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Previous Work

Feedback is very useful for time-varying channels.

Feedback is also powerful even for memoryless static channels
by removing the rate penalty due to channel dispersion V .

Under regular conditions we have V = Var [i(X;Y)],
E[i(X;Y)] = C and the following approximations:

R(n, ε) ≈ C −
√

V
n

Q−1(ε) +
O(log n)

n
w.o. feedback

RFB(n, ε) ≈
C

1− ε +
O(log n)

n
with feedback

[PPV’10,PPV’11]
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Previous Work

Historically researchers analyzed the error exponent E(R) with
and with out the presence of feedback:

E(R) = lim
n→∞

− log Pe(n,R)
n

Error exponent analysis does not capture the performance
variation seen at short block lengths.

Evidence: ARQ + good block codes achieve the optimal
Burnashev error exponent.

There is a considerable performance gap between ARQ codes
and the best VLFT codes.
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Variable-Length Feedback Codes with Termination

Consider a sequence of memoryless channels {PYi|Xi}∞i=1.

An (`,M, ε) variable-length feedback code with termination
(VLFT code) is defined as:

1 An uniform message W ∈ W = {1, . . . ,M}.
2 A sequence of encoders fn :W ×Yn−1 → X .
3 A sequence of decoders gn : Yn →W
4 A stopping time τ w.r.t. the filtration Fn = σ{Yn,W} s.t.

E[τ ] ≤ `
P[Ŵ 6= W] ≤ ε, Ŵ = gτ (Yτ )

Xi = fi(W1,Y i−1)
W1

gn(Yn)

X1, . . . ,Xn Y1, . . . ,Yn

PYn|Xn
1 ,Y

n−1
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Some Special Cases of VLFT Codes

Fixed-to-Variable (FV) codes have encoders {fn} and stopping
time τ satisfying:

τ = inf{n ≥ 1 : gn(Yn) = W}. (1)

fn(W,Yn−1) = fn(W). (2)

Implications:
(1) The receiver knows whether the decoded message is correct and

hence knows when to terminate.
(2) The encoders only use feedback to decide whether to transmit

more coded symbols or stop (stop-feedback codes).
(3) FV codes are zero-error VLFT codes.
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Fixed-to-Variable (FV) Codes

For systems where error detection is handled in a higher protocol
layer than the physical layer, FV codes are widely used.

Some FV codes examples are:
1 ARQ + block codes.
2 Hybrid-ARQ + a family of rate-compatible codes.

E.g., in 3GPP LTE standards: rate-compatible punctured turbo
and convolutional codes codes are used.

I
1

I
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I
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I
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n2
n3
nm

7/29



Fixed-to-Variable (FV) Codes

For systems where error detection is handled in a higher protocol
layer than the physical layer, FV codes are widely used.
Some FV codes examples are:

1 ARQ + block codes.

2 Hybrid-ARQ + a family of rate-compatible codes.

E.g., in 3GPP LTE standards: rate-compatible punctured turbo
and convolutional codes codes are used.

I
1

I
2

I
3

I
m

n1
n2
n3
nm

7/29



Fixed-to-Variable (FV) Codes

For systems where error detection is handled in a higher protocol
layer than the physical layer, FV codes are widely used.
Some FV codes examples are:

1 ARQ + block codes.
2 Hybrid-ARQ + a family of rate-compatible codes.

E.g., in 3GPP LTE standards: rate-compatible punctured turbo
and convolutional codes codes are used.

I
1

I
2

I
3

I
m

n1
n2
n3
nm

7/29



Fixed-to-Variable (FV) Codes

For systems where error detection is handled in a higher protocol
layer than the physical layer, FV codes are widely used.
Some FV codes examples are:

1 ARQ + block codes.
2 Hybrid-ARQ + a family of rate-compatible codes.

E.g., in 3GPP LTE standards: rate-compatible punctured turbo
and convolutional codes codes are used.

