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PREFACE

This volume is one of a series prepared for use of
participants in the Summer Institute in Plasma Physics held
at Princeton University June 25 - August 3, 1962. An attempt
has been made to make this volume serve also as a complete,
up-to-date survey of probe and sheath theory, since no such
review article existed up to the present time, and the need for
such an article has been expressed to the author on a number of
occasions. Hence the material contained herein considerably
exceeds that which will actually be used in the Summer
Institute.

The author would appreciate comments on or corrections

to the text.

June 7, 1962
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ELECTROSTATIC PROBES AND SHEATHS: A SURVEY
by

Francis F. Chen

1. Introduction

1.1 One of the fundamental techniques, in fact, the first one, for measure-
ment of the properties of plasmas is the use of electrostatic probes. This tech-
nique was first developed by Langmuir as early as 1924, and consequently is
sometirr;es called the method of Langmuir probes. Basically, an electrostatic
probe is merely a small metallic electrode, usually a wire, inserted into a
plasma. The probe is attached to a power supply capable of biasing it at various
voltages positive and negative relative to the plasma, and the current collected
by the probe then provides information about the conditions in the plasma.

It is a fortunate property of plasmas that under a wide range of conditions
the disturbance caused by the presence of the probe is localized, and the probe
can act truly as a probe in the sense that its very presence has no effect on the
quantities it is measuring. We shall find, however, that under certain circum-
stances, particularly in the presence of a strong magnetic field, the disturbance
is not localized, and the probe current then depends not only on the plasma
parameters (density and electron and ion temperatures), but also on the way in
which the plasma is created and maintained. In such a case the method becomes
obviously less useful.

In spite of the difficulties which arise when probes are used in present-
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day plasmas, the method is an important one because it has one advantage over
all other diagnostic techniques: it can make local measurements. Almost all
other techniques, such as spectroscopy or microwave propagation, give informa-
tion averaged over a large volume of plasma.

Experimentally, electrostatic probes are extremely simple devices,
consisting merely of an insulated wire, used with a dc power supply, and an
ammeter or an oscilloscope. Nature, however, makes us pay a penalty for this
simplicity: the theory of probes is extremely complicated. The basic equations
of probe theory are the Boltzmann equation for each type of particle

of q of

—-j— . V _j _V _1_ X ° = j -
5r Ty YR [PV v X Bl Voo = ) o, (1.1-1)
1

and Poisson's equation
V2V+ 47 + ) = 1.1-2
(qini qn = 0 (1.1-2)

where

\)
= f ,v.) df. . .1-
n = Sapap o | (1-1-3)

These are the same equations that are used in practically all aspects of plasma
physics; the difference here is that VZV cannot be assumed to vanish and that

we are concerned with the conditions at a boundary of the plasma and therefore
Eq. (1.1-2) must be solved with certain boundary conditions. This is considerably

more difficult than, say, finding a dispersion relation for plasma waves, in which



all one has to do is set a determinant equal to zero. In fact, just the formula-
tion of the boundary conditions is not easy. In many problems in other fields of
plasma physics the distribution functions f for ions and electrons can be assumed
to be approximately Maxwell- Boltzmann. In probe theory, however, only one dis-
tribution -- that of the particles repelled by the probe -- is approximately
Maxwellian; the other species of particle, which is collected by the probe, has a
distribution which must be calculated from (1.1-1). This means that we are
generally faced with a self-consistency problem in which the potential V must be
found which satisfies both (1.1-1) and (1.1-2). Even when the collision term can
be neglected, this generally leads to a non-linear integral equation which can be
simplified only in specific cases to a point where the solution is analytic or, at
least, simple enough that the dependences on the plasma parameters can be seen.

It will be our purpose to summarize, with a minimum of algebra and,
hopefully, a maximum of physical insight, the result of those specific cases in
which the theory of probes has given useful results and to indicate the experi-
mentally interesting cases in which the mathematical difficulties of the theory
have so far been insuperable. We shall pay particular attention to two aspects
which are of particular importance in present-day physics: the case of a plasma
in a strong magnetic field, and the case of electron or ion emission at a plasma
boundary. The importance of strong magnetic fields is obvious; the subject of
the sheath on an emitting surface is of importance not only because probes tend
to be heated to incandescence in hot plasmas but also because of the current

interest in thermionic converters and in the production of laboratory discharges.



We shall not be able to cover the experimental aspects of probes, nor shall we

be concerned with other (non-electrostatic) types of probes which may be inserted
into a plasma, such as magnetic probes, microwave probes, or scintillator
probes.

1.2 The Current-Voltage Characteristic

In order to get an over-all view of the situation, let us look at a typical

plot of probe current versus probe voltage, as shown in Fig. 1.1.

Vs V? g

Fig. 1.1

Here negative, or electron, current to the probe is plotted against Vp’ the probe
voltage with respect to an arbitrary reference point. This plot may be obtained

continuously in a steady-state discharge, or point by point in a pulsed discharge,
the probe bias being changed from pulse to pulse; or the entire curve may be ob-
tained in a few microseconds in a pulsed discharge by the use of a fast sweeping

voltage source.



The qualitative behavior of this curve can be explained as follows. At the
point VS, the probe is at the same potential as the plasma (this is commonly
called the space potential). There are no electric fields at this point, and the
charged particles migrate to the probe because of their thermal velocities. Since
electrons move much faster than ions because of their small mass, what is
collected by the probe is predominantly electron current. If the probe voltage is
made positive relative to the plasma, electrons are accelerated toward the probe.
Moreover, the ions are repelled, and what little ion current was present at Vs
vanishes. Near the probe surface there is therefore an excess of negative charge,
which builds up until the total charge is equal to the positivé charge on the probe.
This layer of charge is called a sheath, and outside of it there is very little
electric field, so that the plasma is undisturbed. It is characteristic of a plasma
that the sheath is usually very thin; to the extent that this is true, the probe is
truly probing in the sense that it does not disturb its environment. The electron
current is that which enters the sheath through random thermal motions; and
since the area of the sheath is relatively constant as the probe voltage is in-
creased, we have the fairly flat portion A of the probe characteristic. This is
called the region of saturation electron current.

If now the probe potential is made negative relative to Vs, we begin to
repel electrons and accelerate ions. The electron current falls as Vp de_‘creases
in region B, which we shall call the transition region of the characteristic. If
the electron distribution were Maxwellian, the shape of the curve here, after the

contribution of the ions is subtracted, would be exponential. Finally, at the



point V , called the floating potential, the probe is sufficiently negative to repel

£
all electrons except a flux equal to the flux of ions and therefore draws no net
current. An insulated electrode inserted into a plasma would assume this
potential.

At large negative values of Vp almost all the electrons are repelled, and
we have an ion sheath and saturation ion current (region C). This is similar to
region A; but there are two points of asymmetry between saturation ion and
saturation electron collection aside from the obvious one of the mass difference,
which causes the disparity in the absolute magnitude of the currents. The first
point is that the ion and electron temperatures are usually unequal, and it turns
out that sheath formation is cor.'lsiderably different when the colder species is
collected than when the hotter species is collected. The second point is that
when there is a magnetic field, the motion of the electrons is much more affected
by the field than the motion of the ions. These two points, which were neglected
in the original theory of Langmuir, are responsible for .rnaking impossible the
sirpple and straightforward application of probes as originally proposed by
Langmuir,

It is evident that the formation of *sheaths plays an.important role in

probe theory. For this reason, the next section will be devoted to an explana-

tion of the basic characteristics of sheaths.
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2. Sheath Formation

2.1 The Debye Shielding Length

Let us consider what happens when a potential V is introduced at some

point in an infinite plasma in equilibrium. We can imagine, for instance, that a

perfectly transparent grid is inserted into the plasma. If the ions and electrons
are in thermal equilibrium, their densities are given by the Maxwell- Boltzmann
distribution:

n, = n e-ev/kTi (2.1-1)

n = n eeV/kTe , (2.1-2)

where we have assumed singly charged ions for simplicity. The potential in the
plasma is given by Poisson's equation, which, for simplicity, we shall write in
one dimension:
dZ
—_— = - - . 2.1-
4«t|'e(ni ne) (2.1-3)

2
dx

To get a rough idea of the scale length of the potential distribution, let us expand

the exponentials in (2.1-1) and (2.1-2) and substitute into (2.1-3):

d2 eV 1
—d:2—=41rn e(TcTI‘_+kT)=4"noe(T —k?l)v.

Hence
VvV ~ (;x/h , where
kT.T
2 i“e 1
= . 2.1~
h Ti + T 2 (2.1-4)

e 4mn e
o



This shows that as we approach our grid, the potential rises exponentially from
its value in the plasma with a characteristic length h, which is called the Debye
length. We note that when Ti and Te are much different from each other, the
Debye length is dependent primarily on the smaller temperature.

Numerically the value of h is usually extremely small, smaller than any
other characteri stic length such as the radius of the plasma, the probe radius, or
a mean free path. This means that a potential introduced on a probe is localized
and shielded from the rest of the plasma so that the disturbance caused by the
probe has a chance of being negligible.

2,2 The Child-Langmuir Law

The previous example was an extreme simplification inasmuch as the grid
producing the potential disturbance was perfectly transparent. In practice, one
species of particle will be repelled and one collected, and the distribution of the
collected species cannot be Maxwellian. Let us now examine another idealized
situation, that of two infinite parallel plane plates, one of which emits particles
and is at zero potential, and the other of which is perfectly absorbing and is at a

potential V. This is shown in Fig. 2.2,

Fig. 2.2



Consider first the case of emission at plane A of only one species of
particle, with charge -e and mass m, emitted at zero velocity. The particle

velocity at a position where the potential is V is then
2
v = @ev/m)l/? . 2.2-1)

If the emitted current density is j, the particle density at x will be

ZeV(x)] -1/2

— (2.2-2)

nex) = [

Poisson's equation becomes

dVv . 2eV -1/2
4‘"J(—r?) /

Multiplying by dV/dx and integrating from x = 0, we have

v

1 dv.2 . 2eV.-1/2

z (& -‘“J,(‘x’ av
o

4 (32 1/2 V1/2
J e

av
i), (2.2-3)

By space~charge-limited flow, we mean that (dV/dx)O vanishes. We then have

vV%av o (8ej)t/? (Ze—m)l/4 dx . (2.2-4)

Integrating from x = 0 to x =d , we have

év3/4 _ (Bwj)l/z(_z_?)l/4 4

3
or 3/2
= (%)1/2 v 5 (2.2-5)
9w d
-9- pabde fax
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which is the Child- Langmuir 3/2-power law for space-charge-limited current
flow between two planes separated by a distance d with a potential V between
them.

2.21 Case of Finite Temperature

The next easiest case to consider is that in which the particles are
emitted at a temperature T, the geometry remaining the same as before. Let us
assume that the velocity distribution at plane A is half of a Maxwellian distribu-
tion, as is the case for electron emission from a hot plate. The distribution

function at x = 0 is then

m 1/2 e—mvz/ZkT

£(0,v) = nO(ZTI'—k-T_) v> 0 (2.21-1)
= 0 v< 0 .
The Boltzmann equation (l.1-1) reduces in this case to
v% = %9—% _a% , (2.21-2)

2
where g is the charge of the particle. This says that f is a function of %mv +qV,
the total energy. The distribution function at x is then given by (2.21-1) with VZ

2
replaced by v+ (2qV/m):

2 2qV
m_1/2 -m(v tER/2KT (:Zmiv)l/z. (2.21-3)

fx,v) =dn (5=

We can save a lot of writing from now on if we introduce dimensionless variables,

at the risk of losing the immediate recognition of the physical meaning of each
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equation. Since we are interested in a potential V which accelerates the

particles, we have that qV < 0. Thus we shall choose

N 14 -
n o= -37 - (2.21-4)

Also we shall introduce a thermal velocity

_ 2kT 1/2
Vt = (_?E— (2.21-5)
and let
u = V/Vt . (2.21-6)
Finally, the unit of distance will be the Debye length, so that
£ = x(kT/4n nqu)-l/Z . (2.21-7)

2
In these units velocity and potential are directly related (u ~ 1), and the total

k
2
energy is simply (u - 7 )%. The velocity distribution (2.21-3) becomes

2n_ ¢ w2-m) )
£, u). = —2 e @M} > op . (2.21-3)
v N
t
The density is then
o0
n g
n(n) = v, Slf('r],u)du = n_e (1 - erfnm), (2.21-/4)
N
where the error function is defined by
X2 9
2 -t
erfx = — S‘e dt . (2.21—})
N o
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Poisson's equation is now

2
d—Z‘V_ = - 41an H or
dx
2 /o
n =_é_727 = en(l-erf’\fl_]). (2'21'6‘)
d§

Again using the integrating factor ', we have upon integration

i
= en(l - erf'\fl-])+—2— 771/2 +-12 77(;2 . (2.21-2)

T

1.2
> 7

The integral of the error function has been carried out by using (2. 21- %) and
reversing the order of integration.
The potential distribution is then found by integrating (2.21-7). The

resulting curve has the behavior shown in Fig. 2. 3.

-12-



For very small n there is no space charge, and n(£) is a straight line. As n_
is increased, the curve becomes more and more concave upwards until the slope
7 '(0) becomes zero. Then space charge limitation occurs, since there is no
longer any electric field acting on the particles as they leave surface A. If n_ is
further increased, a retarding field must be set up in order to reflect the excess
of particles emitted over the number that the space charge will allow through.
Thus a potential maximum 'r]m at £ = Em must occur, and it is obvious that

Eq. (2.21-7) must be integrated starting from this point, with 17n'rl = 0. The
entire solution, including that for the region to the left of §m, has been given by
Langmuir | 1961, IV, p. 373 ff.]; however, for our purposes nn:‘,]a?nd {m are
usually so small that they can be set equal to zero. The integral of (2.21-7) has

éﬁ*\(’b
no analytic form, but to first order the space-charge-limited current is given by

3/2
(V-V ) &
i = (__fj)l/z —91ﬂ = a4 2.606, (2. 2187
(d-x_) )

Comparison with (2.2-5) shows that the effect of a finite temperature is slight.

2.3 The Sheath Criterion

Let us now introduce a second species of charged particle, so that we
have a species 1 which is accelerated from A to B and a species 2 of equal and
opposite charge which is repelled from B. We want eventually to identify surface
A with the surface of the plasma and B with the surface of a wall or probe. Since
a plasma is very nearly neutral (by definition), we require that n, ® n_ at A.

1 2

One is likely to feel dissatisfied with an arbitrary division of a gas dis-
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charge into a ''‘plasma'' region, in which quasi-neutrality obtains, and a '"'sheath"
region in which large potential drops can occur; therefore, let us digress briefly
to discuss this dichotomy. This sharp division between plasma and sheath was
originally suggested by the experimental observation that potential drops were
always confined to small regions near electrodes; however, it is not merely for
convenience that such a separation is made. The equations governing the
plasma, where collisions and ionization take place but where quasi-neutrality
can be assumed, are entirely different from those governing the sheath, where
charges can build up but where there are no collisions. (If the collision free
path were comparable to the Debye length, the plasma would be so weakly
ionized that one might say it is not a plasma at all.) This is then a boundary-
layer problem, in which the solutions for the interior and exterior regions must
be matched at the interface and must tend to the proper asymptotic limits in their
respective regions. Even with this division the operations can rarely be solved
analytically. A continuous solution of the plasma-sheath transition, if the equa-
tions could be set up, would involve a large numerical calculation. Such a cal-
culation would not be expected to yield results much different from ;chose based
on distinct plasma and sheath regions, since this is generally a good approxima-
tion, and indeed must be, as indicated earlier, in order for probes to work as
probes.

In solving the problem of the sheath, certain boundary conditions must
be met to ensure a smooth transition to the plasma. It is our purpose in this

section to see what these requirements are.
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2.31 The Case T1 =0

We now return to the problem of the collisionless motion of two types of
charged particle between two infinite planes with a potential difference between
them. For simplicity, we shall treat first the somewhat degenerate case in
which T1 =0, i.e., the accelerated particles have no random motion. In this
case we must give them a non-vanishing drift velocity v, at A, since otherwise
their velocity at A would be 0 and their density infinite if their current is to be
finite. This difficulty can be avoided by going to the spherically-symmetric case,
where density falls as 1/r2, but then we would lose the simplicity of the particle
orbits which we have in the one-dimensional case.

