Personal tools
Home News Current News for Spotlight

Current News for Spotlight

News Item UCLA Alumnus Dr. Mukund Padmanabhan Gave a $2.5 Million Donation for a Laboratory in the New Engr. IV Building

PadmanabhanMukund_newThe Mukund Padmanabhan Systems Scaling Technology Laboratory in the new Engineering VI Building, under construction, will open in 2017 through the generosity of UCLA EE Alumnus Dr. Padmanabhan, who donated $2.5 million gift to the Henry Samueli School of Engineering and Applied Science.

The laboratory will be at the cutting edge of technology, developing performance, cost-effective and energy efficient heterogeneously integrated systems, including 3D integrated circuits and assemblies. It is envisioned as an incubator of next-generation components for computing and mobile devices as well as equipment used in sophisticated healthcare, military and space applications.

Dr. Padmanabhan, who earned his master’s degree (‘89) and doctorate (‘92) in electrical engineering at UCLA, has been supporting international students through the Guru Krupa Foundation fellowship. Seeing the quality and progress in the work pursued by the graduate students, he was inspired to further his commitment to the school by funding the laboratory.

The electrical engineering department is truly grateful for the outpouring generosity from its alumni who give back to their alma mater to help prepare the next generation of engineers.




News Item Professor Asad Abidi Selected by UC Berkeley to Receive its 2015 EE Distinguished Alumni Award

Asad A AbidiDistinguished Chancellor’s Professor Asad Abidi has been chosen as a recipient of the Distinguished Alumni Award for 2015 by the department of electrical engineering and computer sciences at the University of California, Berkeley, where he received both his master and doctorate degrees in electrical engineering.

The award is in recognition of the valuable contributions of the most distinguished alumni.  Selection is based on a record of outstanding performance, as evidenced by sustained excellence in one or more of the following areas:  research and engineering achievements, leadership in the profession and in public affairs, service and/or support to UC Berkeley.

Professor Abidi is widely recognized for his seminal contributions in the area of integrated circuits and was responsible for the development of the RF CMOS technology which revolutionized wireless communications.  As an educator, he has the dedication and passion to bring out the best in his students to make their mark in the field. From student awards, his former students are now technology leaders at leading communication IC companies in the world.

The award presentation will take place in conjunction with the Berkeley EECS Annual Research Symposium (BEARS) on Thursday, February 12, 2014.



News Item Prof. Sayed and Dr. F. Cattivelli Received a Best Paper Award

SayedCattivelliProfessor Ali H. Sayed and former PhD student Federico S. Cattivelli received the 2014 Best Paper Award from the IEEE Signal Processing Society for their article "Diffusion LMS strategies for distributed estimation," published in the IEEE Trans. Signal Processing, March 2010. This is one of the original works that show how to perform continuous adaptation and learning by networked agents. The paper has motivated variations and studies by many authors since its publication.IEEE_SignalProcessing




News Item Professor Mona Jarrahi is a Distinguished Lecturer of IEEE Microwave Theory and Techniques Society

Mona JarrahiProfessor Mona Jarrahi has been selected as a Distinguished Lecturer of the IEEE Microwave Theory and Techniques Society for the years 2015-2017. The Microwave Theory and Techniques Society, via the Technical Coordinating Committee, each year carefully selects a group of Distinguished Microwave Lecturers who are recognized experts in their fields to give seminars at IEEE MTT-S chapters worldwide.mmt-s





News Item Professor Dolecek Received the 2014 IBM Faculty Award

Dolecek LaraProfessor Lara Dolecek is a recipient of the 2014 IBM Faculty Award. This competitive worldwide program is intended to foster collaborations between researchers at leading universities worldwide and those in IBM research, development and services organizations. In particular, Prof. Dolecek will collaborate with the IBM team in Zurich on the development of novel mathematical methods to improve the reliability of emerging memory technologies.IBM_logo





News Item Cancer Detection Through Lens-free Microscopy

AydoganOzcanChancellor’s Professor Aydogan Ozcan and his research team have enhanced the use of their lens-free microscope to detect cancer and other cell-level abnormalities with the same accuracy as expensive optical microscopes. This latest development is the first lens-free microscope capable of producing a high-throughput 3-D tissue image relevant in the study of diseases. Furthermore, the output image is more than two orders of magnitude larger in area than conventional bright-field optical microscopes.

The device was tested using Pap smears that indicate cervical cancer, tissue samples of cancerous breast cells, and blood samples of sickle cell anemia. In a blind test with a board-certified pathologist, diagnosis using the lens-free technology proved accurate 99 percent of the time.



News Item Three Teams from UCLA EE are Finalists to the Qualcomm Innovation Fellowship 2015-2016

Qualcomm has announced the 35 U.S. finalists of the 2015-2016 prestigious Qualcomm Innovation Fellowship, of which, 3 teams are from the electrical engineering department.  The finalists from UCLA EE graduate students are:

Zhi Yao and Sidhant Tiwari, students of Professors Ethan Wang and Rob Candler, proposed a “Bulk Acoustic Wave Resonators for Antenna Applications Through Multiferroic Coupling,” which investigates strain-mediated multiferroic coupling as a new radiation mechanism for a better antenna size scaling than conventional low-profile antennas. 

Frederic Sala and Clayton Schoeny, students of Professor Lara Dolecek, submitted “Coding Techniques for Next-Generation 3-D Flash Memories,” which focuses on improving the reliability and extending the lifetime of next-generation Flash memories through new coding and information-theoretic techniques.

