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MMost electronic systems rely on a pre-
cise reference frequency or time base 
for their operation. Examples include 
wireless and wireline communication 
transceivers, computing devices, instru-
mentation, and the electronic watch. 
The crystal oscillator has served this 
purpose for nearly a century. In this 
article, we study the design principles 
of this circuit.

Brief History
In 1880, Pierre and Jacques Curie dis-
covered “piezoelectricity” [1], namely, 
the ability of a device to generate a 
voltage if subjected to mechanical 
force. In 1881, Lippman predicted 
that a converse effect must also exist, 
which was confirmed by the Curies 
shortly thereafter [1].

The use of a piezoelectric device—
a “crystal”—to define the oscillation 
frequency of a circuit can be traced 
to Cady’s 1922 paper [2]. Cady pro-
poses the oscillator shown in Fig-
ure 1, which applies feedback around 
a three-stage amplifier through two 
coupled piezoelectric resonators.

Crystal oscillators continued to 
advance in the ensuing decades, natu-
rally migrating to bipolar and, even-
tually, MOS technologies. The interest 
in such oscillators was rekindled with 
the conception of the electronic watch 
in the 1960s and 1970s. In Figure 2, (a) 
shows a MOS realization reported by 
Luscher as prior art in a patent filed 
in 1969 [3], and (b) depicts a more 
familiar structure that dates back to 
a patent filed by Walton in 1970 [4]. 
The need for an extremely low-power, 

high-precision time-base circuit moti-
vated extensive studies on crystal 
oscillators in that time frame [5], [7].

In addition to a precise resonance 
frequency, piezoelectric devices ex
hibit extremely high quality factors 
(Qs), a property that has proved 
essential in communication trans-
ceivers. While resonance frequency 
drifts can be eventually compensated 
as the received signal is processed, 
the phase noise of the crystal oscil-
lator cannot. In other words, crystal 

oscillators have found new impor-
tance for their low phase noise in 
addition to their long-term frequency 
stability. The low temperature coeffi-
cient of crystals also proves critical 
in most applications.

Crystal Model
For circuit design purposes, we need 
an electrical model of the electrome-
chanical crystal. The mechanical res-
onance is fundamentally represented 
by a series RLC branch, with a resistor 
modeling the loss [Figure 3(a)]. These 
components are called the “motional” 
resistance, inductance, and capaci-
tance of the crystal, respectively. With 
this series branch, the crystal can act 
as a short circuit at resonance. In addi-
tion, since the crystal is formed by 
two parallel plates, a parallel capaci-
tance must also be included. The load 
capacitance presented to the crystal 
by the printed circuit board and other 
devices can also be absorbed by .CP
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Figure 1: Cady’s crystal oscillator.
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Figure 2: The MOS crystal oscillators patented by (a) Luscher and (b) Walton.
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The series resonator devices, L1  
and ,C1  in Figure 3(a) have peculiar 
values, e.g., C 51 .  fF, L 501 .  mH 
for a series resonance frequency of  
10 MHz. This is because the quality 
factor, ( )/ ,Q L RS1~=  reaches several 
thousand to several hundred thousand, 
translating to large inductance values. 
The value of C1 is much less than ,CP  
which is in the picofarad range.

The network shown in Figure 3(a) 
exhibits a series resonance fre-
quency, / ,L C1s 1 1~ =  and a par-
allel resonance frequency, p~ =

/ /( )L C C C C1 P P1 1 1+  [Figure 3(b)]. 
These can also be obtained by neglect-
ing RS  and writing

	 .Z
L C C s C C

L C s 1
cr

P P1 1
2

1

1 1
2

.
+ +

+ � (1)

Since ,C CP1 %  we have p s.~ ~

[ /( )];C C1 2 P1+  that is, the two fre-
quencies differ by less than 1%. As 
explained below, typical oscillators 
operate at .p~  An important attribute of 
the crystal is that tolerances in CP  only 
negligibly affect .p~  For example, with 
C 51 =  fF and C 2P =  pF, an error of 10% 
in CP  translates to a 0.01% change in 

.p~  On the other hand, this low sensi-
tivity also means that the crystal oscil-
lator can be tuned only over a very 
narrow range by varying .CP

Basic Crystal Oscillator
If the crystal resonator in Figure 3(a) 
is attached to a negative resistan
ce, its loss can be compensated 
and oscillation can be sustained. A 
common approach employs the 
“three-point” oscillator shown in 
Figure 4(a). The one-port network 

including ,M1  ,CX  and CY  presents 
an impedance between X and Y 
given by

	 ,Z
C s C s C C s

g1 1
XY

X Y X Y

m
2= + + � (2)

which, for ,s j~=  reduces to a series 
branch consisting of ,CX  ,CY  and a nega-
tive resistance equal to /( )g C Cm X Y