Since there can be no particles of type 1 traveling from B to A, the distri-

bution function of 1 is

fl(O,v) no5(v - vo) v >0

2q,V
2
noﬁ[ (v + 1

1/2
—)" -V, 1 . (2.31-1)

fl(x, v) )

We now assume that the potential B is so large that almost all particles 2 are

repelled; their distribution will then be Maxwellian:

2q,V

2 2
2 1/2 -mp(v +—5-)/2kT
= — mp2 2
f2 (x, v) no(Z-rrkTZ) ©

m
(2.31-2)
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With the dimensionless variables

oYY . ! /2
n = kT, ZkT
this becomes
m

§ = x(

2
4
™ q,
kT

2

Ma1/2 1 "Tmpe-m

£,(n,u) = n_(—) e

o'rtm v
1 s

2
where we have set 9 = -9d,, and where vy = (ZkTZ/ml)l/ .

Note that since

1/2

2

(2.31-3)

(2.31-4)

particles 1 are accelerated, q1V is always negative, and therefore 7 always

positive. Similarly, (2. 31-1) becomes

fm.w = n_v [ (- n)

1/2 )

The densities are found by integrating with respect to vsdu:

ny oty - u )—Yd%—

Poisson's equation is then

2 -1/2

¥\£(1+-n

n (l+nu

- e 7]

With the usual integrating factor 7', the integral from 0 to x is

2

n' = n‘q{Zuj[’(l-l-nu—Z)l/Z

N

~16-

-1]+e_

z -1/2

Mg agnt

(2.31-5)

(2.31-6)

(2.31-7)

(2.31-8)



For the moment, let us neglect 770' . The left-hand side in (2. 31-8) must be

positive; hence

~-2)1/2

2
Zuo[(1+'r)uo

Near the origin 77 = 0, this inequality becomes, upon expanding,

it ¥ ko ¥
Zuoz[lz nu;Z _%nzu:}] > n -l?_nz 4:;;1 E:’;zr e
m.v 2
u o= (Zi’I?Z )1/2> 2—1175 . (2. 31-10)

This is the original sheath criterion derived by Langmuir [1961, V] and Bohm

[1949]. It states that in order for the sheath equation to have a solution for

small 7] there is a restriction on the streaming velocity assumed for particles 1

/2

at plane A: namely, that it be larger than (kTZ/ml)l

2.32 Physical Meaning of the Sheath Criterion

The most common application of this criterion is in the case of ion col-
lection, in which ions are particles 1 and electrons particles 2. In many dis-
charges the ion temperature is much lower than the electron temperature, so

that the assumption T. = 0 is applicable. Equation (2.31-10) then says that the

1
ions must stream into the sheath boundary with an energy greater than %k'I‘e,
which is much larger than their thermal energy. We shall see later how they
may gain such an energy in the plasma.

The reason for this restriction on the cold particles can be seen by

plotting the density, as given by (2.31-6), logarithmically against potential 77,

as shown in Fig. 2.4.

-17-
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1

Fig, 2.4
The trapped particles 2 have a density which appears as a straight line on the
semi-log plot. If 7' is rigorously zero, the curve for n, starts at the same

point n_as does n,, and its initial slope depends on u . If u is small, n is

less than n, for small 7. Referring to Poisson's equation,

[T -
no’r] = n - n, »

we see that if 770“ = 0 and 77 is to be positive, 7' must be positive near n = 0.

If uo is too small, 1" is negative, and this will not permit a monotonic solution
for n(§). The solution will oscillate between two values of n, corresponding to
an imaginary value of 7 "20 If u_ were large, we see from Fig. 2.4 that n is

always larger than n,, and the problem does not arise. The critical condition is

that
dnl an
(—d’n )o = (___dT] . - (2.32-1)
From (2.31-6), this is just
"2 % T o0 ° Yo TZ



[} f\ 1
the same condition as (2. 31-10) Ao+ N\t 6
e itio . 31-10). .
AN e
In this treatment we have assumed n =7'=7" = 0 at the origin. If this & $)\

were strictly true, the only solution would be the trivial one = 0. In actuality
the sheath solution must be matched to the plasma solution at a point where both

7N'and 7' are slightly positive. The situation is illustrated in Fig. 2. 5.

i e NA e )\——%ﬂhh
R S ! |
i

____\.,|

Rtk bt

N

B e

" __PL{ASMACY

AN

| I ~— .

7777777777

, \' R | D

I
I
|
[
l
|
|
S F T P T - F s
B
Fig. 2.5

Here a one-dimensional discharge bounded by two walls has been
schematically divided into several regions. In region P there is a plasma in
which the collision and ionization processes dominate. Region S is the sheath
region, several Debye lengths in thickness, where the wall potential (which con-
fines the electrons) is developed abruptly. The potential barrier, as seen by
the electrons, is shown. In region F, of the order of an ion mean free path in
thickness, the collisionless equations we have been using must hold. At the ]

same time, quasi-neutrality must also obtain in F, since otherwise the abrupt
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rise of potential would occur in F rather than in S. Between P and F is a transi-
tion region T in which plural collisions occur, and neither the collision-
dominated nor the free=-fall equations apply. We are copcerned with the value of
N'and ' at the boundary B between T and F.

If, in T and P, we did not use the proper equations but instead continued
using Eq. (2.31-7), the resulting curve for 7 might look like that shown by the
dotted line. The curve must be symmetric about some point & o’ since (2, 31-7) is
invariant under a reflection in £ . At §o we have 7' = 0, 7" # 0. If we move our
coordinate system to start at 50, we need consider only this boundary condition;

the general conclusions will be the same. If 7]")' > 0, n, will be larger than n

lo 20’

and the density curve will look like the dotted one in Fig. 2.4. It is clear that now

uo may be decreased until n1 crosses nZ, but that the area above n. must always

2
be larger than the area below n, in order for the expression for ' to be positive.
The critical value of u is now that which makes these areas equal, and there will
be one such value for each value of ’r]'c: .

An upper limit to ' can be obtained by assumin that " = n" everywhere.
PP n o y g n 770 y

Since in actuality n' > 178 , we have

1 2
ntZ g mtznoE . n2snlE

In order that the 77 curve not develop abruptly until the sheath region is reached,

we require that 77 be less than, say, 1 when x is of the order of A. Thus,

nno< 2L (2.32-2)

¥ —M’ ch\ (k h;(;‘%,_ﬁ V\:w i1 V\.‘\. N "i\\‘\ &"‘\\"( \“N{-\‘* 1 oo e
Russ  aoliwaat, V\Q‘W foom ?\Mw Ay, -20-



It can be shown that

nll

1 o .1/2
u = ;72 [1- (i—+—n,07) | (2.32-3)

so that the reduction in u is less than something like h/A. Since h/A is
generally very small, the sheath criterion (2. 31-10) is not greatly affected by the
assumptions about T]g and 770' , and is valid as long as 'I‘1 = 0. In the next section

we shall say more about this in the general case.

2.33 The Case T, £ 0, u =0

We have found that in the collection of cold particles there is a severe
condition on their initial velocity. The question now is whether such a condition
also occurs for hot particles. We assume that the accelerated particles 1 have a
half- Maxwellian distribution, as in (2.21-3)"

2n

2
f,m.,u) = 1o -lu '77), wl > n . (2.33-1)

'\/_
VtTT

Here 7 and u are normalized to quantities pertaining to species 1. The distribu-
tion of species 2 is Maxwellian:
P20 M2%1/2

1
fpm.a) = —= (=0

N 1 t

202 2
o  Xlmy u M) (2.33-2)

where

Q@ = — (2.33-3)

is the parameter we wish to evaluate.
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Integrating over vtdu, we have for the densities

= M.
n, = n e (1 - erfapy)

1
(2.33-4)
- -an
n, = n, e
Here we must not set n,_=n, for the following reason. The derivative of n is
d n n 2 d -t
— n =n, [e'(1-erfNp)-e —ge dt ]
dn 1 lo Nr dn
o
n 2 1_-1/2
= nlo[e (l-erf'\/r_])--—-o—é-n | (2.33-5)

™

Thus as n — O, dnl/dn — - o, If n, =0, it is clear from Fig. 2.4 that n,

will be less than n_ for small ) regardless of the value of &. We must therefore

2

allow ng to be finite, as in the last section, so that n10 ;4 nZo; then a solution will

be possible for some values of «.

Let
nt =6 = (n_-mn, )/n . (2.33-6)
Then Poisson's equation is
Nt o= eM(l- ering)- (1-6)e T | (2.33-7)
The first integral is, for 17(; =0,
lzn'z - (- erng) - 142 nt/? +l—(’f— M _1) . (2.33-8)

™
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Therefore if

en(l - erfAp) - 1+—2- nl/Z

gn) =
™
and (2.33-9)
1-6 -
hin) = —— - M),
we have the condition
gn) > h(n) . (2.33-10)

The functions g and h are shown schematically in Fig. 2. 6.

”,3073
= h(v\)' small &

L\(y‘) | \&r‘"\c A

Fig. 2.6

0

For sufficiently large &, h(n) will always lie under g(n), and the inequality

(2.33-10) will be satisfied. For small & the two curves will cross, giving a

2
region of 7 in which ' is negative. The critical value of «, ac , occurs when
the two curves are just tangent, or

g(n) = h(n)
(2.33-11)

g'n) = h'(n) .

Elimination of 7) between these two equations will give a relation between ac

and 6. Note that g' = h' is simply the equationn, = n The density plot in this

1 2°
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case is shown in Fig., 2.7.

Fig. 2.7

As @ is decreased in Fig. 2.7, the line representing n, begins to cross n, in two

places. When the second intersection occurs just when the areas under the two
curves are equal, then Eqs. (2.33-11) are satisfied, and we have the critical
value of «.

To solve (2.33-11) and (2.33-9), we note that for very small § the value

of 7 which satisfies (2.33-11) must be small, as is apparent from Fig., 2.7. We

/2

may then expand (2.33-9), keeping only terms of order 771 . The expansion in
half powers converges slowly, so we are depending on the fact that § is
ordinarily extremely small (less than 1%). We also make the approximation that
the value of ac will be close to the value ab at which the curves n1(17) and n2(17)

are tangent to each other. To find a, we need only to solve the equations

— 1 - 1
nl—nz, nl—nz, or

en(l— erfN) = (1-.5)e-an

1 -1/2
1Y

el - ertNg) = (1-6)-a)e 7 4 (2.33-12)

N
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1/2 we have

3

Subtracting and expanding in x = 7
1 -1

0= 1-8)1+a) M. —«
N

1 = wl/z(l S5)(1+ a)x (I - ax2)

2 -
= [20-s)a+a)t . (2.33-13)
From (2.33-12a), we have to this order, since erf x 8 —x ,
N
l-ixgl~5, or x%ﬁﬁ . (2.33-14)
2
N
Combining the last two equations, we have finally
b
36(1- 0)l+a) =1
x T
1 = 3 0(1 + @)
2 2
Yl ] Y .33-
ab = 1 - ac (2.33-15)
a> a
c

The maximum value of § is given by (2.32-2), in which the Debye length h must

be evaluated with TZ’ the temperature of the particle in equilibrium. Thus for

acceleration of a species with temperature T1 and no drift velocity, we must have

T 2
a = ——1 > A . (2.33-16)
2
2 'rrhz
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This is a severe condition which is rarely satisfied. This does, however, bear
out the previously mentioned fact that the nature of the sheath problem is dif-

ferent when T1 >> TZ than when T2 >> Tla

2.34 The Case T, £0, u £0
When the collected particle is allowed to have a drift velocity v,a at
plane A toward plane B, the condition on @& given by (2. 33-16) is greatly mollified.

In this case the distribution function is

1/2

ano 1 o [(uz-n)

1+ erf uo NE Vt

£,(n,u) = (2.34-1)
Unfortunately the density cannot be expressed in closed form, so that the general
solution must be obtained numerically. We shall not do this, but it is clear that
the answer will give a relation which @ and u_ must satisfy for each value of § .
Since the maximum value of § is fixed by the ratio A/hz, one has a criterion in

which either the temperature T. or the drift velocity u_ must be sufficiently large

1
in order for a monotonic solution of Poisson's equation to exist.

When the hotter species is collected, the drift velocity necessary to satis-
fy the sheath criterion is usually small compared with the thermal velocity; this
does not seem hard to attain. However, when the colder species is collected, as
in the collection of cold ions, the drift velocity is many times the thermal velocity
of the ions, and some mechanism must exist in the plasma region to produce

this directed motion.

We have so far assumed that the wall potential M at plane B was so high
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that none of species 2 is collected. For lower values of 'nw a correction can be

made to the Maxwellian distribution so that the density reads

20 an 1
n, = ——e [1+erfa

/ 1/2]

“m, - ) (2.34-2)

This is obtained from (2. 33-2) by omitting the particles traveling to the left with

1/2‘

velocities greater than Mw

If ’r]W becomes as small as 3, say, the distribution
is no longer approximately Maxwellian and is governed by how the particles are
produced in the plasma region. In such a case there is no clear separation of
the sheath problem from the description of the entire discharge.

We have also found that in the case T1 = 0 the sheath criterion is the
same as the condition n'l(n) = né('r) ). We shall make use of this later in connec-

tion with double sheaths.

2.4 The Collisionless Plane Discharg_c_e_

We have seen that in order for a sheath to form when the collected
particles are cold they must have a large drift velocity by the time they enter
the collision-free region. This drift velocity is most easily acquired by fall-
ing through a potential drop in the plasma or transition region. However, we
have seen in Sec. 2.1 that potential drops large compared with the temperature
of the colder species cannot occur in a plasma in equilibrium except near a
boundary. The reason that such potential drops can and do exist in plasmas is
due to the fact that the ions are usually not in equilibrium. They are continu-
ously being created by the ionizétion mechanism and are relatively slow moving,

so that their density distribution is dictated by the ionization and not by the
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Maxwell-Boltzmann law. In such a case we can have a steady-state situation
which is not in equilibrium. To demonstrate how ionization can produce large
potential drops in the plasma, we shall next consider the simple case of a

plane parallel discharge in which the ions do not make any collisions. Langmuir
and Tonks [1961, V] have considered t}.le gen.eral case where there are collisions;
however, the collisionless case is particularly simple because an analytic solu-
tion has been given by Harrison and Thompson [1959].

Imagine that a piasma is created between two infinitely large parallel
plates separated by 2L. " The ionization function is q(x) ion pairs per cm3 per
sec, wherey x is the distance from the mid-plane. The ionization is produced by
some such mechanism as ultraviolet radiation which has no other effects. The
ions fall freely to the wall from rest under the influence of an electric field. The

ion density at x is then given by

(x)S‘ q(x};)i’f; , (2.4-1)
where
vix,x') = He (V(x') - V(X))]l/2 , (2.4-2)

V being 0 at the mid-plane and negative elsewhere.
In addition to the usual dimensionless quantities

n =- eV/kTe

= v/vS v (ZkTe/M)I/Z (2. 4-3)

¢ = x/h h

I

2
kT /4mn e ,
e o
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we also have
= qh \4 .
g q /no s
Here M is the ion mass, kTe the electron temperature, +e the ion charge, and
no' the plasma density at the mid-plane.
In terms of these variables, Poisson's equation becomes, as a conse-

quence of (2.4-1) and (2.4-2),

2 Y g(n')—é-g-,- dn'
i_% - g d1 _e M (2. 4-4)
at Y m-nt

2 2
if the electron distribution is Maxwellian. If we assume d 1/df" = 0, the
resulting integral equation for 1 can fortunately be inverted by a standard

formula; the result is

- 2
vg(n)d%f— n Y2 r@VY (2.4-5)
where
2 X (2
F(x) = e © Se at . (2.4-6)
(o]

The function F is small at both large and small x and has a single maximum, at
which it has the value (2x)-1. Thus at a critical value of 7 equal to 0. 854, the
right-hand side of (2.4-5) vanishes, so that dp/df —%. The 7 - § curve looks

as follows (Fig. 2.8):
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PLASMA
T SHEATH
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Fig, 2.8

3

The quasi-neutral approximation (dzn/d{; 2 = 0) that we have made therefore
breaks down in the neighborhood of = 0.854, and this point is quite independent
of the function g(n) although the shape of the - £ curve of course is not. This
point (7,= 0.854) can conveniently be defined as the sheath edge, since it is the
point where the plasma equation breaks down. The sheath solution (dotted line)
will presumably join smoothly on to the plasma solution.