Qiming Shao and Lei Pan, students of Professor Kang Wang, will investigate on “Topological Insulator-Based Spin Wave Logic and Universal Memory,” working on the premise that giant spin orbit torques generated by topological insulators can be utilized to realize energy efficient non-volatile magnetic random access memory, and together with magnetic insulators, information can be potentially processed even without electric current, which will enable the ultralow power, high speed and reconfigurable spin logic with built-in universal memory.

UCLA has a total of 4 finalists making it the institution with the second most number of finalists; the fourth team is from the computer science department.

The Qualcomm Innovation Fellowship enables students to pursue their futuristic innovative ideas.  

The finalist presentations will be in San Diego, CA, where fellowships will be awarded to eight winning teams.



News Item UCLA Engineers First to Detect and Measure Individual DNA Molecules Using Smartphone Microscope

Aydogan OzcanUCLA’s California NanoSystems Institute (CNSI) researchers report the first imaging and sizing of individual DNA molecules using a lightweight, compact and cost-effective optical attachment making an ordinary smartphone into an advanced fluorescence microscope. The team led by Aydogan Ozcan, CNSI associate director and Chancellor’s Professor of electrical and bioengineering at the Henry Samueli School of Engineering and Applied Science, published their results online Dec. 10 in ACS Nano.

 The inexpensive, 3-D-printed unit uses the phone’s camera to visualize and measure the length of single-molecule DNA strands. An included attachment creates a high-contrast, dark-field imaging setup using an inexpensive external lens, thin-film interference filters, a miniature dovetail stage and a laser diode that excites the fluorescently labeled DNA molecules.

An accompanying app connects the smartphone to a UCLA server, which measures the DNA length. The molecules are labeled and stretched on disposable chips that fit in the attachment. The measurement results are seen on the phone and computers linked to the server.

“The ability to translate these and other existing microscopy and sensing techniques to field-portable, cost-effective and high-throughput instruments can make possible myriad new applications for point-of-care medicine and global health,” said Ozcan, who is also an HHMI Professor with the Howard Hughes Medical Institute.

Shaun Mason, CNSI



News Item Distinguished Adjunct Professor Asad M. Madni Elected as a Fellow of the National Academy of Inventors (NAI)

Asad M. MadniIn recognition of his 69 issued or pending patents, Distinguished Adjunct Professor Asad M. Madni has been elected as a Fellow of the National Academy of Inventors (NAI) for “demonstrating a highly prolific spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development, and the welfare of society.”

The NAI Fellows Luncheon and Induction ceremony will be held at the California Institute of Technology on March 20, 2015, concluding the 4th Annual Conference of the National Academy of Inventors. The fellows will be inducted by Deputy U.S. Commissioner for Patent Operations from the U.S Patent and Trademark Office, Andrew Faile.

The National Academy of Inventors was established in year 2010 to honor academic invention; recognize and encourage inventors; enhance the visibility of university and non-profit research institute technology and innovation; encourage the disclosure of intellectual property; educate and mentor innovative students; and translate the inventions of its members to benefit society and mankind.

In UCLA's EE department, in addition to Professor Madni, Professors C. Kumar Patel and Tatsuo Itoh have been inducted into this prestigious professional society of inventors.NationalAcademyofInventors





News Item Professor Mona Jarrahi has been Named a 2014 Kavli Fellow by the National Academy of Sciences

Mona JarrahiProfessor Mona Jarrahi has been named a 2014 Kavli Fellow by the National Academy of Sciences. The Kavli fellows program honors young scientists who are considered leaders in their fields and have made significant contributions to science. Fellows are invited to attend, present and network at U.S. and international Kavli Frontiers of Science symposia, at which some of the world's brightest young scientists convene to share the exciting research taking place in their fields. Professor Jarrahi was invited to attend the 14th Japanese-American Frontiers of Science Symposium held in Tokyo this year, December 4 to7.

About the Kavli Fellow Program:
Kavli fellows are selected by the advisory board of The Kavli Foundation and members of the National Academy of Sciences from young researchers who have already made recognized contributions to science, including recipients of major national fellowships and awards and who have been identified as future leaders in science. More than 150 Kavli fellows have been elected into the NAS and 10 have been awarded Nobel Prizes. TheKavliFoundation



News Item UCLA and JPL Develop Spectrometer Chip Based on CMOS Smartphone Technology for Future NASA Instruments

Mau-Chung Frank ChangUCLA faculty Frank Chang in collaboration with NASA Jet Propulsion Lab researchers Adrian Tang, Goutam Chattopadhyay, and Brian Drouin have developed an extremely low-power (less than 0.2 W) wideband spectrometer processor chip capable of detecting trace gases for future NASA instruments. The developed chip uses the same CMOS system-on-chip technology found in smartphones and tablets, allowing the spectrometer processor to be compact, and extremely energy efficient. This efficiency will enable future NASA spectrometer instruments to be flown on much smaller platforms (UAVs and cube satellites) as well as in deep space planetary science missions where power and payload size are extremely limited.

The demonstrated spectrometer chip occupies only 15 cm3 of volume and weighs less than 200 grams while its GHz-wide bandwidth makes it applicable to a wide range of Earth science, planetary science, and astrophysics applications. The single chip contains a wide range of functions including analog amplification and signal conditioning, calibration functions, analog-to-digital conversion, and signal processing to compute detected chemical spectra. UCLA graduate students Rod Kim and Li Du and visiting scholar Frank Hsiao also participated in the development of the spectrometer chip.NASA-JPL-logo




News Item High power terahertz radiation sources developed by Professor Jarrahi’s group are highlighted in the Laser Focus World Magazine

Mona JarrahiWork by Professor Mona Jarrahi’s research group on plasmonic photomixers has been highlighted in the Laser Focus World Magazine.