2~-  
[Figure 4(b)]. For the circuit to oscil-
late, this resistance must cancel the 
crystal’s loss. To arrive at a simple 
start-up condition, we compute the 
real part of the impedance Z1  in Fig-
ure 4(b) as [8]

{ }

( ) ( )
,

Re Z

g C C C C C C C
g C C

m P X Y X P P Y

m X Y

1

2 2 2~

=

+ + +

-

� (3)

where ~  denotes the oscillation 
frequency. Interestingly, this resis-
tance is a nonmonotonic function of 

,gm  reaching a maximum if [8]

	 .g C C
C

C C
m X Y

P

X Y ~= + +c m � (4)

Since { }Re Z1  appears in series with 
, ,L C1 1  and ,RS  we simply equate its 

magnitude to ,RS  obtaining the oscil-
lation condition as [8]

( ) ,g QC C C
C C C C C C

,critm
X Y

X Y X P Y P

1

2~=
+ +

� (5)

where /( )Q R C1 S 1~= .
The core amplifier of the oscillator 

is typically configured as a self-biased 
inverter [Figure 4(c)]. The feedback 
resistor, ,Rb  must be chosen large 
enough not to degrade the crystal  
Q significantly.

It is interesting to explain why the 
topology of Figure 4(a) does not oscil-
late at the crystal’s series resonance 
frequency. Suppose it does. Then, the 
circuit reduces to that shown in Fig-
ure 5. It can be proved that the phase 
shift around this loop is nonzero at 
any frequency, thereby prohibiting 
oscillation in this mode.

Start-Up Time
The very high Q of crystals leads to 
a long start-up time. Of course, the ac-
tual oscillation growth rate is given by  
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Figure 3: (a) A crystal model and (b) a crystal impedance plot showing series and parallel 
resonance frequencies.
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Figure 4: (a) A three-point oscillator consisting of a crystal and a negative resistance, (b) an 
equivalent circuit of (a), and (c) a complete oscillator using an inverter.
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Figure 5: An equivalent circuit of a three-
point oscillator in the case of series resonance.
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the net negative resistance in Figure 4(b),  
following an envelope given by 

( / ),exp t x  where /( )R L2n 1x =  and Rn  
is the absolute value of the net negative 
resistance. For example, a 10-MHz crys-
tal oscillator with a Q of 5,000 can take 
roughly 0.5 ms to settle. This issue pos-
es several difficulties. In low-power ap-
plications that operate with a low duty 
cycle—as in sensors—the start-up time 
translates to a higher power consump-
tion. Also, communication systems 
that come out of the sleep mode can-
not begin operation until the settling 
is completed. Finally, the simulation of 
the oscillator becomes a very lengthy 
task, especially if the circuit must reach 
steady state for its phase noise to be 
computed accurately.

Drive-Level Dependency
Crystals behave peculiarly if they 
remain inactive: their equivalent series 
resistance rises considerably. The 
series resistance falls back to it origi-
nal value after the crystal vibrates for 
some time. This effect is called drive-
level dependency. A crystal oscilla-
tor that is turned on after a period of 
inactivity may fail unless the negative 
resistance is strong enough. As a rule 
of thumb, we select this resistance 
about four times RS  in Figure 4(a).

Oscillation at Overtones
Actual crystals also exhibit resonances 
at higher frequencies (overtones) 
that are approximately harmonically 
related to the first. Thus, the topology 
of Figure 4(c) can oscillate at an over-
tone, a property exploited in high-
frequency designs. On the other hand, 
low-frequency oscillators must avoid a 
solution at overtones. This is possible 
by inserting a resistor in series with 
the output of the inverter in Figure 4(c) 
so as to reduce the loop gain at higher 
frequencies. This resistor can also limit 
the crystal’s power dissipation, which, 
if excessive, could cause damage.

Questions for the Reader
1)	 Estimate the oscillation frequency 

of Figure 2(a) if R1 and R2 are large.

2)	 How does the finite output imped-
ance of M1  and M2  in Figure 4(c) 
affect the oscillator’s performance?

Answers to Last Issue’s Questions
1)	 In the circuit of Figure 6, Cp2 ap-

pears in series with C2  when S3  
turns off. Does the charge injected 
by S1 corrupt the sampled value 
in this case?

No, it does not. The charge 
injected by S1  is later removed 
by .S4

2)	 Given that the op amp in Figure 7 is 
placed in an inverting configu-
ration, how do we intuitively ex-
plain the noninverting operation 
of the integrator?

The front-end passive sam-
pling circuit in fact inverts the 
signal. This can be seen by noting 
that, if S2  is absent, then the volt-
age generated on the right plate 
of C2  in the hold mode is equal 
to Vin- .
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Figure 7: A noninverting integrator.
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Figure 6: An integrator circuit including parasitics.