The point to note is that at this junction the ions already have energies up
to 0. 854 kTe as a consequence of the potential drop in the plasma. The square
of the average ion velocity at 7 = 0. 854 turns out to be (Eo)2 = 0.654, as com-

pared to 0.5 previously computed (2. 31-10) for mono-energetic ions. Of course

at the point the sheath solution takes over, 1 < 0.854 and 1_10 is somewhat less;
this is counterbalanced by the fact that the values of ' and "' (greatly exag-
gerated in Fig. 2.8) are not 0 at this point, so the sheath criterion is somewhat
less stringent. When all these effects are put together, the result is that the

ions have just enough energy to allow a sheath solution to exist. This energy is
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acquired from electric fields in the plasma, and these fields can exist in the
plasma because of the non-thermal effects of the ionization process, which puts
ions in places where they would not be in equilibrium.

2.5  Sheath Stability

In the case of cold ion collection by a wall or probe, we have seen that the
sheath criterion requires that the ions have a comparatively large directed
velocity toward the boundary. On the other hand, we know that double-peaked
velocity distributions such as this (the ion and electron peaks being non-
coincident) may be unstable against excitation of waves. In fact, the velocity
(2.31-10) is just the critical velocity for excitation of ion waves when kTi = 0.

The question is, then, is it possible for sheaths to form without oscillations, and
for us to consider only the time-independent sheath equations, as we have done?
This question is difficult to answer in general because it is difficult to calculate
the ion velocity distribution which would actually exist. However, in the simple
collisionless case considered in Sec. 2.4, this distribution turns out to be inde-
pendent of the ionization function q(x) and is therefore easy to find. The result
is that unless q(x) completely vanishes in the sheath, the situation is stable;

and our failure to consider time-dependent solutions is justified, at least in the
case considered.

When a magnetic field is present, other instabilities can occur. In
particular, D'Angelo and Motley of this Laboratory have recently discovered
that ion waves near the cyclotron frequency propagating almost perpendicular to

B can be excited by quite a small relative drift between electrons and ions.
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Therefore the sheath on a wall intersecting lines of force may be unstable. This
question has not been thoroughly investigated.

2.6 Effect of Magnetic Field

The mechanism of sheath formation in the presence of a strong magnetic
field has not been analyzed in detail in the literature. Recently, however, there
have been a few papers concerned with the effect on a sheath of a weak magnetic
field, which affects the motions of the electrons only. [ Allen and Magistrelli,
Nuovo Cim. 18, 1138 (1960); P. L. Auer, Nuovo Cim. 22, 550 (1961)]. The result
is that the critical ion energy uj for sheath formation should be divided by a
factor 1 + &, where & is the ratio of the electron drift velocity parallel to the
wall to the E X B drift velocity. The effect of the self-magnetic field of a dis-
charge (that caused by the discharge current) is in a direction to make the sheath
criterion less stringent.

2.7 Sheaths in More Than One Dimension

The case of emission by spherically and axially symmetric surfaces in
the absence of a plasma has been calculated by Langmuir [ 1961, III and IV]. The
plasma solution for a discharge in such geometries has been given by Tonks and
Langmuir [1961, V]. There is no qualitative difference from the results of the
one-dimensional analysis.

The situation is different in the case of the sheath criterion. If, on the
one hand, the sheath were thin compared with the radius of curvature of the
surface, one would expect that the one-dimensional sheath criterion need only

be slightly modified. On the other hand, if the sheath edge were many radii of
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curvature away from the electrode in question, the concept of a sheath criterion
is of doubtful value. This is because the density at each point consists both of
particles going toward the electrode (in the case, say, of ion collection by a
small sphere) and of particles coming away from the probe. The existence of the
latter current is possible because particles with finite angular momentum can
make an orbit around the probe and miss it. The calculation of the ion density
therefore is no simple problem.

Even the case of T, = 0, u_ = 0 is soluble in the spherically symmetric

1
1/2

case. In the plane case the density goes as 17- and becomes infinite at 7 = 0.

2.-
In the spherical case, however, there is a factor (4mr ) 1 in the density which

can cancel this divergence and give nl = n2 at infinity. Moreover, if ions, say,

start at rest at infinity and the total inward current is I, then the ion density will

-1/2

. If n falls off as r-4 for large r, then n, is a con-

=N

. -2
be proportional tor 7
stant at large r. Since n_ ~e ', the requirement that niz n, is satisfied even
though the ion temperature is zero. This is greatly different from the plane

case. We shall treat this problem in detail in the section on saturation ion

currents.

3. Probe Theory in the Absence of Collisions and Magnetic Fields

The information obtainable from a probe is contained in the probe
characteristic (Fig. 1.1). The plasma parameters which one hopes to deter-
mine are the electron and ion temperatures kTe and kTi’ the plasma density n,

and the plasma potential Vs. The probe characteristic consists of four main
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parts: the saturation electron current (A), the transition region (B), the floating
potential Vf, and the saturation ion current (C). In simplest terms, part A gives
information about n Te; part B gives Te; part C gives n/T; again; Vs is obtain-
able from either Vf or the point at which B changes to A; and the ion temperature
is not given by probes. The exact way in which these plasma parameters are
related to the probe characteristic will depend on the shape of the probe and the
relative magnitudes of the collision length, the probe dimensions, the Debye
length, the Larmor radius, and so forth.

We shall discuss first the simplest case -- that in which both collisions
and magnetic fields are negligible. This case is essentially that covered by the
original theory of Langmuir. There is, however, one exception; that is, in
dealing with saturation ion current the effect of acceleration of ions in the plasma
region (which we discussed in connection with the sheath criterion) was at first
unknown to Langmuir. For the proper treatment of ion saturation current we
shall have to turn to comparatively recent work. We shall confine ourselves to
plasmas consisting of singly charged positive ions and electrons. Extensions of
the theory to include negative ions or multiply charged ions is straightforward.
The main difference from the analysis of Sec. 2 is that now we shall have to con-

sider particle orbits in more than one dimension.

3.1 Probe Current in a Prescribed Electric Field

We now turn to the problem of sheath formation on actual probes, which
are normally not planar but cylindrical or spherical, since such shapes do not

disturb the plasma as much as a large flat surface. Particles can now move in
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orbits in a central force field, and the density is no longer a simple function of
potential as it was in the one-dimensional case. Again we have Poisson's
equation

Vv = - 41T(q1n1 + anZ) ’

but now not only is the Laplacian more complicated but also n, is a complicated

1
integral involving V. The solution for V must even in the simplest case be found
numerically. However, in some physical situations the probe current can be

found without knowing the exact behavior of V(r). In these situations the original
theory of Langmuir is applicable. In describing this theory we shall assume that

the function V(r) is already known.

3.11 Thin Sheath: Space Charge Limited Current

Suppose that the prescribed electric field is such that the potential drop
around a charged spherical or cylindrical probe attracting particles of type 1 is
concentrated in a thin layer of radius s surrounding the probe of radius a.
Suppose further that the velocity distribution is essentially Maxwellian at the
edge of the sheath., This situation applies, for instance, to part A of the probe
characteristic (saturation electron current), since in most plasmas Te > > Ti’
and we have seen in Sec. 2.3 that the collection of the hotter species does not
require a large drift velocity at the sheath edge. If s - a << a so that all
particles entering the sheath hit the probe, and if the probe is perfectly absorb-
ing, then the.probe current is simply

I = j_A (3.11-1)

r S

where As is the area of the sheath, and jr is the random current density
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crossing a unit area in one direction. For a Maxwellian distribution, this is

given by
. _ 1 — 1 2kT]1l/2
jp =gznv =3 n('n'_m . (3.11-2)

We have omitted the charge e and are therefore considering particle currents.
The factor 1/4 in jr is composed of two factors of 1/2. The first accounts for

the fact that at the sheath edge the density is half the plasma density ~- the half
consisting of particles heading toward the probe. The second factor of 1/2 is
merely the average of the direction cosine over a hemisphere. To the extent that
s -a<< a, As is equal to AP, the probe area; and the current is independent of
voltage in this limit.

The physical situation is clarified by Fig. 3.1.

Fig. 3.1

The collision mean free path A is assumed to be much larger than s or a. The
population at point P consists of particles which made their last collision ap-
proximately a distance A from P. Since the probe subtends only a very small

solid angle at P, the shadowing effect of the probe has negligible effect, and the
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distribution at P is closely Maxwellian. At point S, however, there can be no
particles coming from the probe, and therefore the density must gradually
change from n at P to 1n at S, if there is no ionization anywhere on the diagram.
Since the particles of type 2, which are repelled by the probe, are in thermal

equilibrium, their density is given by

-eV/kT, (3.11-3)

n =vie
2

By assumption, all electric fields are concentrated within the sheath, However,

in order to satisfy (3.11-3) and quasi-neutrality at S, we must have

2 s
2

= m2 , (3.11-4)

the potential at ®© being 0. Our initial prescription for V(ﬁ) can be approxi-
mately true in practice only if kT‘2 is very small. This is the reason this theory
can be used for the collection of hot electrons in a gas of cold ions but would not
be nearly correct in the case of cold ion collection.

Although we have considered the potential distribution and hence the
sheath thickness s - a to be prescribed, this is sometimes not necessary. In
mercury discharges of the type used by Langmuir, the sheath was visible, and
its thickness could be measured, so that a measured value of As could be used
in (3.11-1), Even if AS cannot be measured, it can be calculated from the space
charge equations. If we neglect the density of particles 2 in the sheath, the
problem is the same as one we have already considered in Sec. 2.21: that of

space charge limited emission from a plane A (the sheath edge) to a plane B (the
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probe surface). Thus the current density is given by Eq. (2.21-8):

) (3.11-5)

where 1 = |e(Vp - Vs)/kT1| . It VS = 0, j can be equated to jr to give a value of
the sheath thickness s - a; this can then be used to compute As.

If s - a were not infinitely small, the equation for planar geometry could
not be used. Instead, the corresponding space charge equations for cylinders

and spheres must be used. These are given by Langmuir [ 1961, III]:

3/2

v -v_|
2 2.
Cylinder: j=—-1-(2—)1/ P__° (1 +2:06, (3.11-6)
y 91 ‘em 2 2
a B N
3/2
|v_-v_|
) 1 2 1/2 2.66
Sphere: j = %(e_?{{)/ P > SZ 1+ ) (3.11-7)
a”a N7
where
B =1vy- 0,4'yz+,.,.
2 2
a =vy —0.6y3+,..,
and

When s - a << a, one can expand the logarithm and recover (3.11-5).
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3.12 Thick Sheath: Orbital Motions

In the opposite limit of a thick sheath (s > > a), not all particles entering
the sheath will hit the probe because of the possibility of orbital motions. If the
potential varies slowly enough (a condition we shall derive later), the probe
current is still independent of the exact shape of V(r). This is because the laws
of conservation of energy and angular momentum concern only the initial and
final values of the energy and angular momentum.

Consider the orbit of a particle in an attractive central force field. Let
its initial velocity be vy and impact parameter, p. At its point of closest ap-
proach to the center (in either a spherically or a cylindrically symmetric system),

let its velocity be v, and its radius a. Then the conservation laws state

(for eV < 0):
-lz mvj = }Z-mv: + eV (3.12-1)
pv_ = av_ . (3.12-2)
Solving for p, we have
p = afl +%— )1/2 , (3.12-3)
o

where -eVo =-12- mvj. If we identify a with the probe radius, we see that any
particle with p smaller than that given by (3.12-3) will hit the probe and be
collected. Hence the effective collecting radius of the probe is the larger value
P and this is independent of the shape of the potential distribution. It is clear,

therefore, that for a mono-energetic beam of particles, or for an isotropic dis-
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tribution of mono-energetic particles at infinity, the probe current is given by:

A 1/2
Cylinder: I = anljr(l +—X—) / (3.12-4)
o
2. \'
Sphere: I = 417,:" Jr(l +—\-,(-)) . (3.12-5)

Thus for a cylindrical probe the saturation electron current increases with the
square root of the probe voltage., The current is limited by the impact parameter
p and not by the sheath size, which can be infinitely large.

So far we have considered mono-energetic particles coming in from
infinity. To do the more general problem we must take into account the finite
size of the sheath and also the distribution of energies at the sheath edge. Again
we shall presuppose that the potential distribution is known and that the entire
potential drop occurs within a sphere or cylinder of radius s. Let eV be negative
(attractive probe), and let u and v denote the radial and tangential components of
velocity. Conservation of energy and angular momentum imposes the following

relations between quantities at the sheath edge (r = s) and at the probe (r = a):

2 2 2 a
u + v = u +v +
s a m
(3.12-6)
Sv = av
s a
Solving for ua, we have
2 2evV
2 2 a
u = u +vS (1-—-2)— — (3.12-7)
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A necessary condition for a particle to hit the probe is that u > 0. This is not
a sufficient condition, since u must not vanish anywhere between s and a; suffi-
ciency will be discussed in the next section. This condition then imposes limits

on the value of vs:

i

< .
gf (% - —2) - T (3.12-8)
a

This argument clearly holds for both cylinders and spheres. If f(us', vs) is the
distribution function at s, the current to a cylindrical probe is obviously the
sheath area times the integral of uf(u, v) taken over all u from 0 to © and over all

v from -vs* to +v;5<:

(3
Ll

oo vk
“S du uS f(u, v) dv (3.12-9)
o

-y

1=A . (3.12-10)

where we have suppressed the subscript s.
Of particular interest is Maxwell's distribution in two dimensions:
2 2
m -m(u +v )/2kT

£(u,v) = (5op3) © . (3.12-11)

The integration of (3.12-9) using this distribution and Eq. (3.12-8) is straight-
forward and analytic. The answer is given by Langmuir [1961, IV]; the answer

for the equation analogous to (3.12-9) for spheres is also given:
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I1=AjF (3.12-12)

Cylinder: F = 2 erfclnl/2 + en[l - erf(n + <I>)1/2] (3.12-13)
8’ “® -d
Sphere: F = _E[l -e ] t+e R (3.12-14)
a
where
eV
m = -7 (3.12-15)
2
a
® = ———=1 (3.12-16)
s - a
J2
N+ = ———1 (3.12-17)
S = a

and jr and erf x are given by (3.11-2) and (2. 21-5), respectively.
We note two limiting cases: s - a<<a and s>>a ., In the thin sheath
limit, the arguments of the error functions are large, and we can use the

approximation

l-erfx " — . (3.12-18)
302-13
When this is inserted into (3.11«20], the result is F = s/a, and we recover
Eq. (3.11-1), as expected. Similarly, for large ® we can neglect the exponentials

in (3.12-14) and recover Eq. (3.11-1) for spheres.

{ Yo :
5¢ Ow - (’/«V\\ ”» Q -42-



In the thick sheath limit, ®is small, and we can neglect it relative to n.