The team has demonstrated a high-performance source of continuous-wave terahertz radiation that can generate record-high radiation powers with extreme frequency tunability, while operating at room temperature.

This has been achieved by incorporating plasmonic nanostructures into a photomixer to offer significantly higher quantum efficiencies than that of previously demonstrated devices.  Moreover, this device is designed to operate at standard telecommunication optical wavelengths, which can be incorporated into a relatively compact and inexpensive setup.

The principal investigator on the research is Professor Mona Jarrahi and other authors include Christopher Berry, a former student of Jarrahi’s at the University of Michigan, Ann Arbor; Mohammad R. Hashemi, a UCLA post-doctoral scholar; Sascha Preu, Professor of Electrical Engineering and Information Technology at the Technical University of Darmstadt (Germany); Hong Lu, a researcher at UC Santa Barbara; and Arthur C. Gossard, Professor of Materials, Electrical and Computer Engineering at UC Santa Barbara.

News Item Professor Ozcan was a Keynote Speaker at NanoBioTech- Montreux 2014

AydoganOzcanProfessor Ozcan gave an Invited Keynote Lecture at the 2014 NanoBioTech-Montreux international conference for micro- and nanotechnology biological, chemical and medical applications, held in Montreux, Switzerland, November 17 to 19, 2014.NanoTechBio


News Item Prof. Jarrahi was a Plenary Speaker at ISOT 2014

Mona JarrahiProfessor Mona Jarrahi was a plenary speaker at the International Symposium on Optomechatronic Technologies held in Seattle, WA, November 5-7, 2014. The title of her talk was "Plasmonic Enhanced Terahertz Imaging and Spectroscopy."





News Item Prof. Ethan Wang created a non-magnetic circulator called Distributedly Modulated Capacitor (DMC)

Yuanxun (Ethan) WangProfessor Ethan Wang and his research team recently developed a device that allows simultaneous use of the same frequency for incoming and outgoing information on one communications device.  The technology goes beyond the current architectures whereby it would only use a third of the bandwidth. Furthermore, it is compatible with IC technology and may be included in mobile devices without increasing manufacturing costs.

Together with Wang, the DMC technology was developed by graduate student Shihan Qin and post-doctoral scholar Qiang Xu. Their research paper was published in the IEEE Transactions on Microwave Theory and Techniques in October 2014.




News Item Grad Student Yufei Mao Presented a Late-Breaking Research at HICPT 2014

Yufei_MaoGrad student Yufei Mao, advisor, Associate Professor Chi On Chui, together with colleague in the Department of Pathology, UCLA-Ronald Reagan Hospital presented a late breaking research paper, entitled, “Validation of Semiconductor Electronic Label-Free Assay (SELFA) for Point-of-Care Cardiac Troponin I Measurement,” at the IEEE EMBS Special Topic Conference on Healthcare Innovation & Point-of-Care Technologies (HICPT'14) in Seattle, WA.

In the work, the SELFA platform was implemented to measure cardiac troponin I (cTnI) in patient specimens, the results demonstrate a highly linear relation with that measured by LOCI® assay at the UCLA clinical laboratory, Ronald Reagan UCLA Medical Center. With a turnaround time within 10-15 minutes, the SELFA platform can be developed to a point-of-care device and be used to quantitatively and accurately measure cTnI in patient specimens for diagnosing myocardial infarction or commonly called as a heart attack.


News Item Assistant Professor Lara Dolecek Collaborates with JPL on Memory Coding Systems for Deep Space Use

Dolecek LaraAssistant Professor Lara Dolecek has received funding from NASA to study new coding and signal processing mechanisms to help overcome unreliability in memories used in deep space applications. The 2-year project is titled "Breaking the Limitations of Radiation-Hardened Devices” and will be performed in collaboration with Jet Propulsion Laboratory.

In a broader research effort with JPL-NASA, the non-binary LDPC codes developed by Assistant Professor Lara Dolecek and Adjunct Professor Dariush Divsalar are featured in September issue of NASA Tech Brief. This new class of codes proposed by the UCLA/JPL team offers significant coding gains that enable mission-critical communication systems to operate under adverse environments. NASA Tech Brief features commercially significant innovations by NASA researchers and their collaborators. Nasa_logo




News Item Professor John Villasenor to Speak on Cybersecurity on Capitol Hill

Villasenor_LATimes2Professor John Villasenor will be giving a presentation at the U.S. Capitol Visitor Center in Washington D.C. on "Hardware: The Other Cybersecurity Challenge" on October 15, 2014.

Professor Villasenor is a professor of electrical engineering and public policy at UCLA and a nonresident senior fellow at the Brookings Institution.  He is also a National Fellow at the Hoover Institution, a member of the World Economic Forum's Global Agenda Council on Cybersecurity, and a member of the Council on Foreign Relations.






News Item RapidScat Boards the International Space Station Which Carries Prof. Yahya Rahmat-Samii's Original Reflector Antenna Design

Yahya Rahmat-SamiiDistinguished Professor Yahya Rahmat-Samii's original reflector antenna design for RapidScat, a device measuring ocean surface speed, was employed by JPL for use at the International Space Station. JPL team optimized and developed the original dual polarization and dual beam Ku-Band reflector antenna design capable to monitor and predict the extreme effects of climate change.

RapidScat was launched on September 22, 2014 onboard SapceX Falcon 9 and robotically attached to the exterior of the International Space Station (ISS) about 8 days later. The antenna system resides on a rotating platform and is expected to function for at least two years.




