Homework \#1

Due Mon., Jan. 11, 2010

1. An LNA with a relatively high input impedance exhibits a noise figure of NF_{1} with respect to a source impedance of R_{S}. We tie a resistor of value R_{S} from the input of the LNA to (ac) ground so as to match the circuit to an antenna. [All noise figures in this problem are numeric (not logarithmic).]
(a) Using Eq. (2.84), calculate the noise figure of the overall circuit with respect to a source impedance of R_{S}.
(b) Repeat (a) but view the grounded resistor as R_{P} in Fig. 2.30(a) and use Friis' equation. Compare the results.
2. In this problem, we study the intermodulation behavior of a simple two-stage low-noise amplifier at 5.2 GHz . The model files can be found at http://www.ee.ucla.edu/ razavi/teaching.html for Cadence and HSPICE. (They are called 215 a.scs and 215 a.sp, respectively.)
(a) Consider the common-gate circuit shown here, where M_{2} represents a typical load capacitance for now. Assuming $\lambda=0$, compute the width of M_{1} such that $g_{m 1}+g_{m b 1}=(50 \Omega)^{-1}$.
(b) Use simulations to determine the value of L_{1} for resonance at 5.2 GHz . The inductor must be modeled as shown, where R_{P} is chosen to give a Q of 4 at the frequency of interest and $C_{P}=10 \mathrm{fF}$ for every nanohenry of inductance.

(c) Now find the input resistance (i.e., the real part of the input impedance) by simulations and explain why it is not equal to 50Ω. Adjust the width of M_{1} to obtain a $50-\Omega$ input resistance again.

(d) Using the shortcut method, compute the $I I P_{3}$ and voltage gain of the circuit at 5.2 GHz .
(e) Determine the $I I P_{3}$ and voltage gain of the stage shown on the right at 5.2 GHz . The role and modeling of L_{2} are similar to those of L_{1}.
(f) Now remove M_{2} from the first stage, place the two stages in a cascade, and find the overall voltage gain and $I I P_{3}$. How closely do these results agree with those obtained from
 parts (d) and (e) and Eq. (2.46) in the text? (Make sure you include the loaded gain of the first stage in the equation.)
(g) Does the input resistance of the first stage change when the second stage is added? Why?
(h) Which stage limits the IIP3?