The error function for small x is given by

erf x = 2z x |, (3.12-19)

N

and the exponential e-q,by 1- & Thus (3.12-13) and (3.12-14) become:

2 2 2
Cylinder: F & — 771/ + en (1 - erf 1)1/ ) (3.12-20)
N
Sphere: F=n+1 . (3.12-21)
If, in addition, 7 > > 1, (3.12-20) and (3.12-18) yield
2 2 -1/2 2
Cylinder: F & — (7]1/ +l217 1/ ) & — (1 +l)1/2 (3.12-22)
N NE

Thus for large sheath radii I varies as V for spheres, in agreement with

1/2

(3.12-5), while I varies as V for cylinders, in agreement with (3.12-4)., The
latter is true only if n > > 1 as well.
Equation (3.12-22) suggests that the slope of the electron saturation

current as well as its absolute magnitude may be a useful datum. From (3.12-12)

we have
.2 1/2
I = Aa_]r—(n +1)
v
2 4 2 . 2
I = TrAa Jr (n +1) . (3.12-23)
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2
Thus if T is plotted against Va, there should be a linear region where the
slope is

2

L , (3.12-24)
a

Z A
mw

giving a value for n. The intercept of this line at I = 0 gives the value of e/kT.
When such a linear plot of I‘2 vs. V can be obtained, therefore, the density and
electron temperature can be obtained separately, rather than in combination, as
in Eq. (3.12-12),

In the weakly ionized plasmas investigated by Langmuir, it was actually
possible to get a good linear plot of I‘Z vs. V with cylindrical probes. This
deviated from linearity at small V, where the approximation (3.12-22) becomes
invalid, and at large V, where space charge limitation requires the use of
(3.11-1). The use of Eq. (3.12-21) with spherical probes, however, turned out to
be nearly impossible, since with actual probe sizesthe condition s > > a could
not be fulfilled; instead, spherical probes tended to draw space charge limited
current.

Langmuir has also given approximate formulas for the very complicated

case of a Maxwellian distribution with a superimposed drift [ 1961, Iv].

3,13 Range of Validity of Orbital Theory

Aside from the requirements A >> s and X > > a, the collisionless
theory described above is subject to a requirement on the potential shape. This
can be seen by imagining a potential which extends far from the probe (s > > a)

but which has most of the drop occurring in a thin layer around the probe. In
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such a case one would use the formula for the case s > > a, but obviously the
true answer cannot differ much from that given by the formula for s - a << a.
Such a potential has an "absorption radius' larger than a which gives the effec-
tive collecting area inasmuch as all particles entering the surface at r Z7a are
destined to hit the probe. The condition that no such absorption radius exists
will now be derived.

From (3.12-7) we have the following expression for the radial velocity of

a particle at the probe in terms of its initial velocity components:

2
2 2 2 s
u o= ou_ + v a- —?:) + ¢a , (3.13-1)
a
where we have let
2
p = - >0 . (3.13-2)

If ua2 _>_ 0, the particle will hit the probe, provided that it is not repelled at some
larger radius r. The most stringent condition on ¢ is that even those particles
barely able to reach the probe (1.1a = 0) are not turned around at a larger radius r.
If they were turned around, all those which get past r would strike the probe; and
r would be an absorption radius.
To get the most stringent condition on ¢, we consider those particles

with u = 0, for which ,

wl = v: Es-1-0_ . (3.13-3)

S
a

At any radius r > a, their radial velocity is given by
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2
2 2 2 s
ur = us + VS 1- —r—z-) + ¢)r (3.13-4)

2
in analogy to (3.13-1). Eliminating \ between the last two equations, we have

2
2 2 & U O,
By U FO ) —
r- (s /a”)-1

L W2 22 2 2 2
- T S - T
bt ll-= =l -0l 5] . 3.13-5)

r S = a r s = a

2
The condition that u 2> 0 then gives this condition on ¢r:

2
> - - -
¢.”> 89, -(1-gh  , (3.13-6)
where
22 2.2
glr) = 5 —5——= - (3.13-7)
r S - a

2
If the initial distribution at s includes particles with u = 0, ¢r must satisfy the

condition

.~ g9, . (3.13-8)

The meaning of this can be seen by letting s approach infinity. Then the

2
potential falls less rapidly than 1/r :

s — 0] a2
MRS (3.13-9)
¢a r2
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This is a rather gradual variation with r. This condition is not satisfied in a
dense plasma, where the Debye length is small. Then the potential must drop
abruptly from ¢a and hence fall below the l/rz curve,

Of course if an absorption radius exists this can be called the sheath
edge, and the theory would then apply. However, in this case the velocity distri-
bution at the sheath edge is unknown and must be calculated. This is essentially
the problem we shall consider in Sec. 3.3. The potential may also be such that
there are closed orbits within r = s. The population in these orbits would then
depend on collisions, and the problem would no longer be tractable. This
possibility is also considered in Sec. 3.3 on ion currents.

3.14 Summary of Langmuir's Theory

This theory applies when a) the hotter component of the plasma (usually

electrons) is collected, so that the distribution at the sheath edge is approximately
Maxwellian; b) the pressure in the discharge is low enough that the mean free
path is much larger than the probe or sheath dimensions; and c) the plasma

density or the probe potential is low enough that the potential distribution satis-
fies (3.13-8). The probe current is then independent of the exact shape of the
potential, |

When the sheath is thin compared to the probe radius, the current is
limited by space charge and is given by (3.11-1). In this case the current varies
with voltage only inasmuch as the sheath area changes; this change is given by
(3.11-5,6, 7). The saturation electron current magnitude then gives a value for

/2

1
n(kTe)
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When the sheath is thick compared with the probe radius, the current
is limited by orbital motions and is given approximately by (3.12-4, 5), or, more
exactly, by (3.12-20, 21, 22). With intermediate sheath thicknesses, the current
is always less than the smaller of (3.11-1) and (3.12-4,5), and is given exactly by
(3.12-12 to 17). In the thick sheath limit, part A of the probe characteristic ap-

pears as follows for different probe shapes (Fig. 3.2):

S'\)\'\CYC
i]e (‘.\’\inder
-P\cw\C
\Y

Fig. 3.2

1/2

The saturation electron current varies with V for spheres and as V for
cylinders; it does not change for planes since no orbits are possible and the
sheath area is constant.

When the probe potential is increased in practice from V = Vs, there is
at first a region in which the current is smaller than the space charge limited
value and the orbital equations apply. For cylinders, Eq. (3.12-20) gives the
current at small 77; for larger 7, (3.12-22) applies, and the current varies as

1/2

n . As 7 is further increased, space charge limitation sets in and either
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(3.12-12 f.) or (3.11-1) applies, depending on the probe size. The point of
transition, which depends on s/a, moves to lower 1 as a is increased orn is
increased. Thus the behavior shown in Fig. 3.2 does not appear except for very
small probes and very small densities. For spheres (3.11-1) almost always
applies since the transition occurs for very small 7.

When a linear region on an iz - V plot appears, one is fortunate to be

able to calculate the density and the temperature separately from the slope and

the intercept of the line -- Eqgs. (3.12-23, 24).

As the voltage 1 is increased further, the sheath can again grow until

again the equations for s > > a apply. However, now the condition (3.13-8) will
probably be violated.

In most plasmas of today the Debye length is so small and the probe
radius so large (so that the probe will not melt) that the Langmuir theory is use-
less, and the single formula (3.11-1) suffices to describe saturation electron
current. Moreover, electron collection can seldom be used at all because the
large currents involved seriously affect the plasma being measured.

3.2 The Transition Region

In region B of the probe characteristic the probe collects both ions and
electrons. Fortunately, the ion current is much-smaller than the electron
current, because of the Jisparity in mass, and it can be subtracted out even if
not accurately known. The probe, then, collects electrons moving against a

repelling field. The current can be computed with the same formulas used in

the section on orbital motions, but with eV > 0; however, for a Maxwellian

-49.-



distribution the answer is the same regardless of the sheath and probe sizes and

even the shape of the probe.

3.21 Maxwellian Distribution

Suppose the probe is charged negative to repel electrons and that it is

perfectly reflecting. If the electron distribution is in thermal equilibrium, we

know that the density follows the Boltzmann law

n e-n
o

n =

) (3.21-1)
and that the distribution is still Maxwellian everywhere; only the density is

changed by the potential. The random current hitting the probe is then merely

1/2

-Er—) , (3.21-2)

=40, = Aan(ZTrm

where n is evaluated at the probe surface. Using (3.21-1),

T )1/2 e, (3.21-3)

I = Aa no (an

where 11 = IeV/le . Now if the probe is perfectly absorbing, the Maxwellian

distribution near the probe is deprived of electrons coming back from the probe.
However, the distfibution of those going toward the probe, which contribute to
the current, is essentially unchanged, since it is determined by collisions far
away from the probe, where the population is un::'listurbed by the presence of the
probe. Therefore (3.21-3) is still approximately true for an absorbing probe,
especially if n is large, so that the probe draws little current.

- If inTis plotted against  (or V), Eq. (3.21-3) predicts a straight line

if the distribution is Maxwellian. The slope of the line is ]e/le and gives a

-50-



good measure of the electron temperature. In Langmuir's plasmas the fnI-V
plot was linear over a ratio of 1000-1 in current. This was actually better
adherence to the exponential law than one had a right to expect.

- In the case of two groups of electrons at different temperatures, the

InI- V plot would be a broken line, as shown in Fig. 3.3,

T

y
/ v

Fig. 3.3

The slopes of the two straight segments would give the temperatures of the two
groups.

The space potential is often obtained by extrapolating parts A and B of
the probe characteristic and finding the point of intersection; this is also shown
in Fig. 3.3.

3.22 Isotropic Distributions

If the velocity distribution of electrons is not Maxwellian but is still

isotropic, the shape of the transition region of the probe curve can give informa-
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tion about the distribution function. This will be demonstrated for the case of a
plane probe.

Let the isotropic distribution be f(v), so that

>} o0

n = S‘f(v)d3v = 4w gvzf(v)dv = gg(v)dv . (3.22-1)
o

o o

Let a plane probe be at potential -V, so that electrons are repelled, and let

—Zevmh
¢ = (—) >0 (3.22-2)

The particle current density moving toward the probe at velocity v and at an

angle § relative to the normal is
. 3
dj = vcosf f(vdd'v . (3.22-3)

For each v, only those electrons with § < 0 * will be energetic enough to strike
the probe, where

1/2

v cosf * = ¢ . (3.22-4)

/2

1
The minimum value of v is obviously ¢ . The total current density striking the

probe is thus the integral of (3.22-3) over these limits:

[> o] sk
j = g v3f(v)dv S‘Zn sinf cosf db (3.22-5)
¢1/2 o
oo cosf * © o
1 1 2
= = v g(v)dv \ - cosf d(cosf ) = = vg(v)dv[ cos 9]
2 4 g 5
¢1/2 o ¢1/z cos

-52-



o0

j = %S‘ v g(v)(1 --\i}:)dv . (3.22-6)

¢1/z

If we differentiate with respect to ¢, the integrated part drops out, leaving

o0
dj _ 1L g -g(v)
dp ~ 4 v dv. .
1/2
¢
A second differentiation yields
dzj 1 -1/2 1/21 ,-1/2 1 g(¢1/2)
— = Z¢ g )TZ-(p = 3¢ (3.22-7)
do
Thus the distribution function g(v) is given by
1/2 .
g(¢/) = 8" . (3.22-8)

Similar results have been obtained by Langmuir [ 1961, IV] for spherical
and cylindrical probes.

Since a double differentiation of the probe curve is involved, the curve
must be obtained extremely accurately before the distribution function can be
found. This requires the plasma to be quiescent. A number of circuits have
been given in the literature for performing the double differentiation electrically,
by use of an oscillating probe voltage. In any case the accuracy required is such

that this technique is not generally useful except in extremely quiescent plasmas.
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3.3 Saturation Ion Currents: Unknown Electric Field

In the Langmuir theory it was assumed that the velocity distribution of
the collected particles is known at the shéath edge. We have seen, however, in
Sec. 2.3 that when the colder species is collected, as is usually the case in
dealing with ion currents, the ions must have a drift velocity upon entering the
sheath. Therefore, if the sheath edge is taken close to the prbBe, the ion
velocity distribution i§ unknown. Alternatively, if one takes the sheath edge to
be far away, to include the electric fields which impart this drift velocity to the
ions, then an absorption radius exists, the condition (3.13-8) is not satisfied,
and the Langmuir theory does not apply. This means that the ion current is not
independent of the potential shape, and one must actually solve for the potential
by using Poisson's equation. Since the ion density term in this equation is a

e soluion Conmnot ba guen explicitty
complicated integral involving ion orbits, tﬁﬁfﬁbﬁnrc&m%&e—%mly@-
ezt even in the simplest case.

- In the case of a plane surface, we saw in Sec. 2.4 that the ion drift
velocity is acquired in the plasma region, where ion production exists. For
spheres and cylinders this is not necessary, and a well-posed problem exists
even if one neglects collisions and ionization everywhere; Before tackling the
complexities of orbits, we shall examine the simple case of ions starting at

rest, so that all motions are radial.

3.31 Zero Temperature Limit

This special case is the theory of Allen, Boyd, and Reynolds [1956] for

.a spherical probe, Let I be the total ion current; in the absence of collisions
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and ionization, I is conserved. If ions start from rest at ® where V = 0, their

velocity at I, where the potential is V, is

ZeV)I/Z i} vS771/.2 , (3. 31-1)

vi = g

where
1/2
n =—-eV/kTe and v o= (ZkTe/M) . (3.31-2)

The ion density at r is given by this velocity, the area, and the current I:

2 1/2
n = Ifdnr vt . (3.31-3)

With n, given by Maxwell's distribution, Poisson's equation in spherical coordi-

nates is:
?%(rz-%?v = - 4me [m‘zn—lﬁ -ne M L (3.31-9)
Introducing the usual dimensionless length
¢ = r/h = r(4-n-noe2/kTe)1/2 , (3. 31-5)

wtum()u)rmiihm-(:wm
thisheconres

1 2 d 2 1/2_ 2 -1 -
—_ %) = I(4mh n v 1 /.{-', ) - e n . (3.31-6)

d
-5 (&
2 d
£ '3
We define a current I)\ such that

L, = 4'rrh2novs = (kTe)3/2(2/Me4)1/2 . (3.31-7)
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From its form it is easy to see that I, is the random ion current crossing a

A

Debye sphere, if the ions had the temperature of the electrons. Poisson's equa-

tion is, finally,

2
2 - 2
(d__g +£_j_"l+e 19771/26 - .II_ _ (3. 31- 8)
at A

An approximate solution of this can be obtained by defining a sheath edge.

The quasi-neutral equation, which obtains in the plasma region, is

2 - -
nY/2e M I—I £ (3. 31-9)
A

Differentiating this, we have

- -1/2 2. d -21 -3
e ’7(-12-7; 1/ gV )ag = I)f £ (3. 31-10)

From this, we see that the coefficient of d‘n/d& vanishes at 77 = 1/2, so that

dn/d£ must be infinite there. This point marks the breakdown of the quasi-
neutral solution and may be defined as the sheath edge. This is the same pro-
cedure used in Sec. 2.4 for the plane case. If N = 1/2 at the sheath edge, and

¢ ~a/h there (a2 being the probe radius), then we have from (3.31-9)

-2 - -1/2 - -
I = Ilazh 22 1/Ze Y = A 2 l/ze 1/Zn v = 0.6lA (kTe/M)l/Zn .
a o s a o

(3.31-11)

We give this approximate solution because Bohm [1949] used the same
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method to evaluate I for the case of mono-energetic ions with non-vanishing
velocity. That calculation was very complicated because azimuthal motions had

to be taken into account, but the method of approximation using a sheath edge was
the same as given here. Bohm obtained coefficients of 0.57 and 0. 54 instead of
0. 61 in (3. 31-11), for ion energies 0.0l and 0. 5 times kTe’ respectively. Thus
the saturation ion current is quite independent of kTi and gives instead the
product n(kTe)l/Z. This is because ions are pulled into the sheath by a potential
drop of order kTe. The reverse would be true of saturation electron current if
the electrons were colder than the ions.