News Item Professor Asad Madni is Honored Around the World

asad_madniDistinguished Adjunct Professor Asad Madni, for his outstanding contributions and service to science, engineering and technology, has been honored, once again, by multiple academic and professional institutions around the world.

He was recently selected for honorary professorship by the General Assembly of the School of Production Engineering and Management at the Technical University of Crete, Greece for his outstanding contributions to the engineering science and practice.

He was a co-honoree at the 2014 World Automation Congress (WAC) which was dedicated to him “for his extraordinary career of visionary leadership in and pioneering contributions to the development and commercialization of intelligent sensors, systems and instrumentation." He was also the inaugural recipient of the 2014 WAC Medal of Honor.

He was the keynote speaker at the 2014 IEEE International Conference on Semiconductor Electronics and was awarded a visiting professorship at the Institute of Microengineering and Nanotechnology at the Universiti Kebangsaan Malaysia.
Tau Beta Pi, the engineering honor society, named him as the recipient of the 2014 Distinguished Alumnus Award.  A $2000 scholarship was awarded in his name to a deserving student member of Tau Beta Pi.  

With a vast list of honors and commendations that he has received throughout his professional career, Professor Madni is still very committed to the electrical engineering department at UCLA and to its alumni advisory board of which he is the founding chair and board member.



News Item Jean Paul Santos Awarded a Prestigious SMART Fellowship

Santos_JeanPaulJean Paul Santos was recently awarded a prestigious Science Mathematics and Research for Transformation (SMART) Fellowship. The SMART Fellowship, established by the Department of Defense (DoD), “for service to individuals who demonstrate outstanding ability and special aptitude for a career in scientific and engineering research and product development, express interest in career opportunities  at DoD laboratories.”  The evaluation is based on a review of each applicant’s academic records, personal statements, recommendations, and GRE scores by an evaluation panel. SMART Fellowships provide full student support, including full tuition and fees as well as a monthly stipend during the duration of the scholar’s graduate tenure. The SMART Fellowship also provides the scholar a unique opportunity to work for many one-of-a-kind world-class DoD facilities as an intern as well as a full-time research engineer after graduation.

Jean Paul Santos is studying under Prof. Yahya Rahmat-Samii and has been conducting research on an optimized array with desired antenna performance for space communications. With the SMART Fellowship, he aspires to research various military applications of antennas including for biomedical purposes. His research interests also include antenna measurements and textile antennas. After attaining his Ph.D., he hopes to serve as a research engineer at one of the Sponsoring Facilities at the Department of Defense.DoD








News Item Asael Papour is Awarded the Dr. Ursula Mandel Scholarship

PapourAsaelAsael Papour, a graduate student under the mentorship of Prof. Oscar Stafsudd, received the UCLA Dr. Ursula Mandel Scholarship for scholastic and research achievements in the medical field. Papour has developed two compact biomedical imaging systems using auto-fluorescence and Raman techniques for intraoperative real-time tissue characterization. These robust technologies can image various tissue abnormalities including cancer tumor margins and serve as an early detection system for bone growth (Heterotopic Ossification) in failed wounds (combat wounds). A paradigm change in fluorescence and Raman optical tissue characterization enabled new research approaches, and removed the hurdles for accepting these technologies in patient care. By using spectroscopy-free fast Raman imaging and auto-fluorescence pulse shaping breakthrough, an unmet clinical need for inexpensive, non-ionizing (x-ray) imaging device is created.

Asael is a member of the Quantum Electronics Laboratory under the supervision of Professor Oscar Stafsudd (Electrical Engineering), and Professor Warren Grundfest (Bioengineering/Electrical Engineering). Asael completed a master’s degree in Electrical Engineering from UCLA in 2012. He received bachelor’s degree in Physics, minor in Chemistry, in 2008 from the Hebrew University of Jerusalem, Israel.



News Item Professor Jason Cong was the Keynote Speaker at the VLSI-SoC 2014

Cong_JasonChancellor’s Professor Jason Cong gave the keynote speech entitled "Design Automation Beyond High-Level Synthesis" at the 22nd IPIP/IEEE VLSI-SoC 2014 on October 6, 2014.

VLSI-SoC 2014 is the 22nd in a series of international conferences sponsored by IFIP TC 10 Working Group 10.5, IEEE CEDA and IEEE CASS, which explores the state-of-the-art in the areas that surround Very Large Scale Integration (VLSI) and System-on-Chip (SoC). The purpose of VLSI-SoC is to provide a forum to exchange ideas and showcase research as well industrial results in EDA, design methodology, test, design, verification, devices, process, systems issues and application domains of VLSI and SoC.

Previous conferences have taken place in Edinburgh, Trondheim, Tokyo, Vancouver, Munich, Grenoble, Gramado, Lisbon, Montpellier, Darmstadt, Perth, Nice, Atlanta, Rhodes, Florianópolis, Madrid, Hong Kong, Santa Cruz and Istanbul. IFIP_VLSISOC_logo




News Item UCLA is the Top U.S. Public School in Engineering and Technology

ucla-world-rankingThe UCLA Henry Samueli School of Engineering and Applied Science has been named the highest-ranked public university in the United States for engineering and technology, according to the Times Higher Education 2014-15 World University Rankings. The rankings were released Oct. 1.

News Item Assoc. Prof. Mona Jarrahi was the Keynote Speaker at the 14th International Conference on Nanotechnology

Mona JarrahiAssociate Professor Mona Jarrahi was a keynote speaker at the 14th International Conference on Nanotechnology  held in Toronto, Canada in August 18-21, 2014. This is one of the largest Nanotechnology conferences in the world, organized by the IEEE Nanotechnology Council. The title of the talk was "Nanophotonics and Plasmonics for Advancement of Terahertz Technology."