I
1

I
2

I
3

I
m

n1
n2
n3
nm

7/29



Fixed-to-Variable (FV) Codes

For systems where error detection is handled in a higher protocol
layer than the physical layer, FV codes are widely used.
Some FV codes examples are:

1 ARQ + block codes.
2 Hybrid-ARQ + a family of rate-compatible codes.

E.g., in 3GPP LTE standards: rate-compatible punctured turbo
and convolutional codes codes are used.

I
1

I
2

I
3

I
m

n1
n2
n3
nm

7/29



1 Introduction
Previous Work
Variable-Length Feedback Codes with Termination
Fixed-to-Variable codes

2 Analyses of Non-asymptotic Feedback Codes
Overview
An Incremental Redundancy View

3 Analytic and Experimental Observations
Numerical Results
Observations

4 Conclusion

8/29



Overview

The VLFT achievability shown by Polyanskiy et al. uses FV
codes and random coding union bound [PPV’11].

For achievability with no input constraint, Polyanskiy et al. use
i.i.d. input distribution to generate the random codes.

We use rate-compatible sphere-packing (RCSP) to analyze FV
codes with finite and infinite number of transmissions.

Both analyses show very fast convergence to capacity.

Random coding performs similar to RCSP at large expected
block length regime.
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An Incremental Redundancy View

FV codes: an incremental redundancy (IR) scheme.

To transmit k = log2 M bits with m-transmission IR scheme:

1 Send I1, decode with n1 = I1 symbols.
2 Send I2, decode with n2 = I1 + I2 symbols.
3 So on so forth until the decoding is successful.
4 After m transmissions the transmitter repeats from step 1.
5 If m =∞

⇒ Ij = 1 ∀j (VLFT achievability [PPV’11]).

6 We will focus on the memoryless AWGN channel with an
averaged power constraint for the rest of the talk.
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Random Coding Lower Bound

Assume average power constraint for the AWGN channel.

Consider the case when m =∞ .

Construct a code {c1, . . . , cM} by picking cj ∈ X∞ randomly
according to PX∞ .

For a message w ∈ W , the encoder fn(w) output (cw)n, the nth
coordinate of the codeword cw.

For VLFT codes the decoder can apply ML decoding and decide
whether to stop according to W: τ = inf{n ≥ 1 : gn(Yn) = W}.
The coding scheme when m <∞ can be adjusted accordingly.
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Rate-Compatible Sphere-Packing (RCSP) Approximation

Assume average power constraint for the AWGN channel.

Assume at each blocklength the code achieves sphere packing.
Perform a bounded-distance decoding for the received symbols.
The stopping time is the same: τ = inf{n ≥ 1 : gn(Yn) = W}.
For the Gaussian channel with a sequence of radii {ri}n

i=1, the
stopping time is τ = inf{n ≥ 1 :

∑n
j=1 Z2

j < r2
n},Zj ∼ N (0, 1).

M = 2k 

decoding 

spheres 

power constraint 

sphere 

r2
outer = Ni(1+η)  

13/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

Assume average power constraint for the AWGN channel.
Assume at each blocklength the code achieves sphere packing.

Perform a bounded-distance decoding for the received symbols.
The stopping time is the same: τ = inf{n ≥ 1 : gn(Yn) = W}.
For the Gaussian channel with a sequence of radii {ri}n

i=1, the
stopping time is τ = inf{n ≥ 1 :

∑n
j=1 Z2

j < r2
n},Zj ∼ N (0, 1).

M = 2k 

decoding 

spheres 

power constraint 

sphere 

r2
outer = Ni(1+η)  

13/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

Assume average power constraint for the AWGN channel.
Assume at each blocklength the code achieves sphere packing.
Perform a bounded-distance decoding for the received symbols.

The stopping time is the same: τ = inf{n ≥ 1 : gn(Yn) = W}.
For the Gaussian channel with a sequence of radii {ri}n

i=1, the
stopping time is τ = inf{n ≥ 1 :

∑n
j=1 Z2

j < r2
n},Zj ∼ N (0, 1).