The exact solution of (3. 31-8) was obtained numerically by Allen et al.
[1956]. Consider the asymptotic behavior of (3.31-8). The term corresponding

1/

2
to the ion density is I/tIA § ). As £ — © we see that if 1) varies asymptoti-

-4
cally as £ ~, the ion density is finite at infinity. This is in contrast to the plane
-4
case, where as V.~ 0, n, = . Ifn —£& °, we see that " and 2n'/f approach
zero, and (3. 31-8) reduces asymptotically to the quasi-neutral equation, as

1/2

expected., If we let £ = & (IA/I)

(i)2 (——— +% gg + e-n)nl/zt2 =1 . (3. 31-12)

dC

, we have

The solutions of this for each value of I/I)\ agree at large { and are shown in

Fig. 3.4a. The corresponding 1 - £ curves are shown in Fig. 3. 4b.
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The probe potential for each value of I is found by the intersection of the appro-
priate potential curve with a vertical line at £ = a/h. The shape of part C of the
probe characteristic is found from these intersections; this is shown in Fig. 3.5

for various values of a/h. This variation of I with V was not computed by Bohm

[1949].

Fig. 3.5 ‘
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3.32 Finite Temperature: Orbital Motions

When the ions have a finite angular momentum and can make orbits, the
calculation of the ion density is so complicated that it will not be worthwhile to
follow this in detail. Instead, we shall sketch the general procedure, following
the method of Bernstein [ 1959].

Suppose that we have a spherical probe at negative potential, that the
electrons are Maxwellian, and that the ion distribution is known at some large
radius A where the collisionless region ends‘. If there is spherical symmetry,
Boltzmann's equation (l1.1-1) has the general steady-state solution

f = {(E,J) , (3.32-1)
where E and J are the two constants of the motion, energy and angular momentum.
If uand v are the radial and tangential components of velocity, V the potential,

andE the ion charge, we have

1 2 2
E = -Z-M(u +v )+ eV(r)
(3.32-2)
J = Mrv
Solving for u, we have
2 2 2
lZMu = E-eV-J/2Mr . (3.32-3)
Thus it is convenient to define an effective potential energy U, such that
2 2
U(r,J) = eV(r)+J /2Mr . (3.32-4)
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The distribution f(E, J) can be divided into f+ and f-, corresponding
respectively to ions moving away from and toward the probe. The function f
is assumed to be known at some large radius and is therefore known everywhere.
. 1 + . + .
The complexity of the problem comes from finding f . Obviously, f will be

zero for those orbits which intersect an absorbing probe and will be equal to £

for those that do not. Thus in integrating over f to find the ion density to put into

Poisson's equation, a procedure with which we are by now familiar, the domain
of integration must be divided up, depending on whether f+ =0 or f+ =f .

IfA>>a (A and a being the mean free path and probe radius, respectively),
one would expect that f would be almost Maxwellian at A, since this distribution
comes from ions which had a collision about A cm away, and the probe subtends a
very small angle at this distance. The distribution f+ at A will be depleted of
those ions of low angular momentum which have hit the probe, but this small
number does not greatly affect the total density there and does not affect the
probe current, since these are particles traveling away from the probe. Thus the
specification of f at A should determine the problem if A — %, which is the
regime of validity of the theory. Of course A must not be equal to %, since all
angular momenta are infinite there, and the specification of f at ®© would not
tell anything about the distribution of angular momenta at finite radii.

The classification of orbits is best described by Bernstein's diagram of

the effective potential energy U (Fig. 3. 6):
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Fig, 3.6

For J = 0, the p‘otentiai is everywhere negative, and the ion merely falls into
the probe. For small J, we assume that the centrifugal force term in (3.32-4)
dominates at sufficiently small radii, and there is a centrifugal barrier there.
As J is increased, a maximum as well as a minimum will appear. At Some
critical JC, the minimum will disappear, and there is only an inflection point.
Finally, for (rery large J's, the effective potential is always positive.

We note that for small J's there is a potential well. Ions trapped in this
well will make closed ofbits around the probe and never reach r = A, Therefore,
the population in these orbits will not be determined by the specification of
£ (E,J) at r = A but will depend sensitively on collisions near the probe. The
existence of such trapped ions would alter the potential distribution in a manner
which is difficult to predict and woul:" invalidate the theory. Hence one of the
results of this theory is that the probe radius must be larger than the radius of
the inflection point in JCZ; then no potential minimum can exist outside the probe

and no particles can be trapped.
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2
Consider now a probe of radius R and the curve JR which has its maxi-

mum at R. All ions with energy higher than E the energy of this maximum,

R,
will be collected; and f+ = 0 for such ions. JIons with E < ER will be either

- 2
collected or reflected, depending on the relative magnitude of E and J~. At any

radius r > R, the ions with E smaller than the magnitude of the maximum in U

at T will not reach T and therefore f' = f . Ions with very large energy or very

small angular momentum will be collected, and for these f+ =0, f =f . Thus
when the density is computed, the distribution f must be integrated over the E, J
phase space; and this space must be divided up into regions, depending on the
probe radius R, in which f+ and f are related in different ways to the known
function f .

The ion density appears, then, as a complicated integral. This must be
set equal, in Poisson's equation, to the Laplacian of V in spherical coordinates,
minus the Maxwellian electron density term. This integro-differential equation
has not been solved, even numerically, for the case of a continuous distribution
of ion velocities at large radii.

3.33 Case of a Mono-energetic Isotropic Ion Distribution

The integral in n, can be eéfmwd‘uut if f (E) 6 (E - Eo). The solution of
Poisson's equation still involves a difficult machine computation, but this has
been done by Bernstein and Rabinowitz [1959]. It has also been done by Bohm,
Burhop and Massey [ 1949] for the numerically much easier case in which the con-
ditions at a '"sheath edge'' are assumed (cf. Sec. 3.31). We shall examine the

final equation in order to gain some insight into the nature of the solution.
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The following dimensionless parameters are used:

£ = r(411n0e2/kTe)1/2

¢

L = 2e /kT v.) v o= (ZkTe/M)l/Z

S (3.33-1)
B = Eo/kTe
n = -eV/kTe ,

where the notation is consistent with that used so far. In terms of these variables,
Poisson's equation for the spherical case is

1 d, 2dn 1/2 L /2 -7
g——{ﬁ g)""(l"'%) —(1+ -W) - e y 28

(3.33-2)
1 1/2 1 L 1/2 Ry
= - - - <
30+g)7 " - 50 +g 72—2) . ESE
where £ o is determined by the condition that the second bracket on the right-hand
side and its derivative vanish at £ o It is the radius at which the maximum in the
curve of U(r) has a height equal to the initial ion energy Eo. For § < ¢ o the ion
density is smaller than for £ > 50, because a number of ions are reflected by
the potential hill to the right.
If we keep 3 finite and let £ go to % in (3.33-2), and expand in small
n/B, the first of Eqs. (3.33-2) becomes
~ g 1 L _ L 1
i F¢ @) Tlrap - 1,1/2,2 (d-m = ’7(“23) 4_17?
(3 33-3)
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Thus if 1) goes asymptotically as 5-2, the right-hand side can be made to vanish
for large & ; this is the behavior expected in the plasma region.

On the other hand, if we let B (essentially the ion temperature) go to 0
first, §o must go to © to make the second bracket on the right-hand side of

(3.33-2) vanish. Thus we must expand the second of Egs. (3.33-2) for large

n/B. This gives

2
1 d ,2dn 1,n1/2, 18, 1m1l/2, 18 Lé/ -
: 2né
= “147‘—1 = - (3.33-4)

This is the same as (3. 31-8) derived before for Ti = 0. Here 7) must behave
asymptotically as £ -4 to achieve quasi-neutrality at large £.

The solution thus has the nature of a boundary layer problem in which 7
satisfies different equations for large and small £, and the solutions are matched
at some radius, in this case Eo' When the ions are strictly cold, the region of
large £ is never reached. This explains why the solution of Allen, Boyd, and
Reynolds goes as 5-4 instead of & -2, as in the case of finite 8. In practice &
can never be allowed to go to infinity but only to some large distance A. Whether
7] goes as §—2 or §_4 near A will depend on whether A is larger or smaller than

50, which, in turn, depends on the smallness of 3. [ The author is indebted to

I. B. Bernstein for making this clear. ]
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For any given L, (3.33-2) gives a curve of 7 vs. £. These curves are

shown in Fig. 3.7.
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Fig. 3.7

A vertical line at £ = R, the probe radius, then gives the probe potential at each
current; this cross-plot gives the probe characteristic for saturation ion current

(Fig. 3.8).

Fig. 3.8
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Such a cross-plot must be made for each probe. One notes that the variation of
probe current with ion temperature is slight (~20%), in agreement with Bohm
[1949] . This result also justifies the use of a delta function distribution for the
ions.

The case of a cylindrical probe has also been worked out analogously by
Bernstein [ 1959]. In this case the appropriate dimensionless variables are the

same as (3.33-1) with the exception

I
L = —n— . (3.33-5)

The fact that L now contains the density n has the disadvantage that a large
number of curves of L must be computed in order to give probe characteristics
for the large range of plasma densities that may be of interest. Furthermore,
the comparison with experiment is clumsier, since L involves not only n_ the
quantity being sought, but also I2 instead of I. To use this theory one must make
many cross-plots from the dimensionless graphs of Bernstein. This is unfor-
tunate, since cylindrical probes are the easiest to use experimentally.

To get information about kTe or kTi from the ion current and its varia-
tion with potential would be quite difficult. As the probe voltage is made more
negative, the current would eventually become constant when the collisionless
approximation that the mean free path is much larger than the sheath breaks
down, and the current is limited by diffusion into the collisionless region. This

transition point is not given in this theory.
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3.34 Summary of Theories of Ion Collection

All of the theories presented so far are valid only for strictly collision-
less, quiescent plasmas without magnetic fields. The geometry of the probe is
assumed to be an ideal sphere with no supporting wires or an infinite cylinder
with no end effects. In all cases the electron distribution is assumed to be
Maxwellian; the collection of electrons at low voltages, which changes the electron
concentration and hence the potential near the probe, is neglected.

The original Langmuir theory (Sec. 3.12) is valid for very low densities
and small probes, where an absorption radius larger than the probe radius does
not exist. This condition is generally not satisfied in ion collection if the ions
are colder than the electrons. However, this theory may be applicable in the
tenuous plasmas of outer space.

The theory of Bohm, Burhop, and Massey [ 1949] concerns the case of a
spherical probe and mono-energetic ions of energy 0.01 and 0.5 times kTe. The
dependence on ion energy was found to be slight, and the approximate result for

saturation ion flux was found to be

kT
1 e l/2
I = E no A(_I\T) » (3. 34-1)

where A is the probe area, n_ the plasma density, and M the ion mass. In
deriving this result the approximation of a ''sheath edge'' was made; consequently,
no dependence on probe voltage is given. The formula (3.34-1) is thus quite

inexact but nonetheless quite useful. It shows immediately the dependence on the
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plasma parameters, and it gives an absolute number which can be compared
quickly with experiment. To this order of accuracy (3. 34-1) can be used even

for non-spherical probes and probes in a magnetic field, provided the appropriate
area is substituted for A. This gives an immediate, order-of-magnitude check
on the plasma density. Fhe-density profile is given-rrere—seeurately-thanthe
absolute—derrsity~— The density profile is given more accurately than the absolute
density provided the electron temperature can be assumed to be constant or if its
profile is known.,

The theory of Allen et al.(Sec. 3. 31) is also for a spherical probe and is
limited to completely cold ions. The solution is exact to large radii, and the
variation of ion current with probe voltage (i.e., the shape of part C of thé
characteristic) is given graphically. Since the dependence on ion temperature is
small, the assumption of zero temperature is not restrictive. Comparison with
experiment must be done graphically, and a separate cross-plot of the given
curves must be made for each value of the probe radius measured in Debye
lengths. This theory has the advantage that the equation is fairly easy to solve
numerically, so that curves for additional values of the parameters can readily
be obtained.

The theory of Bernstein and Rabinowitz (Sec. 3.33) is the most accurate
and the most difficult to use. Again the solution is carried to large radii, and
the variation with voltage given. Moreover, finite ion energies are considered;
and the important cylindrical case given as well as the spherical case. Compari-

son with experiment, however, involves a tedious process of cross-plotting and
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reduction of dimensionless parameters to real variables, for each assumed value

of the plasma parameters. The numerical solution is so complicated that
curves other than the ones given are difficult and expensive to obtain.

The case of a continuous distribution of ion energies has not been solved
£

except in the Langmuir theory, which neglects the solution for V(r). However,
this problem is not expected to give an answer much different from those already
obtained. All these theories suffer from the fact that the electric field from the
probe accelerates ions from large distances; hence collisions and external
electric fields, such as those required to maintain the discharge, are apt to

influence the probe current. cer Hallt Gt ek

3.4 Plane Probes

So far we have been concerned mainly with spherical and cylindrical
probes. The reason for this is that a plane probe must be quite large in order to
avoid edge effects; and a large plate will seriously disturb the plasma being
probed. In the case of an infinitely large plate, there can be no ions flowing away
from the plate no matter how far away one goes, as long as ionization and colli-
sions are neglected. Hence the unperturbed distribution at infinity can never be
achieved. There is therefore really no collisionless theory of a plane probe., A
small plane probe will act like a spherical or cylindrical probe in that the elec-
tric field will fall off radially. Equation (3. 34-1) can be used in that case.

In strong magnetic fields particles are constrained to move along the

field; hence all probes are essentially plane probes. Collisions must then be
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taken into account, and the influence of the probe may be far-reaching. The
probe current may be connected with the process which maintains the plasma,
and in this case the probe ceases to be a simple device which measures only the

plasma itself.

4. Probe Theory in the Presence of Collisions

In weakly ionized plasmas at high pressures the results of the previous
section will be modified By collisions between the collected particles and neutral
atoms. The species répelled by the probe will not be greatly affected by colli-
sions, since it is ordinarily assumed to be in thermal equilibrium anyway. We
now consider the effects of collisions not because the case of high pressures is
important in modern plasmas but because this is a necessary prelude to the case
of strong magnetic fields, in which particles can move transversely only by
collisions.

The effects of collisions on the foregoing theory are two-fold. First, if
the mean free path A is less than the characteristic length of the potential
(roughly h), the equation of motion of particles in the sheath will differ from the
free-fall equation, and one would expect that the potential profile and hence the
probe current would be altered. Second, if A is not considerably larger than the
probe radius a, the distribution of velocities at the edge of the collisionless

region will differ from the undisturbed distribution, since the probe is large

enough to block a non-negligible portion of the particles arriving at this edge.

-70-



This depletion of the plasma at the boundary of the collisionless region can@

be calculated by considering the collision-dominated region. Thus the effects of
collisions must be considered if either the condition A > > h or the condition
A > > a is not satisfied.

4.1 Probe at Space Potential

The second effect, that of depletion of the plasma when A > > a is not
satisfied, can be readily illustrated in the case of a probe at space potential,
when there are no electric fields to be taken into account. We shall give an im-
proved version of the treatment of Bohm, Burhop, and Massey [ 1949], which is
valid for almost any shape of probe.

Consider a probe of area Ap and any convex shape immersed in a plasma.
One mean free path A from its surface we draw an imaginary surface of area AA'
Outside of this surface we shall assume that particle motion is collision
dominated, while inside the motion is collisionless. If nA is the density at the

surface A)\’ and if the velocity distribution were isotropic there, as would be the

the random flux crossing A)\ inwards would be

case if A << A_,
P A

i =L, 3 (4.1-1)

Jp T 2% ’ T

where v is the average magnitude of the thermal velocity. The current striking

the probe would then be this times the probe area:

v A . (4.1-2)

1
I—-‘—lnh P
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On the other hand, if Ap '<VAA, that is, if the mean free path were so short that

the surface A)\ is very close to the surface Ap’ then the distribution at A)\ cannot

. be isotropic, since there cannot be any particles there coming from the probe.