News Item Graduate Student Shang Hua Yang Received a IEEE Antennas and Propagation Society Doctoral Research Award

YangShangHuaShang Hua Yang has been selected to receive a Doctoral Research Award from the IEEE Antennas and Propagation Society for his research project, Three-Dimensional Plasmonic Photoconductive Antennas for High-Power Terahertz Generation.

Shang Hua is an electrical engineering Ph.D. student working with Prof. Mona Jarrahi at Terahertz Electronics Laboratory. His research is focused on designing plasmonic nanostructures to enhance efficiency of conventional photoconductive terahertz emitters. For his doctoral research, he has demonstrated the most efficient laser-driven terahertz radiation source.

About the Award: The IEEE Antennas and Propagation Society grants up to ten Ph.D Research Awards each year. The selection committee evaluates each applicant based on his or her research project, academic record, and potential to contribute to the electromagnetics profession in the future. The award consists of a $2500 fellowship.IEEE_APS





News Item Graduate Students Hsinhung Alvin Chen and Zuow-Zun Joseph Chen are Inaugural MediaTek Fellows

Hsinhung_Chen_and_Zuow_Zun_ChenOn September 23, 2014 MediaTek and UCLA electrical engineering department announced the inaugural MediaTek fellows Hsinhung Alvin Chen and Zuow-Zun Joseph Chen at a kick-off meeting graced by Dr. Lawrence Loh, MediaTek USA President and corporate Senior Vice President, and Dean Vijay Dhir, UCLA Henry Samueli School of Engineering and Applied Science.
Hsinhung Alvin Chen, a graduate student of Professor Asad Abidi, will pursue a research on "Adaptive Calibration of Time-Interleaved Analog-To-Digital Converter." While Zuow-Zun (Joseph) Chen, a graduate student of Professor and Chair Frank Chang, has selected to investigate on "A Low-Noise Sub-Sampling Fractional-N ADPLL."

A graduate student who has passed the preliminary exam qualifies to apply to the fellowship.  The MediaTek Fellowship provides full graduate student researcher (GSR) support including non-resident tuition (NRT) for one academic year and a possible paid summer internship.  Continued support may be considered in subsequent years for fellows who are deemed to make good progress.

From a substantial number of applications, each distinctly innovative, only the top two proposals of excellent technical merit and with a strong likelihood of success were jointly selected by UCLA and MediaTek.  The UCLA MediaTek Standing Committee is chaired by Professor Ken Yang with committee members Professors Jason Woo and Frank Chang.
MediaTek, founded in 1997, is a pioneering fabless semiconductor company and a market leader in cutting-edge systems on a chip for wireless communications and multi-media. They created the world's first octa-core smartphone platform with LTE and the CorePilot technology released the full power of multi-core mobile processors. In 2013, they were the fourth largest integrated circuits designer worldwide. Headquartered in Hsinchu, Taiwan, MediaTek recently opened an office in San Diego, California.MediaTek





News Item UCLA Researchers Receive $1.29M NSF Grant for Scalable Nanomanufacturing

Chi On ChuiA team of UCLA researchers has received a $1.29 million, four-year grant from the National Science Foundation to explore low-cost methods of manufacturing fibers with unprecedented continuous metal nanowires — a material with potential for ultra high-resolution cellular electrophysiology analysis technologies that could conduct sub-cellular and intracellular measurements down to a single biological cell.
The principal investigators of the research team include Xiaochun Li, Raytheon Professor of Manufacturing and Chi On Chui, associate professor of electrical engineering and bioengineering, both of the UCLA Henry Samueli School of Engineering and Applied Science; and Huan Meng, an adjunct assistant professor of nanomedicine at the UCLA David Geffen School of Medicine.

While there is a great demand for the high-volume production of fibers with continuous metallic nanowires, there has not been a reliable and scalable manufacturing method due to fundamental and technical issues surrounding their nanoscale size. This includes instability of molten metals during thermal drawing of the wires, and difficulties controlling wire formation using traditional manufacturing techniques. The UCLA research team will explore novel approaches to address these barriers to a low-cost, reliable and scalable nanomanufacturing process.

Current cellular electrophysiology analyses are used in high-volume, such as the development of pharmaceuticals, toxicity screenings, and threat detection. Using fibers with continuous nanowires as narrow as just tens of nanometers in diameter would enable high resolution analytical platforms, which could examine a single to few biological cells at a time. The resultant platforms could measure cellular events that, for example, indicate the presence of cancer cells, earlier than current technologies can. Specifically, the researchers and their students will explore theoretical materials and functional designs for nanoelectrode arrays; scalable nanomanufacturing of fibers with metal nanowires through thermal drawing; observation and characterization of nanoelectrode arrays; and development and validation of nanoelectrode-enabled cell-based assay platforms.

Other potential technologies for this include high-resolution semiconductors and metamaterials characterizations, and neural and cardiac electrical signal recorders.NSF




Re-print from UCLA HSSEAS Newsroom.

News Item Alumnus Dr. Henry T. Nicholas, III was Named for the IEEE Frederik Philips Award for 2014

NicholasHenryDr. Henry T. Nicholas, the co–founder of Broadcom Corporation and a Bruin (B.Sc. '82, M.Sc. '85, Ph.D. '98) was named to receive the Frederik Philips Award from IEEE for 2014. His citation reads, “For exemplary leadership and entrepreneurial vision in the commercialization of communications semiconductors that enable ubiquitous broadband connectivity.”

