biography: Professor Wang obtained his BSc (1985) and PhD (1990) degrees in materials physics from the University of Science and Technology, Beijing. In 1989, he received an Alexander von Humboldt Research Fellowship and worked in the Institute for Metal Physics, Goettingen University and the Fritz-Haber-Institute of the Max-Planck Society, Berlin, Germany. In 1993, he joined the Physics Department of the Hong Kong University of Science and Technology. During 1997-2000 he worked in the Department of Applied Physics and Materials Science, the City University of Hong Kong. Professor Wang has authored/co-authored 250 peer-reviewed research papers in reputed international journals. He received Chien-Shiung Wu Physics Award (1990), State Natural Science Award (2005), Achievement in Asia Award (2006), and School of Science Service Awards (2015).

Afterwards, he joined the physics department of the HKUST’ right before ‘Professor Wang has authored/co-authored 250 peer-reviewed research papers in reputed international journals. He received Chien-Shiung Wu Physics Award (1990), State Natural Science Award (2005), Achievement in Asia Award (2006), and School of Science Service Awards (2015).

For more information, contact Prof. Kang Wang ( wang@ee.ucla.edu)

Date/Time:
Date(s) - Mar 09, 2018
5:00 pm - 6:00 pm

Location:
E-IV Tesla Room #53-125
420 Westwood Plaza - 5th Flr., Los Angeles CA 90095