In this case the density n

S\ is only half as large, and the probe current is instead

n, v Ap . (4.1-3)

-
i
N

In general, for arbitrary A,

n, v Ap
I = T— N (4.1-4)

where K is a constant varying between 1 and 1/2, depending on the relative magni-

tude of A)\ and Ap. For a sphere of radius a, consideration of the solid angle

" over which the velocities are distributed at A. shows that

A

K = 1-+ i#é)'z . (4.1-5)

~5[= (- 12y )

The current I can be computed another way. In the region outside A)\, the

particle current density is controlled by diffusion and mobility and is given by
7 = -DVa-pnvv (4.1-6)

D and [ being the coefficients of diffusion and mobility, respectively. Since the
probe is at space potential, we shall assume that there are no electric fields,
and VV vanishes. We shall examine this assumption later. In the exterior re-

gion j is conserved, so that V.j = 0, From (4.1-6) we see that if D is constant,
- 2
V+j = -DVn =0 . (4.1-7)
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The probe current is the integral of the normal component of? over any surface

enclosing the probe. Choosing this surface to be A)x’ we have

I = S—T-dg’ = DS‘Vn-dg’ , (4.1-8)

T and ds being oppositely directed. This integral depends only on the geometry
of the surface A)\’ since n is a harmonic function outside A)\' This can be seen
by making an analogy with the problem of electrostatics.

Consider a conductor with a surface A, immersed in a vacuum. Outside

A

2
A, , the potential V satisfies Laplace's equation V'V = 0, Integrating Poisson's

A ’
equation

2
V'V = - 4mp

over the volume inside AA’ we have for the total charge on the conductor

—4mq = gvzv r = va- ds . (4.1-9)

We know that q depends only on the geometry and is given by the capacitance of
the surface A)t:

q = VvV, -V) . (4.1-10)

Since n and V satisfy the same equations, we can make an analogy between I and
q. From (4.1-8, -9, and -10), we have

I = -4mqD = -4vCD(V, - V) = 4vCD{n_- n,) , (4.1-11)
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n_ being the density at .
Now we can equate this to the value of I computed for the collisionless

region (4.1-4):

I = 4rCDfh_- n,) = nvap/4K . (4.1-12)
Solving for n, and I, we have
-
4
n, = n ZCD , (4.1-13)
47wCD + vAp/4K
and
vA n vA VA
B P 4wCD o 'p p -1
I =5 n = — [ +161TCD] (4.1-14)

47CD+ v Ap/4K

2
Specializing now to the case of a sphere, we have that Ap = 4ma and
C=a + A, this being the capacity of a sphere of radius a + A. Then the probe

current becomes, with K from (4.1-5),

noVAp v az ﬁ -1
“T[Tnam*?‘%f] : (4.1-15)

Since the classical diffusion coefficient is

‘

D = —5 , (4.1-16)

this becomes



A K
_ _° pr3a_a 1, X=2,-1 ]
= G x ot ot ] , (4.1-17)

or » \/<

n vA
1= 2 B2 ro)t - Doyt (4.1-18)

=== (ee) ) 3 T

with

g = A/a . (4.1-19)

In the limit of large 0, (4.1-18) reduces to the collisionless random

current, I = no; Ap/4. In the limit ¢ — 0, (4.1-18) becomes

(4.1-20)

—
]
(o]
ge]
—,Al(,\»‘-')c
>

Thus in the limit of small A, collisions reduce the probe current by approximately
a factor A/a.

We now return to the assumption of zero electric field, The expression
for ny (4.1-13) is of course valid for either species of particle, as are all the
formulas in this section. Since D NAT/, v will cancel out of the equation. All the
remaining parameters depend only on geometry, except A. Thus if A is dif-

ferent for ions and electrons, n, will differ, and an electric field must be set up

A

to reestablish quasi-neutrality. Consequently, for small A/a it is not really
possible to bias a probe at space potential, since its very presence changes the

space potential. Our derivation of (4.1-20) must therefore be regarded as

approximate.
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4,2 Saturation Current in the Limit A < < h

We now consider the opposite extreme when a large voltage is put on the

probe and electric fields are important. This problem is simplified if we assume

that the mean free path is much shorter than any other length in the problem, in-
cluding the Debye length, so that particle motion is collision-dominated every-
where, even in the sheath. We shall then see how this "diffusion sheath' differs
from the collisionless sheaths we have considered up to now. We shall pay par-
ticular attention to the case of a cylindrical probe for two reasons: the integrals
are tractable, and the result may be directly applicable to the case of a strong
magnetic field.

4.21 Cylindrical Probe

Let an infinite cylindrical probe of radius 2 be immersed in a plasma of

density n_. Let particles 1 be collected so that e_V is negative, and let the

1

potential be so high that particles 2 are essentially Maxwellian, Further, let
the motion of particles 1 be completely collision-dominated, so that the flux is
describable in terms of a diffusion coefficient D and a mobility § (pertinent to
species 1):

jl = - Dan - [J,nl vv . (4. 21-1)
Poisson's equation is

V.2 -ezV/sz

V = -4'n-el(n1 -ne ) . (4.21-2)

For any probe current I, jl is known since I is conserved, and these two

equations may be solved simultaneously for n, and V. To make furthefprogress,

1

!
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we must now make the first of two important simplifications: that the probe
potential is so large compared to le that the D term in (4.21-1) can be neglected
relative to the U term. This can be seen as follows. If An and A_Vare the
characteristic lengths of the gradients of n and V, then in view of Einstein's

relation for classical diffusion,
b= —= R (4. 21-3)

we have

~ — (4.21-4)

Dan N le AV
p.anV eV An

Providing that the A's are of the same order of magnitude, the D term is smaller

than the | term by the ratio le/eV.

With this simplification, (4.21-1) gives the ion density:

n, = =— . (4. 21-5)

+ournd

In cylindrical symmetry, the total current I per unit length do the probe is

I = - 21rrj1 . (4. 21-6)
With e2 = - el, Poisson's equation now becomes, in cylindrical coordinates,
1d, dv, _ I e1V/kT;
- dr(r ) -411e1[ IV - B ] . (4.21-7)
2mrp —
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In dimensionless form this becomes

1 d dn -L -1
— ——(p 1)y = - , 4,21-8
) dp(p dp) pﬂ e ( )
dp
where
n = -elV/kT2
2 2

p = r/h h = kT2/4-rrnoe1
L= 1/1O

. 1= anoulsz/el . (4.21-9)

From (4.21-8) it is clear that a quasi-neutral solution at large radii can be ob-
tained only if dn /dp approaches -L/p as p approaches ©and N approaches 0.
Then the right-hand side vanishes at ®©, corresponding to equal charge densities.

Thus the asymptotic behavior of 7 is

p P ,
d -
S Sa%ldp:_’gédp . (4.21-10)
p—»OO
[+ o] o0

This integral diverges, so that strictly speaking the cylindrical problem is not a
well-formulated one. Consideration of the D term, which we neglected, does not
help the asymptotic behavior; the potential simply falls so slowly that one would
expect an infinite current per cm to a cylindrical probe. In actuality this, of
course, does not happen because there is a) ionization and b) end effects, so that
Iis not strictly constant with radius. From (4.21-10) it is apparent that any de-

Witk ¥
crease, however slight, of I and hence of LAwill make the integral converge.
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The cylindrical probe at high pressures is therefore not a true probe in that its

influence necessarily extends into the region where ion production is important.
The solution of (4.21-8) can be found if we impose a ''sheath edge'" at

p = s and assume that dn/dp = 0 at p = s. To solve this analytically we must

also make our second approximation: that the potential is so high that the density

of particles 2 can be neglected. Then Poisson's equation becomes

l _d_ (p d_7.7.) = -t
pdPap’ " Tag
dp
or
1 df -1 df
— = = =, — = - 4,21-11
5 d - I % Lp ( )
where
d
f = £ .
P) =p T
Integrating from s to p, we have
1 2 1 2dp2 _ L, 2 2
Ef ..-Z-p(dp) = 2(s -p) (4.21-12)
dn 1/2 s? 1/2
—L L (= -1) (4. 21-13)
dp 2
p
1/2 s 1/2
n-ng =t 5(—5-1) dp . (4.21-14)
p
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From No. 36l.01 of Dwight's Tables of Integrals, we find finally that

S

2
1/2 2 2.1/2 s s 1/2
n-n_ = MR- e -slog[—+<—7-1)/] F.
p
p
(4.21-15)
alh
Substituting a for p gives the probe potential.: This is, then, the high-pressure
equivalent of the Child- Langmuir space charge equation (3.11-6). If we convert
(4. 21-15) back to real units by (4.21-9), we will find that the dependences on kTZ

and n0 cancel out; and, aside from the geometrical factor, the current I is propor-

/2

tional to (V - Vs )2, as contrasted with (V - VS)3 in the collisionless case
(3.11-6).

The condition A < < h is ﬁsually not fulfilled in highly ionized plasmas,
and this theory is then inapplicable. However, if there is a strong maénetic field,

the mean free path is effectively reduced to r the Larmor radius, in directions

L’
perpendicular to the field; and this may, for electrons, become smaller than _}_1
Since in the case of the infinite cylinder all motions are transverse to the axis,
this theory is directly applicable in strong magnetic fields if Uy is replaced by “'J_’
or u/wz'rz.

4.22  Spherical Probe

The case of a sphere is entirely similar, except that one must replace
(4.21-6) by
2.
I = - 4wr 3 (4.22-1)
and (4.21-9) by

I, = 41Thnop,kT2/e1 . (4.22-2)
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Poisson's equation in spherical coordinates is then

2 an -L -7

1 d
-—ZE (p dp) = W- e . (4.22-3)
P P P

In order to achieve a quasi-neutral solution, we must have for large p,

dn _ -t (4.22-4)
> .
o p
or
L
n -5 - (4.22-5)

In this case the potential does fall fast enough to allow a solution which does not
depend on conditions far from the probe.
If we neglect the exponential term and make the transformation x = 1/p,

(4.22-3") becomes

2

dx n
dzn dn L
dx X

In neglecting e-n we have, however, destroyed the asymptotic behavior and
must assume a sheath edge at X . The last equation can be integrated once from
X to x to give

dp _ ,2 \1/2 1 1 .1/2
o - (3 ‘_ (4.22-7)

The final integration must be done numerically.
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4,23 Plane Probe

In this case we have

SRR (4.23-1)
I = nou.kTZ/elh (4.23-2)
and
Zzg - d'r;;dg e (4.23-3)
For a quasi-neutral solution at § = o, dn/dg must approach a constant, equal

to -L. Itis clear why this is so. Since jl is constant by (4.23-1), there must be
a finite electric field to drive this current no matter how far from the probe one
goes, as long as ionization is neglected. Hence the plane case is even worse than
the cylindrical case asymptotically, and the probe current depends strongly on
the ionization mechanism.

We can, nonetheless, solve the space charge problem of two parallel

plates at £ = 0 and £ =3s, with d/df = -1 and 77 = 0 atds. Multiplying (4.23-3)

by dn/d¢ and integrating from & = £ to & =3s, we have

2
A LR R SR

_4an [L2+2Lé"'s-§)+2e'77-2]1/2 . (4.23-4)

The final integration can be carried out if we neglect e_nqﬁﬁ’
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2 /2.t 3/2 - 1.3/2
= 3 (2t) [(z+8)"7 - (3) ]

IRV (O L I (4.23-5)
-

o
-l

This gives the potential profile for space charge limited flow, to be compared

N F‘:_‘/ ‘Ltw%/‘ f‘ ] Gl ctaat L s j-t". AR Y
with the collisionless formula (2.21-8).  2>¢-: . ., . ,]3/1 T2 o Tha il
4 3 r
4.3 Summary of Probe Theories with Collisions

In the limit of small A, the case considered in Sec. 4.2, the problem has
been analyzed in detail recently by Su and Lam [1962]. This treatment is
limited to the convergent spherical case. Two limiting cases are given. First,
in the limit of high probe potentials the particles 2 are assumed to be Maxwellian.
The joint solution of (4.21-1) and (4.21-2) is discussed, but in the actual numeri-
cal computations the D term is omitted, as in Sec. 4.2. However, the exponen-
tial density term is retained. Second, in the limit of small probe potentials the
density of particles 2 cannot be assumed Maxwellian, and the D term cannot be
omitted. However, it is possible in this case to expand in powers of 7. Numeri-
cal probe curves for saturation ion current are given. Moreover, the criterion

for validity of the small A assumption is given to be

TN

a (h.)
i

2/3<< )

( , (4. 3-1)
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where hi is the ion Debye length and a the probe radius. This condition refers
to the case of small 77 and may be relaxed for large 17. The generalization of
this theory to all values of 7 has been carried out by I. Cohen [1962].

These curves show good saturation at high probe potentials; that is, the
probe current is more constant than the collisionless theory would predict. This
often occurs in experiment; and when it does occur, one should suspect that the
current is diffusion limited.

When the mean free path is neither large nor small, the theory becomes
extremely complicated, since there is no simple equation of motion. The first
analysis of a probe at high pressures was made by Davydov and Zmanovskaja
[1936], who assumed that AR h, so that quasi-neutrality obtained in the diffusion
region, and free-fall occurred in the sheath. Ionization was taken into account,
but the sheath criterion (2. 31-10) seemed to be unknown to them. In 1951, R. L.
F. Boyd considered the case of intermediate mean free path by dividing space
into four regions and matching boundary conditions at each interface: a sheath
region in which n, £ n_, an abnormal mobility region in which n, ~ n_ and

/2

\ ~ (VV)1 , a normal mobility region where (4.21-1) is satisfied, and an undis-
turbed plasma region. A result of this very complicated analysis was that the
probe current cannot be computed without prior knowledge of the sheath
thickness.

The transition from collisionless to collision-dominated probe collection

was studied by Schulz and Brown[1955]. For no collisions, the Langmuir theory

was used. With one collision in the sheath, the probe current was found to be
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increased, since the orbital motion was disrupted. With several (2-10) colli-
sions in the sheath, the ions can be scattered out, and a plural scattering calcu-
lation by Cobine was used. For many collisions in the sheath, Eq. (4.21-15)
was used. Semi-empirical formulas were given for each case, and the theory
was checked against microwave measurements of density, with extremely good
agreement.

In all this work the classical diffusion and mobility constants were
assumed. In fully ionized plasmas the diffusion coefficient varies with density,
and these theories would not hold. However, the mean free path for Coulomb
collisions is usually so long that the collisionless theory usually would apply,

except in dense, cold, fully ionized plasmas.

5. Probe Theory in the Presence of a Magnetic Field

As we have already seen, probe theory in the absence of magnetic fields
is sufficiently complicated that in most cases of interest numerical solutions of
the equations are necessary. When a magnetic field is added, the problem
becomes so difficult that it has received only very spotty treatment up to the
present time. This is unfortunate, since most plasmas of interest today employ
a magnetic field to aid in confinement; this applies both to plasmas of thermo-
nuclear interest and to the Van Allen belts.

The main difficulties introduced by a magnetic field are twofold. First,
particles are constrained to gyrate about the lines of force, so that particles

move at different rates along and across the field. This introduces an aniso-
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tropy which makes the problem at least two-dimensional. Second, the effective
mean free path across the field is of the order of the Larmor radius, since
particles can travel only this far without making a collision; and since the
Larmor radius is quite small for electrons even for moderate fields, there is
essentially no collisionless theory in such a case. In fact, for very strong fields
any probe will resemble a plane probe, since particles can come to it from only
one direction; and we have seen that the current to plane probes depends on the
mechanism of plasma production in the entire volume and is not a local property
of the plasma itself. We shall first consider the problem in general and then dis-
cuss the few specific cases which have been treated.,

5.1 Overall View of the Problem

When a magnetic field is applied, the most noticeable effect is that the
saturation electron current is decreased below its value in the absence of a field.
The ratio of Ie to Ii is normally of the order of the ratio of electron to ion ther-

1/2 /2

, and this is of the order of 102. In

mal velocities, i.e., (kTe/m) /(kTi/M)1

a magnetic field weak enough that the ion Larmor radius r_. is large compared

Li
to the probe radius a and the Debye length h and hence that Ii is not affected, but
strong enough that Tle is comparable to or smaller than the relevant dimen-
sions, this ratio falls to 10 or 20. This is presumably because the available

electron current, which normally is that diffusing to a sphere of radius of order

A, is decreased by the magnetic field B to that diffusing at a reduced rate across

B into a cylindrical tube defined by the lines of force intercepted by the probe.