Nicholas was one of the brilliant brains of Broadcom Corporation, together with his professor and co-founder, Dr. Henry Samueli, who led the technological advancement and commercialization of consumer broadband circuits in cable modems which created a paradigm shift in modern communication systems. The world’s first commercially launched digital cable TV receiver was built with the chipset from Broadcom Corporation. There after the company has been a global leader and innovator in semiconductor solutions for wired and wireless communications.

The Frederik Philips Award was established in 1971 through the generous contribution of Philips Electronics N.V. in the Institute of Electrical and Electronics Engineers, Inc. The recipient is selected based on his/her leadership on the management of the research, impact on innovation, personal contributions, technological impact, and the quality of the nomination.

In 2005, Henry Nicholas was awarded the UCLA Alumni of the Year Award. He has been active in his philanthropic passion in arts and education. His Nicholas Academic Centers has sent over230 students to top universities. He has also supported the passage of the Marsy’s Law, a crime victim’s bill of rights.


News Item UC Engineers Collaborate on Light Emitting Semiconductor on Silicon Using Graphene

Light-generating semiconductor on silicon is the technology with the greatest potential toward integrating electronic and photonic devices on the same chip. Integration of highly-efficient optical sources on silicon will enable the combination of photonics with silicon electronics, leading to many new capabilities, such as providing high bandwidth in optical interconnects, long-haul communication systems and conventional CMOS technology.

UCLA Engineering researchers, in collaboration with colleagues at UC Irvine and UC Riverside, have developed a new growth technique using a wonder material, graphene, made from a single layer of carbon atoms, in which electrons travel at incredible speeds. According to this innovation, ultra-smooth light-emitting semiconductor thin films can be deposited successfully on top of the growth-assisting graphene layer which sits on silicon substrate. Led by Kang Wang, the Raytheon Professor of Electrical Engineering at UCLA and the study's principal investigator, the team demonstrated for the first time that the likely-epitaxial light-emitting (i.e. GaAs) thin films can be deposited on silicon using graphene as a buffer layer. The research was published on Aug. 26, 2014, in the journal Advanced Functional Materials.

The co-lead authors on the research are Yazeed Alaskar, a UCLA graduate student, and Shamsul Arafin, a UCLA post-doctoral scholar in electrical engineering.

Several major material-related challenges were overcome on the way towards realizing such atomically-smooth quasi-epitaxial GaAs (gallium arsenide) thin films on a graphene/silicon system. Most significantly, while the conventional deposition technique requires the growth of one-micron thick GaAs on top of silicon to realize a certain material quality, the UCLA-led group’s innovative and cost-effective growth technique demonstrated that the same quality can be obtained by depositing only 25 nanometers of GaAs atop silicon. 

"This is the first time that an ultra-smooth morphology for quasi-epitaxial GaAs thin films on graphene/silicon using an optimized growth technique has been developed,” Shamsul Arafin said. ”It is a remarkable step towards an eventual demonstration of the epitaxial growth of GaAs by this approach for heterogeneous integration." As this technology develops, it could lead to less expensive and high-performance light sources, yielding ultrahigh-speed computers.”

UCLA Engineering would like to acknowledge its collaboration on this research with King Abdulaziz City for Science and Technology (KACST) via the Center of Excellence for Nanotechnologies (CEGN).


News Item To eat or not to eat

UCLA researchers have developed a disposable biosensor that may help doctors determine which patients should be fed following surgery

Kim Irwin | August 12, 2014

A disposable plastic listening device that attaches to the abdomen may help doctors definitively determine which post-operative patients should be fed and which should not, an invention that may improve outcomes, decrease healthcare costs and shorten hospital stays, according to a UCLA study.

Some patients who undergo surgery develop a condition called post-operative ileus, a malfunction of the intestines. The condition causes patients to become ill if they eat too soon, which can lengthen an affected patient’s hospital stay by two to three days. Until now, there was no way to monitor for post-operative ileus other than listening to the belly for short periods with a stethoscope, said study first author Dr. Brennan Spiegel, a professor of medicine at the David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health.

If proven successful, the device, a non-invasive acoustic gastrointestinal surveillance biosensor called AbStats, could also be used to help diagnose irritable bowel syndrome and inflammatory bowel disease as well as helping obese people learn by the sounds from their gut when they should or shouldn’t eat, which could help them lose weight.

Spiegel and his team worked with researchers at the UCLA Wireless Health Institute at the Henry Samueli School of Engineering and Applied Science to develop the sensor, which resembles a small plastic cap and has a tiny microphone inside to monitor digestion.

“We think what we’ve invented is a way to monitor a new vital sign, one to go along with heart rate, blood pressure and respiration. This new vital sign, intestinal rate, could prove to be important in diagnosing and treating patients,” Spiegel said. “The role of wearable sensors in healthcare has reached mainstream consciousness and has the capacity to transform how we monitor and deliver care.

“Yet, there are very few biosensors that are supported by any peer-reviewed evidence,” Spiegel continued. “This study represents peer-reviewed evidence supporting use of a biosensor, a device born and bred out of UCLA multidisciplinary research.”

The study appears in the early online edition of the peer-reviewed Journal of Gastrointestinal Surgery.

In this study, the biosensor was used to listen to sounds emanating from the intestines and was connected to a computer that measured the rate of acoustic events — movement of the intestines — as they occurred. The research team compared intestinal rates of healthy subjects using the device for 60 minutes after a standardized meal to rates recorded in two post-operative groups, patients who were tolerating food and those that had post-operative ileus.