M = 2k 

decoding 

spheres 

power constraint 

sphere 

r2
outer = Ni(1+η)  

13/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

Assume average power constraint for the AWGN channel.
Assume at each blocklength the code achieves sphere packing.
Perform a bounded-distance decoding for the received symbols.
The stopping time is the same: τ = inf{n ≥ 1 : gn(Yn) = W}.

For the Gaussian channel with a sequence of radii {ri}n
i=1, the

stopping time is τ = inf{n ≥ 1 :
∑n

j=1 Z2
j < r2

n},Zj ∼ N (0, 1).

M = 2k 

decoding 

spheres 

power constraint 

sphere 

r2
outer = Ni(1+η)  

13/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

Assume average power constraint for the AWGN channel.
Assume at each blocklength the code achieves sphere packing.
Perform a bounded-distance decoding for the received symbols.
The stopping time is the same: τ = inf{n ≥ 1 : gn(Yn) = W}.
For the Gaussian channel with a sequence of radii {ri}n

i=1, the
stopping time is τ = inf{n ≥ 1 :

∑n
j=1 Z2

j < r2
n},Zj ∼ N (0, 1).

M = 2k 

decoding 

spheres 

power constraint 

sphere 

r2
outer = Ni(1+η)  

13/29



1 Introduction
Previous Work
Variable-Length Feedback Codes with Termination
Fixed-to-Variable codes

2 Analyses of Non-asymptotic Feedback Codes
Overview
An Incremental Redundancy View

3 Analytic and Experimental Observations
Numerical Results
Observations

4 Conclusion

14/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

50 100 150 200 250 300 350 400
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

Comparison of RCSP and Random Coding. SNR = 2 dB

 

 

Capacity

RCSP with m = 5

Random coding lower bound with m = 5

1024 State Tail-Biting Convolutional Code

RCSP lower bound with m =∞
Random coding lower bound with m =∞

Figure : RCSP approximations, VLFT random coding lower bound, and
convolutional code simulation over binary-input AWGN channel.

15/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

50 100 150 200 250 300 350 400
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

Comparison of RCSP and Random Coding. SNR = 2 dB

 

 

Capacity

RCSP with m = 5

Random coding lower bound with m = 5

1024 State Tail-Biting Convolutional Code

RCSP lower bound with m =∞
Random coding lower bound with m =∞

Figure : RCSP approximations, VLFT random coding lower bound, and
convolutional code simulation over binary-input AWGN channel.

16/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

50 100 150 200 250 300 350 400
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

Comparison of RCSP and Random Coding. SNR = 2 dB

 

 

Capacity

RCSP with m = 5

Random coding lower bound with m = 5

1024 State Tail-Biting Convolutional Code

RCSP lower bound with m =∞
Random coding lower bound with m =∞

Figure : RCSP approximations, VLFT random coding lower bound, and
convolutional code simulation over binary-input AWGN channel.

17/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

0 100 200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

RCSP with exponentially growing m. SNR = 2 dB

 

 

Capacity

m = 1 (ARQ)

m = 2

m = 4

m = 8

m = 16

m = 32
m = ∞

Figure : RCSP approximation for various m.
18/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

0 100 200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

RCSP with exponentially growing m. SNR = 2 dB

 

 

Capacity

m = 1 (ARQ)

m = 2

m = 4

m = 8

m = 16

m = 32
m = ∞

Figure : RCSP approximation for various m.
19/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

0 100 200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

RCSP with exponentially growing m. SNR = 2 dB

 

 

Capacity

m = 1 (ARQ)

m = 2

m = 4

m = 8

m = 16

m = 32
m = ∞

Figure : RCSP approximation for various m.
20/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

0 100 200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

RCSP with exponentially growing m. SNR = 2 dB

 

 

Capacity

m = 1 (ARQ)

m = 2

m = 4

m = 8

m = 16

m = 32
m = ∞

Figure : RCSP approximation for various m.
21/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