The normal diffusion coefficient D, as given by kinetic theory, is Av/3.
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The diffusion coefficient across a magnetic field, in the case of classical col-
lisions with neutrals, is

D = D/(l + (.OZT 2) , (5.1-1)
where w is the cyclotron angular frequency, and 7 the mean collision time.
Equation (5.1~1) also holds for fully ionized gases. Since wWT for electrons is
typically above 102 (at 100 gauss and 10 microns neutral pressure), D.L is

severely reduced even at small fields. For ions, W is decreased by m/M while

/2

1 2 2
T = (nOO'v) is increased by approximately (M/m)”’ ", so that W 7 is at least

2000 times smaller than for electrons. Thus D.Li is decreased severely only for

large B, and the conditions assumed in the previous paragraph can actually occur.
(For the derivation of (5.1-1) the reader is referred to Kadomtsev and Nedospasov,
J. Nucl. Energy, Part C, 1, 230 (1960).) At large magnetic fields anomalous dif-
fusion almost always occurs, in which D, is much larger than the value in (5.1-1).

1

An important functicn of probes is to measure the unknown anomalous value of D.L .
Another effect of the magnetic field is to destroy electron saturation; that
is, part A of the probe characteristic continues to increase with voltage. This
may be because the effective length of the flux tube into which electrons can dif-
fuse to reach the probe increases continuously with voltage; however, this part
of the characteristic has not been analyzed in detail, and it is not possible to give
an exact physical picture.
As for the transition region, part B of the characteristic, it seems

reasonable that at high negative voltages, when the drain of electrons is small,

the plot of /n Ie/Vp should still be linear when the distribution is Maxwellian,
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and the slope should still give the electron temperature, The sheath around a
spherical probe will now be asymmetrical, but the addition of a magnetic field
cannot change the state of thermodynamic equilibrium, and this state is such
that the velocity distribution in any direction is exponential. However, for
strong fields it is possible that a complete equilibrium is not reached, but in-

stead the plasma is describable by different temperatures T 6 for motions perpen-

1

dicular to B and T, for parallel motions. In such a case one would expect that

the slope of part B would give T, , since most electrons reach the probe by

i’
traveling along B. The exact analysis of this part of the characteristic has not
been done.

Near the space potential, the absolute magnitude of the electron current
has been estimated by Bohm et al. (Sec. 5.2), and the variation with potential by
Bertotti (Sec. 5.3). However, the behavior is sufficiently obscure that at the
present time it is not known which point on the characteristic corresponds to the
space potential. The point of intersection found by extrapolating parts B and A
of the characteristic is not necessarily near the space potential when there is a
magnetic field as it is when there is not.

Part C of the characteristic, the ion saturation current, has so far
defied all attempts at analysis in the case of a strong field, when T is com-
parable to or smaller than other relevant lengths in the problem. In weak fields,
as mentioned before, the ion current should not be greatly affected. Since the
electron motion is affected, one would expect that the ion sheath around a nega-
tively charged symmetrical probe would not necessarily be symmetric. The ef-
fect of this on the ion current has not been treated.
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5.2 Electron Current near the Space Potential

The electron current at small positive probe voltages can be estimated
in a manher similar to that in Sec. 4.1. This approach was originally suggested
by Béhm, Burhop, and Massey [1959]. Consider a probe of arbitrary shape im-
mersed in a plasma in a magnetic field. Let the positive probe potential be so
large that very few ions are collected, but small enough that the electric field has
little effect. on the motions of electrons. Obviously these conditions are com-
patible only if Ti << Te. Let the mean free path along B be A, the Larmor

radius be oo and the diffusion and mobility coefficients along and across the

field be D, DJ.’ K, and u.l.’ where D, is defined by (5.1-1) and p.l is defined

1

similarly.
As in Sec. 4.1, we assume that the motion across the last mean free path
is unhindered, so that in terms of the density n, one mean free path away from

the probe the current is given by (4.1-4):

I = A — (5.2-1)

where K is a constant varying from 1/2 (if the surface A)L is far from the probe)

to 1 (if A)t is close to the probe). With the magnetic field, the surface A)\ will

be skewed, somewhat as shown in Fig. 5.1, since the length of a free path along

B is A, while across B it is only r The exact shape is not important.

L
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Fig. 5.1
In the region exterior to AA’ we shall assume that the collision-dominated equa-

tions obtain and that current is conserved. The electron flux is given by

—
j = -D+Vn+npu- Vv (5.2-2)

where D and Ju are diagonal matrices:

Dl 0 ©0 Ky 0 ©
D = 0 Dl 0 ’ M= 0. By 0 . (5.2-3)
0 O D 0O 0 u

The mobility term can be evaluated if we assume quasi-neutrality in the exterior

region. Then n_ is equal to n,, which in turn is given by the Boltzmann relation:
1

n = oo = e VKT (5.2-4)
e 1 (o]

Thus,

WV . (5.2-5)

Vn = n(kT
i

Using this and the Einstein relation (4.21-3) (assuming the latter to hold even in
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a magnetic field), the current becomes
+

T,
j = -D-Vnlliz) (5.2-6)
e

We shall ignore the correction factor (1 + Ti/Te) since this must be close to

unity from our original model. Since current is conserved and D is assumed

constant,
2
2
.v-j = DVn+D23 - 0 . (5.2-7)
11 2
9z
If we let
a = Dl/D (5.2-8)
and
¢ =Naz, (5.2-9)
(5.2-7) becomes
8° 2
0=D(Vn+——-n)=DVn, (5.2-10)
ac’ L€

2
where Vc is the Laplacian in {-space, in which lengths in the direction of B
have been contracted by a factor N . Thus n is a solution of Laplace's equa-
tion in -space.

The probe current is found in terms of n, by integrating j over AA:

A

I:Slj'dS:S'dS'ID S’ Vn+DSdS '% .
)

A ? A\ A (5. 2-11)
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To transform the integrals to {-space, we note that 9/0z =Na 9/8% and

dSJ. = dSi/’\/(_x, while dS, and V.Ln are unchanged by the transformation (the primes

indicate quantities in {-space), so that

I = DN/&SV'nodS' . (5.2-12)
AL

This integral can be evaluated for any simple surface A! (the transformed sur-

A

face A)\)’ but there is no need to do this, since we saw in (4.1-11) that this is

given in terms of the capacity of the surface A! relative to infinity. Thus

A

I = 4nNa CD(n_-n,) . (5.2-13)
o A
From this and (5.2-1), we have
n)\;
I = Ap4— = 4Tr'\/&CD(nO-nA)
n
n, = > , (5.2-14)
A v
1+ P
l6rKNa CD
and _ _
novA A v -1
I =—-—4——E[K +—E ] . (5.2-15)

16N CD

For strong fields we can neglect the first term in the brackets; then using

—_ 2
P-=Aw/3 and ,Ap = 4wa  for a sphere, we have

L
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nvA 4mn v
[ - P ANaCr ° Nacx . (5.2-16)
1 a2 3

If, in calculating C, we assumed A, and hence A' to be an infinite

A A
cylinder with its axis in the z-direction, or if we assumed the probe to be an
infinitely long wire, we would find that C ~ L/ln(b/a), where a is the radius of the
surface A)\’

Since we are interested in the limit b — o, I, ~ o the value of C depends on how

b is the outer radius, and L the length of the region in question.

these limits are approached. Thus we recover the result of Sec. 4.21 that an in-

finite cylindrical probe in the collision-dominated case is not a well-posed

problem. The finite length of the surface A')\ must be taken into account.
Returning to the case of a spherical probe, we note that the surface A?«.

in this case can be approximated by a prolate spheroid of minor radius a + T

and semi-major axis a + A. In {-space, the transformed surface A;\ then has a

radius b perpendicular to B and a semi-axis d along B, where

(5.2-17)
No (a +A) = Naa

o,
1}

This spheroid is prolate or oblate depending on whether a is less than or greater
thanNa A. The capacitance of such a spheroid can be found from standard texts
to be

Zf/z
2)172 ’

d(l - p
-1
tanh (1-p

(5.2-18)

o
I
olo
A
—_
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i

i

{
i

/2

2
dp” - 1) b
/2 P =73

C =
tan" ! (p2 - 1)

>1 . (5.2-19)
These formulas, together with (5.2-17) and (5.2-15) or (5.2-16), then give the
saturation electron current at a small positive potential under the assumptions
that Ti << Te’ that orbital motions can be neglected in the free-fall region, and
that quasi-neutrality obtains elsewhere. The neglect of K in (5.2-15) is justified
whenever the field is strong enough to make I much less than its zero-field value.

The expression for C diverges as d - ®@as one would expect; the potential
in the infinite cylindrical case falls so slowly that if one could maintain a density
no at infinity, the current would be infinite. When p — 1, the inverse tangent
and hyperbolic tangent ean be replaced by their arguments, and both expressions
reduce to the spherical case, C =b. Whend =0, (5.2-19) reduces to the
capacity of a disc:

C = — . (5.2-20)
P
This differs only slightly from C = b. Thus in the range p f/l the probe current
depends insensitively on the assumed length and shape of the surface A!; the

A
24

opposite is true if p,?”}5 l. Fortunately, the interesting range of p centers around

one. This may be seen as follows if one assumes classical diffusion:

"

e
i
o.lo

aWw
= Y= (5.2-21)
v

Noe A

-2 10 -
For average laboratory conditions, a =10 cm, w=2 x10 sec ! (1000 gauss),

and v = 2 x 108 cm/sec (kTe~10 eV), pis justl. At higher fields and larger

-94-



probe radii, in principle P can be as large as 100; however, what normally happens
at high fields is that transverse diffusion becomes much larger than the classical
value, and this increase in & reducesgback to the order of unity.

The dependence of I on D.L can be seen if we approximate C by

b (®a); then from (5.2-16),

- _° ' p . 42 _
I 7) 3a~/& , (5.2-22)

whére3 is the probe radius, and a = DJ_/D° Thus I varies only as the square

root of D ; this is because part of the probe current comes from diffusion

1
along B, and this is unaffected by a change in D.L'

Equations (5.2-22) and (3. 34-1) are crude but useful approximations to

the saturation electron and ion currents to an arbitrarily shaped probe in
rLe('ka-'l‘ﬁ {“-:i- TF ke 0»'—} >\ oane blw\«ﬁ\) E . (f--)r‘ll/) "a,;v-t--v
moderate magnetic fields (?E'_L,.f?)’a)- the vlut of Dy wheriaa i+ i Llassiend oy noty Unf

0wt denn at Wl ok POt b clanscker pe ooy,
5.3 ""Collisionless'' Theory of a Probe in Strong Magnetic Fields e it g

In the previous section we considered the particle currents in the collision-
dominated region but neglected the detailed behavior of the electric field and
particle motions in the collisionless region near the probe. Now we shall des-
cribe the theory of B. Bertotti [1961], which treats this region but neglects the
asymptotic behavior in the transverse direction. In order to obtain a tractable
problem it has been necessary to reduce the problem to one dimension and to
make a number of mathematical simplifications.

Consider a probe of cross-sectional area AP in a strong magnetic field B.

Let the probe voltage be so high that particles 2 are essentially all repelled and
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therefore are Maxwellian. This is of course true in the long run in spite of the
magnetic field, since the latter cannot affect the thermodynamic equilibrium of
particles 2. Because of the weak communication across lines of force,

however, it takes longer to achieve this equilibrium in a field than without one,
and we must assume that the time concerned is short relative to the confinement
time of particles 2. The size of the Larmor radius of particles 2 then makes no
difference; the density is given by the Boltzmann law whether the gyroradius is
large or small. The gyroradius of the collected particle 1 will be assumed small
compared to the probe radius.

The probe is assumed to collect only particles traveling along B in a
tube of radius a + T where a is the probe radius and T the gyroradius of
particles 1, and a > > Ty The population of particles in this tube will be con-
trolled by transverse diffusion into the tube from the undisturbed plasma. The
diffusion coefficient D.L can be classical or anomalous (caused, say, by fluctua-
ting electric fields), but the theory is most useful in the case of anomalous dif-
fusion. Ordinary collisions suffered by a particle in the course of its travel
along B in the tube defined by the probe are completely neglectéd. The theory
is "collisionless'' to the extent that a DJ_ which does not depend on collisions
with particles can be used.

The basic assumption of this theory is that the radial fall- off of poten-
tial (and hence density) as one leaves the probe and the tube of force it inter-

sects has a characteristic length of the order of the larger of r. and h, both of

L

which are small compared with a. Hence the undisturbed density n is reached

-96-



in a relatively short distance radially. All quantities will then be averaged

over the cross-section of the tube, and this will become a one-dimensional theory
in the dimension z, along B. As one goes away from the probe in the z-direction,
the undisturbed density will be approached asymptotically, since there will be a
larger and larger distance in which particles can diffuse into the tube and
replenish the particles lost to the probe. The behavior of n and V in the z-
direction will be given by the theory. This problem is very similar to the
problem discussed in Sec. 2.4 of a collisionless discharge between infinite
parallel plates. Instead of ionization we have here transverse diffusion which
feeds particles into our one-dimensional space. There is here however a
""recombination' mechanism due to the loss of particles from the tube due to the
same diffusion mechanism which brought them in. This loss rate is specified by
DJ_ and is taken into account in the theory, whereas recombination was neglected
in Sec. 2.4.

The transverse diffusion is inmagined to be given by a frequency s, which
is constant in space and time and gives the rate at which particles are exchanged
between lines of force. Thus into a volume 1-ra2dz of the tube of force defined by a
probe of circular cross-section, there are naznos dz particles per second trans-
ported from outside the tube (where the dengity is no), and there are -uaznl(z)s dz
particles per second transported similarly out of this volume. The net flux is
then found by dividing the difference by the area:

2
ma s dz(no - nl)

. 1
j = v ds == sa(n - nl) . (5.3-1)
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The parameter s can be related approximately to D_L by assuming that the radial

gradient of n has a scale length oo the gyroradius of particles 1; then the flux is

also
j = D@ -n)r, (5.3-2)
and so

D, ~=sar . (5.3-3)

If ) and V are understood to be the average density and potential over a

cross-section of our tube, they are related by the following one-dimensional

Poisson equation for e, = - e_:

1 2°
a’v e2V/kT
= - 4me (n, -n e 2 2y . (5.3-4)
2 1'1 o
dz
We shall employ the® usual dimensionless variables:
= - >
. 7 e1V/kT2 0
£ = z/h
21/2
h = (kT2/41rnoe1) (5. 3-5)
1/2
u = V/Vs s vy = (ZkTZ/ml)
Vv = nl/no
Eq. (5.3-4) then becomes
o= v-e o, (5.3-6)
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and conservation of energy for particles 1 gives/ Ao om-a te Sikions § awd 4}

WCE) - ) = W) - () . (5.3-7)

We can also define a dimensionless diffusion coefficient Aand a corresponding

dimensionless s:

A = D_L/vsh
(5.3-8)
o = sh/vs )
so that (5.3-3) becomes
A lZO' ax rL"k ) (5.3-3a)

where a* and rﬂ" are measured in units of h.

The next task is to calculate V in terms of 0 and the initial velocities of
particles 1. For simplicity Bertotti assumes that these have a uniform velocity
+ ug in the £ -direction, half the particles going in each direction. The extension
to a continuous velocity distribution complicates the equations but does not intro-
duce any new effects. Let Lt({,{) be the dimensionless particle current
(normalized to novs) which enters the tube in a unit length at £ and reaches £ .