Using the biosensor, Spiegel and his team could distinguish patients with post-operative ileus from patients who did not suffer from the condition by the sounds made by their intestines. In the future, doctors may use the biosensor to determine which patients can be fed, making an evidence-based decision instead of just guessing based on less specific information, Spiegel said.

Spiegel hopes to be able to determine if the biosensor can be used to identify patients at risk for post-operative ileus to help doctors make post-operative feeding decisions.

“After surgery, the bowels shut down under stress as the body is focused on keeping the brain, heart and lungs alive,” Spiegel said. “We also give patients narcotic medications for pain that can also cause the bowels to freeze up. The way doctors currently monitor for POI is putting a stethoscope on the patient’s belly for 15 seconds, briefly listening for sounds of intestinal awakening, and asking about flatulence. It’s all very rudimentary and inaccurate. With this new vital sign, the team can now monitor the intestines empirically and make more informed decisions.”

When the bowels shut down, they become very quiet, moving only a few times per minute versus the digestion of a healthy person, who generates 10 or more intestinal movements per minute. The movements make a “clicking” noise, and it is that noise the biosensor picks up and sends to a computer for analysis.

William J. Kaiser, a professor of electrical engineering and co-director of the UCLA Wireless Health Institute, said development of the biosensor system has been a primary focus of the institute.

“It has been rewarding and exciting for our entire team. The institute develops wearable biomedical sensor systems to support our physician colleagues and fulfill our mission of advancing healthcare delivery,” Kaiser said. “The biosensor system is an important example of this rapid development that has resulted in a low-cost instrument that serves an unmet need for continuous, non-invasive monitoring of the human digestive processes. The biosensor can operate in the clinic, at home and at any location on the globe.”

Gastrointestinal disorders are highly prevalent in both inpatient and outpatient settings. A recent study commissioned by the National Institutes of Health found that there are more than 70 million ambulatory care visits every year in the U.S. with a gastrointestinal disorder listed as the first diagnosis. That number swelled to more than 100 million visits when gastrointestinal disorders were mentioned anywhere in the diagnosis, the equivalent of nearly 36,000 outpatient visits per 100,000 Americans.

Gastrointestinal disorders also have enormous direct and indirect societal costs, Spiegel said. The total direct cost of care for gastrointestinal disorders is estimated at $100 billion annually. Indirect costs increase that figure to more than $140 billion.

“With the aging of the American population and the rising incidence of obesity, it is certain that the economic impact of gastrointestinal disorders will get increasingly worse over the next decade and beyond,” Spiegel said.

Re-posting from UCLA Newsroom.

News Item Professor Stanley Osher has been Awarded the Gauss Prize

Longtime UCLA professor earns highest honor in applied mathematics

Stuart Wolpert | August 12, 2014

Stanley Osher, UCLA professor of mathematics and director of applied mathematics, is the third person ever to be awarded the prestigious Gauss Prize, the highest honor in applied mathematics.

A UCLA professor since 1977, Osher received the award Wednesday afternoon local time during the opening ceremony of the International Congress of Mathematicians in Seoul, South Korea. The prize, named for 19th century mathematician Carl Friedrich Gauss, was first awarded at the 2006 congress. (The event is held every four years.)

The citation honoring Osher said he has made “influential contributions to several fields in applied mathematics and his far-ranging inventions have changed our conception of physical, perceptual, and mathematical concepts, giving us new tools to comprehend the world.”

Osher has collaborated with colleagues in a wide range of fields and the mathematical techniques he has pioneered have been highly influential. The results of his research have improved MRI scans and medical image analysis, advanced computer chip design, helped law enforcement agencies combat crime, enhanced computer vision, provided new ways to forecast weather and identify the source of earthquakes, and even revolutionized computer modeling for the design of supersonic jets.

“I am truly honored to have been awarded the third Carl Friedrich Gauss prize,” Osher said. “The previous winners were two of my scientific heroes. I am grateful to the UCLA administration and to my colleagues in the mathematics department for their support in building up applied mathematics, and to many of many colleagues outside of the department for the incredibly pleasant interdisciplinary research atmosphere that exists here.

“I’d also like to thank my sister, Sondra Jaffe, for convincing me that we could both join the middle class by becoming mathematicians in the post-Sputnik era.”

Osher has created innovative numerical methods to solve partial differential equations, and analyzed algorithms and their underlying partial differential equations. He also produced a new method for accurately describing how objects change shapes — predicting how, for example, a drop of oil floating in water will morph based on currents in the water, including what would happen if the drop of oil divided in two or merged with another drop of oil.

“Stan Osher is a superb applied mathematician who has made major advances in the solution of important real-world problems,” said Joseph Rudnick, senior dean of the UCLA College and dean of physical sciences. “His work is marked by elegance and efficiency. He richly deserves this important honor.”

The recipient of many previous awards, Osher was elected in 2005 to the National Academy of Sciences, and in 2009 to the American Academy of Arts and Sciences. He has been an Alfred P. Sloan Fellow and a Fulbright Fellow, and was selected to give a plenary address at the 2010 International Conference of Mathematicians and the John von Neumann Lecture at the 2013 meeting of the Society for Industrial and Applied Mathematics.

Osher was among the top 1 percent of the most frequently cited scholars in both mathematics and computer science between 2002 and 2012. His research was the subject of three-day “Osher Fests” at UCLA in 2002 and 2012.

He also the director of special projects at UCLA’s NSF-funded Institute for Pure and Applied Mathematics, where he has organized and participated in numerous workshops and programs.

Osher has trained and mentored more than 50 Ph.D. students and even more postdoctoral scholars, many of whom have become distinguished professors and researchers in applied mathematics. His students, one of whom received an Academy Award, have used mathematics to create special effects in dozens of movies, including “Pirates of the Caribbean.”

