Relay-Aided Failover in Wireless Networks using Adaptive Unicast Scheduling

Choo Chin Tan and Dr. Izhak Rubin Electrical Engineering Department UCLA (choo, rubin)@ee.ucla.edu

Objectives and Motivations

- Cell outage management is functionality that aims to automatically detect and mitigate outages that occur in wireless cellular networks due to unexpected failures.
- Develop scheduling algorithms with power and rate adaptation to compensate for coverage and performance degradations during network failure events.
- Fixed relays are deployed as part of the infrastructure to relay messages between base stations and mobile stations.

- Base Stations (BSs) coordinate scheduling operations
- Base Stations use tri-sectored antennas
- Adaptive rate/power unicast transmissions
- Fixed relay stations may be employed to aid operation under base station failure

- Base Stations (BSs) coordinate scheduling operations
- Base Stations use tri-sectored antennas
- Adaptive rate/power unicast transmissions
- Fixed relay stations may be employed to aid operation under base station failure

Static Coloring Algorithm

The static coloring algorithms are used as a baseline comparison to our adaptive algorithms.

- Coloring Algorithm Without Relays
 - Static 3-color algorithm, all simultaneous transmissions have same directionality.
 - Base station downlink transmission rates are adapted to the SINR monitored at receiving mobile stations.

Static 3-Color Scheduling

Relay-Aided Static Coloring Algorithm

- Two-Phase Relay-Aided Coloring Algorithm
 - Determine whether a mobile station should receive the packet directly from the BS, or through relay stations.

- First Phase: base stations transmit to the relay stations and the selected set of mobile stations that are close to it.
- Second Phase: relay stations transmit to mobile stations using omni-directional antennas.

Relay-Aided Static Coloring Algorithm (2)

Two-Phase Relay-Aided Static Coloring Scheduling

Adaptive Scheduling Algorithm

 Our adaptive algorithm is based on the iterative scheduling of base stations that realize the highest throughput in their two-hop base station neighborhood.

Simulation Setup

- Network Layout
 - 35 macro base station cells with tri-sectored antenna
 - Each cell contains 3 relay stations (one for each sector)
- Transmit power levels
 - Macro base stations [0-40W] with tri-sectored antenna
 - Relay stations [0-10W] with omni-directional antenna
- Number of mobile stations: 1400
 - Uniformly distributed in cell areas
- Cost-Hata propagation model
- Transmission bandwidth: 5 MHz
- Gamma represents the heterogeneity in traffic loading levels for each cell

Pre-Failure Simulation Results

Pre-Failure Simulation Results (2)

Post-Failure Simulation Results

Conclusions

- We study failover schemes, with and without relay stations, for adaptive unicasting in wireless cellular networks.
- Following the failure of a base station, our failover schemes lead to the dynamic selections of transmit power and rate levels, in scheduling unicast transmissions by neighboring base stations and relay stations.
- Our adaptive algorithm is scalable with the increase in traffic heterogeneity levels, and outperforms the static coloring algorithm.
- We observe that relay stations are effective under the scenario when ISD is large.
- Our latest development results with adaptable coloring schemes provide good performance in heterogeneous traffic loading environment.