0 100 200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

RCSP with exponentially growing m. SNR = 2 dB

 

 

Capacity

m = 1 (ARQ)

m = 2

m = 4

m = 8

m = 16

m = 32
m = ∞

Figure : RCSP approximation for various m.
22/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

0 100 200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

RCSP with exponentially growing m. SNR = 2 dB

 

 

Capacity

m = 1 (ARQ)

m = 2

m = 4

m = 8

m = 16

m = 32
m = ∞

Figure : RCSP approximation for various m.
23/29



Rate-Compatible Sphere-Packing (RCSP) Approximation

0 100 200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

Expected Latency

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t

RCSP with exponentially growing m. SNR = 2 dB

 

 

Capacity

m = 1 (ARQ)

m = 2

m = 4

m = 8

m = 16

m = 32
m = ∞

Figure : RCSP approximation for various m.
24/29



1 Introduction
Previous Work
Variable-Length Feedback Codes with Termination
Fixed-to-Variable codes

2 Analyses of Non-asymptotic Feedback Codes
Overview
An Incremental Redundancy View

3 Analytic and Experimental Observations
Numerical Results
Observations

4 Conclusion

25/29



Analytic and Experimental observations

FV codes are good and practically convenient.

The total number of transmissions m for a message provides
diminishing returns as m grows.

A small m with optimized lengths of incremental transmissions
is good enough.

It is best to send the non-repetitive coded symbols, i.e., send
fresh new coded symbols.

For a fixed m, finding a FV code is equivalent to finding a good
family of rate-compatible codes.

26/29



Analytic and Experimental observations

FV codes are good and practically convenient.

The total number of transmissions m for a message provides
diminishing returns as m grows.

A small m with optimized lengths of incremental transmissions
is good enough.

It is best to send the non-repetitive coded symbols, i.e., send
fresh new coded symbols.

For a fixed m, finding a FV code is equivalent to finding a good
family of rate-compatible codes.

26/29



Analytic and Experimental observations

FV codes are good and practically convenient.

The total number of transmissions m for a message provides
diminishing returns as m grows.

A small m with optimized lengths of incremental transmissions
is good enough.

It is best to send the non-repetitive coded symbols, i.e., send
fresh new coded symbols.

For a fixed m, finding a FV code is equivalent to finding a good
family of rate-compatible codes.

26/29



Analytic and Experimental observations

FV codes are good and practically convenient.

The total number of transmissions m for a message provides
diminishing returns as m grows.

A small m with optimized lengths of incremental transmissions
is good enough.

It is best to send the non-repetitive coded symbols, i.e., send
fresh new coded symbols.

For a fixed m, finding a FV code is equivalent to finding a good
family of rate-compatible codes.

26/29



Analytic and Experimental observations

FV codes are good and practically convenient.

The total number of transmissions m for a message provides
diminishing returns as m grows.

A small m with optimized lengths of incremental transmissions
is good enough.

It is best to send the non-repetitive coded symbols, i.e., send
fresh new coded symbols.

For a fixed m, finding a FV code is equivalent to finding a good
family of rate-compatible codes.

26/29



Analytic and Experimental observations

Some remaining problems that need to be solved:

1 Address the cost for “termination” in finite blocklength.
2 What are the implications on practical systems for achieving

capacity with very few channel uses?
⇒ lower latency, lower complexity, lower energy, or more?

Non-asymptotic analysis for VLFT codes lead to some new
challenges in code design:

1 Design a family of good rate-compatible codes in a
moderate-blocklength regime.

2 Fine-tuning the tradeoff between error correction/detection.
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Conclusion

RCSP captures the benefit of feedback and matches well with
some good codes.

RCSP performs better than random coding at short blocklengths
but becomes similar to random coding as blocklength increases.

A randomly punctured convolutional code outperforms random
coding and is close to RCSP in the 100-bit blocklength regime.

When the termination cost is included, we need to investigate
codes that are good in the moderate-blocklength regime.
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Thank you

Questions?
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