Osher said he is proud to be a professor at UCLA, whose applied mathematics department is ranked No. 2 in the U.S., per U.S. News and World Report, and whose pure mathematics department is also regarded among the best in the country.
He has said of his own research, “I write the algorithms that make the computer sing. I’m the Barry Manilow of mathematics.”

Re-posting from UCLA NewsroomGaussPrize

(Prof. Stanley Osher holds a joint appointment in the Electrical Engineering Department.)


News Item Work by Professor Rob Candler and students highlighted in the Journal of Microelectromechanical Systems

Robert CandlerWork by UCLA students Jere Harrison, Omeed Paydar, Yongha Hwang, Jimmy Wu, Evan Threlkeld, and professors Musumeci and Candler, entitled, Fabrication Process for Thick-Film Micromachined Multi-Pole Electromagnets, has been selected as a featured paper in the June issue of the Journal of Microelectromechanical Systems. The team designed and manufactured an ultra-high strength magnetic focusing and steering system for charged particle beams with the potential to miniaturize the state-of-the-art in microscopy, electron diffraction, and high-energy light sources.



News Item Ultra Low-Power WiFi Reflector Link For Next Generation Embedded and Wearable Devices

Mau-Chung Frank ChangWhile the advancing wearable devices market promises us a connectivity revolution in devices throughout our lives, conventional WiFi technology requires every device to carry a transmitter, a prospect which simply consumes too much power for a wearable or battery-free device to support.

UCLA researchers in collaboration with JPL have developed a WiFi reflector link over the last two years, which instead reflects existing WiFi signals present in the environment to communicate with a router or other WiFi source. As a wearable or other embedded device needs only reflect the WiFi signal, not generate it, the technology allows for connectivity at only 0.01% of the power consumption of a regular network link.

To date, JPL researchers Adrian Tang, Nacer Chahat and Rod Kim together with UCLA faculty Frank Chang have demonstrated reflector links up to 3 Mb/s at ranges of up to 2.5m in the laboratory. With more advanced signal processing, it is believed that such devices will eventually operate up to 20 meters with data rates comparable to existing WiFi connections (approx. 50 Mb/s).



News Item UCLA Engineering Plays Key Role in DARPA ‘Neuroprosthesis’ Research


Markovic, Sayed to Work on a $15 Million Project to Restore Memory Function to Victims of Brain Injury

The UCLA Henry Samueli School of Engineering and Applied Science has been tapped by the Defense Advanced Research Projects Agency to play a key role in an innovative project aimed at developing a wireless, implantable brain device that could help restore lost memory function in individuals who have suffered debilitating brain injuries and other disorders.

The four-year effort, to be led by UCLA's Program in Memory Restoration and funded by up to $15 million from DARPA, will involve a team of experts in neurosurgery, electrical engineering, neurobiology, psychology and physics who will collaborate to create, surgically implant and test the new "neuroprosthesis" in patients.

Dr. Itzhak Fried, a professor of neurosurgery at the David Geffen School of Medicine at UCLA and a professor of psychiatry and biobehavioral sciences at the Semel Institute for Neuroscience and Human Behavior at UCLA, is UCLA’s lead investigator on the project.

Dejan Markovic, associate professor of electrical engineering, will lead a group of UCLA Henry Samueli School of Engineering and Applied Science researchers developing technology to stimulate and record the activity of single neurons and of small neuronal populations. Electrical Engineering Professor Ali Sayed will work on signal processing and related aspects of the technology. DARPA will provide $4.5 million over four years for the UCLA Engineering effort, contingent on researchers meeting a series of technical milestones.

UCLA partners include the Lawrence Livermore National Laboratory and Stanford University.

Memory is the process by which neurons in certain brain regions encode, store and retrieve information. Various illnesses and injuries can disrupt this process, causing memory loss. Traumatic brain injury, which has affected more than 270,000 military members since 2000, as well as millions of civilians, is often associated with such memory deficits. Currently, no effective therapies exist to address the long-term effects of these injuries on memory.

This ambitious, first-if-its-kind project at UCLA builds on Fried's 2012 research demonstrating that human memory can be strengthened by stimulating the brain's entorhinal cortex, a region involved in learning, memory and Alzheimer's disease.

In a key part of the project, the research team will stimulate and record neuron activity in patients who already have brain electrodes implanted as part of epilepsy treatment. Researchers will use this information to develop computational models and determine how to intervene with electrical stimulation to help restore memory function. The models will be transformed into therapeutics using technology developed by Markovic‘s team.

Markovic said the goal is to create miniature wireless neural sensors that are far more sophisticated — much smaller and with much higher resolution — than those that exist today. The sensors will track and modulate neural activity with very precise spatial and temporal resolution, allowing the device to continuously update and modulate patterns of stimulation to optimize therapy and restore memory function.

“We are developing ultra–low-power electronics in order to measure activity of specific areas of the brain, perform neural signal analysis and wirelessly transmit that information to an outside device in close proximity to the implants,” Markovic said. “The implants and the outside device will talk to each other. The goals are to provide better therapy for people with neurological dysfunction and help those with epilepsy and brain injury to enhance and restore memory.”

During the second phase of the program, Fried, using a minimally invasive procedure, will implant the device in patients with traumatic brain injury as part of a groundbreaking clinical trial.

The DARPA initiative aimed at developing these implantable brain devices, Restoring Active Memory (RAM), supports President Obama's BRAIN initiative.

Re-posting from UCLA HSSEAS Newsroom


By Bill Kisliuk

Document Actions