The current that enters at §, t({,{), is given by the diffusion parameter0:

o , (5.3-9)

N

L(C:C) = _'I:

the + 1/2 indicating that half goes one way and half the other. As this component
of current travels toward &, it is being diminished by diffusion out of the tube at

a rate proportional to 0 and to the density t/u:
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aL(‘EvC) _ =0L(£,C)

& T TuE. D (5.3-10)
where u is given by (5.3-7):
2 2
u (§,8) = u_ +mE)-nE) . (5.3-11)
It is clear then that L varies exponentially:
L(§,8) = _flzce-(”(g’m , (5.3-12)
where 7 (£,€) is the time, normalized to h/ v taken to go from & to & :
3
T(£,8) = S‘%ﬂ >0 . (5. 3=13)
9

Of course, if uj were too small compared to 17, some particles entering
the tube heading away from the probe would be turned around by the potential.
These would contribute twice to the density and would greatly complicate the equa-
tions. Hence we must assume for all 1

2

ul > (5. 3-14)

This means that the theory is limited to small probe potentials, and usually to
Canaller #oan kT{/C,

electron collection, since if Ti << Te, a probe potential thie—smadi- would not be

sufficient to repel most of the electrons and cause saturation. With this assump-

tion, the density at £ is given by the integral over all partial currents from

£ =0 (at the probe)to & = o
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©0

-07(§,¢)
V() = ‘(5 Dage o Lol 777 g . (5. 3-15)
0% 72 §Iu<£,§)l

Because of the absolute value sign this is conveniently broken up into two
integrals. Letp =& - §£. Then using (5.3-15) for ¥ and (5. 3-11) for u, we have

for Poisson's equation (5. 3-6)

" g " ap
n -_—
? OS ot -ne+ont?
-
o e dp
+5 , (5.3-16)
23ﬁ[uj tn(E) - ni+pnY?

where 7 =7 (£ ,£ + p) is given by (5.3-13) and (5. 3-11) in terms of 7. This is an
integro-differential equation for n(§), with 7(0) = np, 7N(%®) =

The probe current density j is the integral over the partial currents td{:

o0 o0
nv~a

j = novsgdg L(0,¢) = OZS ge"’ T(O’C)dc (5. 3-17)

(o) (o]

by (5. 3-12). Here T is given by (5. 3-13) and (5. 3-11) once 7 is known.
The complexity of this equation is apparent. The nature of the solution

can be seen, however, in a much simplified case, in which

~
=
<

1 s
o = = E(_) =— 0 . (5.3-18)

3
<
o
[AV]
c

-101-



In this case u is so large that in (5.3-11) u can be replaced by + u s in other
words, the particle motion is unaffected by the potential. This corresponds to
collection of one species which is much hotter than the other; usually this im-
plies electron collection in the presence of cold ions. Also, the time 7 in
(5.3-13) is approximated by 7 (£,§) = uo-l ¢ -€|. Equation (5.3-16) then simpli-

fies to

ol 3
nvte - ?crll_ge-op/uod“%_ge-op/uodp
(o] (o]
(o] o
n"+e"7 = 1-l2e'°£/°o . (5.3-19)

This equation has a rather peculiar behavior if we set 0 = 0, correspond-

ing to no transverse diffusion. Then

ng+e_n°- -0 . (5.3-20)

o =

This means that quasi-neutrality can never be attained: the equation for 7]0
cannot be established for U 0 and 77(;' = 0. The physical meaning of this is
clear. If there are no collisions and no transverse diffusion, the very presence
of an absorbing probe removes all particles 1 vtraveling toward the probe, and
hence the density at ®©can be only(l/Z) n_. On the other hand, if we first change

the unit of distance so that

Ex =0&/u (5. 3-21)
and (5.3-19) reads
d277
2 2 - -5k
o ;°+e’7°°=1-l2eg , (5.3-22)
aE*

-102-



and then let ¢ — 0, we get
1 sk
e t5e -1 =0 (5.3-23)
or

n, = - [l -% e08/v0y (5.3-24)

This solution and its derivatives do approach 0 for & — ©, In fact the quasi-
neutral solution is guaranteed in this case because as 0 — 0 in (5.3-22) the dif-
ferential operator is neglected.

This is therefore a boundary-layer type of problem in which two different
equations obtain for different regions, and the solutions must be matched at the
common boundary. The position of this boundary will depend on the size of g.
We have met this situation before in Sec. 3.33 on ion collection, in which the non-
uniform convergence occurred when the ion temperature approached zero.

The solution Moo of (5.3-24), then, applies to the quasi-neutral region far
from the probe. There is a very gradual fall-off of potential corresponding to
the gradual replenishment by diffusion of particles lost to the probe. At § =0,
N = 2,

The solution m, of (5.3-20) is valid for the sheath region and must be
matched to M, Py letting 770(°°) = fn2. With '170(0) = 'r)p, 7]0 can easily be found
numerically. The first integration can be done analytically the usual way. Note
that the scale length for 170 is of order 1 (}_l‘in real units), while for N, it is
uo/O (vo/hs in real units), which is generally very much larger. Thus the last
term in (5. 3-19) can be set equal to 1/2 in the sheath, andyk: is the proper

solution there.
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The probe current follows from (5. 3-17). In the limit of large u, T is
approximately C/uo, so that the current density is approximately j = ;%-novsuD =
%novo, which is just the thermal random current. With the first order correc-
tion found from the numerical solution of (5.3-20), the probe current density is

>

1
novo(l + 0.1642 @) tsn sa S dz[no(z) - m2] , (5.3-25)

—
i
|~

(o]

where & is defined in (5. 3-18). The integrand is always positive.

This result is clearly in contradiction to experiment, since it predicts
an electron current in excess of the current (approximately ‘zl-novo) which would
be collected in the absence of a magnetic field. The reason is also clear and
bears out our previous statement that there is really no collisionless probe
theory for a magnetic field. We have seen that an infinite cylindrical probe
collects infinite current in the collision-dominated case. Since any shape of
probe acts like a long cylindrical probe in a magnetic field, since it collects
particles along a long tube of force, one would expect that the surrounding plasma
would be severely drained of electrons. Hence the original assumption that the
plasma density has its undisturbed value n_ a small distance T radially away
from the p;obe is invalid; the radial fall-off distance is actually very large. In
this '"'collisionless'' theory the density just outside the tube of force is assumed to
be replenished to n by free motion along lines of force. However, because of
the length of the scale distance for Ny these particles must travel a very long

distance along z, and their motion is eventually limited by collisions. Thus the
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decrease in j when B £ 0 depends eventually on A, the mean free path along B,
as was found by Bohm (Sec. 5.2); and the largeness of (5.3-25) is due to the
neglect of A.

This theory can perhaps be salvaged, however, since for n_ one merely

has to substitute n

o as calculated by Bohm for the collision-dominated region

(c.f. Eq. 5.2-14). This will give the correct magnitude of J, while the last term
in (5.3-25) will give its dependence on np, i.e., the shape of part A of the charac-
teristic. This shape is somewhat unexpected, since the computation of the
integral in (5.3-25) shows that the slope of j increases with np. Thus according

to this theory the floating potential occurs to the left of the inflection point in

part B of the probe characteristic (Fig. 1.1), contrary to the case when B = 0.
This has not been verified experimentally, since space potential is difficult to
determine independently. The reason for j to increase with 'r]p is merely that
the sheath thickness § increases with np; hence there is a larger region where
Vn is large. The reason for the slope of j to increase is more obscure. This is
probably because electrons are accelerated more by higher np, so that they have
less chance to be scattered out of the tube. This acceleration was neglected in
calculating ’no, as was diffusion; but it was included in the first order term. in
the expression for j.

In a second paper by Bertotti the restriction to @ — 0 was removed, but
it was necessary to treat the case of slow diffusion, 0 — 0, in which the second

integral in (5. 3-16) could be neglected because the interval was finite. The

restriction (5. 3-14) on probe potential was also removed by considering particles
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which are turned around by the electrostatic field. After a tedious calculation
Bertotti arrives at an expression fori valid for arbitrary @. In the limit of
large ’r]p he finds that j ~T]p3/4. There is thus no saturation. However, this
result is suspect for several reasons. First, the collisional effects mentioned
above would certainly become important. Second, the asymptotic analysis in
which 77 is divided into M, and 717 is valid only if 07 is small, i.e., the time of
travel is small compared to O -1, For large sheaths this may not be true. Third,
in the presence of gradients of 7 in both z and r directions, there is a second
order drift which moves particles radially even when 0 = 0. The neglect of this
drift would not be valid if the value of 0 is too small. The theory of Bertotti
makes its primary contribution in demonstrating the mathematical nature of

this boundary-layer problem:.

5.4 Summary of Probe Theories with a Magnetic Field

As early as 1936 Spivak and Reichrudel made a study of electron collec-
tion in a weak magnetic field, primarily by cylindrical probes. Their point of
view was that the Langmuir orbital theory (Sec. 3.12), which has the advantage
that the probe current is independent of the potential distribution, had a limited
range of applicability (the sheath had to be large), and that this range could be
extended by applying a weak magnetic field. Electron collection is then con-
trolled by orbital motions in the magnetic field over a larger range of possible
poiential distributions. The current is again independent of potential shape, and
Poisson's equation and ion density are not considered. In order to solve the

orbital problem, however, Spivak and Reichrudel had to assume a boundary at
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which the magnetic field's effects abruptly stopped; and the velocity distribution
at this boundary was assumed to be known. This rather unrealistic assumption
limits the credibility of the theory, even though the resulting curves for parts A
and B of the probe characteristic vary with B in a manner similar to that ob-
served in experiments. Detailed comparison with experiment was attempted; but
since the entire discharge changed with B, this was not definitive. In any case
the theory is valid only for very weak fields (below 100 gauss) and very low
densities,

In 1954-5, Bickerton considered electron collection by a plane placed
parallel to a magnetic field. Three cases were considered: h < < rL, h>> rL,
and h NrL. The procedure was to assume that electron motion is prescribed by
perpendicular diffusion and mobility (5.2-2) and that the electric field is given by
Child's law (2.2-5) for space charge limitedﬁ flow from the plasma to the
collector. The latter assumption may be valid for the lower portion of the
transition region of the probe characteristic, but Bickerton erroneously used this
assumption even near space potential. With a known V and j(n), the density in the
sheath can be found in terms of that at the sheath edge. The latter was found
from the quasi-neutral solution for the plasma region; convergence was achieved
by including ionization.

For h<< T the electron motion inside the sheath is unaffected by the
magnetic field, while that. outside the sheath is unaffected by the electric field.

If the velocity distribution is known at a distance ~ T from the sheath edge, and

all electrons entering the sheath are collected, consideration of orbits in the

-107-



outer region gives for the probe current density (for classical diffusion)

=}
<

_ o

. T -7
j = o7 e R (5.4-1)

where w is the electron gyrofrequency. If collisions during the last Larmor
orbit are taken into account, the result quoted but not derived in Bickerton [ 1955]

2

5 (5.4-2)
24 +wT)

j =

This expression reduces to no;/4 for w = 0 and to (5.4-1) for w — ©. The density
n is that near the plane probe; its relation to the density at % is not known, since
no asymptotic analysis was given. Moreover, an abrupt sheath edge was as-
sumed. Therefore some caution must be exercised in using (5.4-2). Although
(5.4-1) resembles the result of Bohm (5.2-15) in that the current goes as 1/B, the
two theories do not agree in detail because of the difference in the original model.

The magnitude of the electron current near space potential is given by
Bohm et al,(5.2-15),for a probe of arbitrary shape. This theory neglects elec-
tric fields and orbital motions and is valid only for kTe > > kTi.

The variation of electron current with potential is given by Bertotti
(5.3-25) for the case of a probe of arbitrary shape in a strong magnetic field,
when the probe potential and the ion temperature are both small, and the trans-

verse diffusion coefficient is constant. The result is not analytic. Collisions

T i e
are neglected. ‘

The variation of saturation probe current with potential is also given by
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Bertotti [ 1962] for the case of slow diffusion and large potentials. The tem-
perature ratio is arbitrary, so presumably this theory can be used for ion
collection as well. However, the assumptions of the theory are so restrictive
that extreme caution should be exercised in its use,

No satisfactory theory, particularly of the important regions B and G of

Lf\ A T &) (.
the probe characteristic in a magnet1c field is available. (Lb i}’(+ '
lvw Ay ERT Y EW N J.,,L a0 de 4 ¢ I SO ’ R - Jane 's,z R
K V' j
ot R I o e p

6. Floating Probes

6.1 Floating Potential

Although space potential is usually the quantity of interest, what is easily
measured is instead the floating potential, the voltage at which the probe draws
no current. Therefore the exact relation between Vs and Vf is of Iinterest. Vf is
of course negative relative to Vs.

In the absence of a magnetic field an approximate relation can be ob-

tained by using Eq. (3.34-1) for the ion current:

i =3 n(kT /M) vz (6.1-1)

[\

Since most electrons are repelled, their distribution, if originally Maxwellian,
remains so in the presence of the probe, and the electron current is merely the
random current times the Boltzmann factor:

2kT
- eer/kTe _ 1 n (S e)l/Z eV¢/kT,

e —2' ™Tm

(6.1-2)

Vf being negative. Setting ji equal to je, we have
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m
- (6.1-3)

Thus for hydrogen V_ is about 3. 6 times kTe negative relative to space, and the

f
factor is somewhat larger for heavier elements. For a more exact answer, the
numerical results for ji (Sec. 3.34) must be used.

In the presence of a magnetic field the magnitude of Vf is uncertain
because no theory exists for ji at small negative probe potentials. If the field is
so weak (less than a few hundred gauss, say) that T is much larger than the
Debye length and the probe radius, then it may be permissible to use (6.1-1) still.
The electron current, however, will be constrained to flow along the field, even
at quite low fields, so that the effective collecting area is reduced to something
like the projection of the probe area on a plane perpendicular to B. Thus for a
cylindrical floating probe perpendicular to B the electron current is, very
approximately,

Ie = 4a Ije , (6.1-4)
where a and { are the radius and length, while the ion current is

Ii = ZTraﬁji . (6.1-5)
If we use (6.1-1) and (6.1-2) for je and ji’ the resulting value of er/kTe differs
by only a constant equal to fn3m = 0.45, and this is probably insignificant in
view of the approximations made.

Since electron current is more seriously decreased by a magnetic field

than ion current, it is probable that in general the floating potential is closer to

the space potential with a magnetic field than without. However, the small
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electron current lost to the floating probe may be supplied by the plasma so
easily even with a magnetic field that the effect may be slight.

6.2 Time Response

In view of the uncertainties in interpreting probe currents, particularly in
strong magnetic fields, one of the better uses for probes is for the measurement
of local fluctuations in potential and electric field. For this the spatial resolu-
tion of probes is particularly suitable. If the difference VS - Vf stayed constant,
as it would if kTe were constant, one needs only to measure the voltage fluctua~
tions on a floating probe to get the fluctuations of Vs. However, there is an
upper limit to the frequency response, since it takes a finite time for the ion
sheath on a floating probe to adjust to changes in the plasma conditions. This
time can be roughly estimated by dividing the sheath thickness by the acoustic
velocity, since this is the order of distance ions have to travel and the velocity to

which ions can be pushed by electrons. Thus

T~y ~ h/(k"re/M)l/‘2 - (M 2)1/‘2
4mTne
1
= (6.2-1)
pi

Floating probes can therefore measure potential fluctuations up to the order of

by

A
“

the ion plasma frequency. The writer does not know of a theory of the time >) o

response of a floating probe.
There is some experimental data on this in the paper of Kamke and Rose

[1956]. In this experiment a probe collecting ion current was pulsed abruptly to
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a potential 100 volts lower, and the time for the probe current to return to a
steady value was measured. This turned out to be of the order of 1 usec, which
is considerably slower than wpi-l" However, this was done at high pressures, and
ion motion was limited by collisions.

6.3 Effects of Oscillations

If the plasma being studied is electrostatically unstable, so that large
fluctuations in local potential (compared to kTe) occur, a probe biased at a steady
voltage will be actually fluctuating relative to the plasma. Therefore, if the fluc-
tuations in probe current are filtered out in taking the probe characteristic, the
measured current is actually an average over a range of probe potentials. In
the saturation current regions (A and C) this averaging does not affect the result
greatly, since the current is fairly constant with voltage. In part B, the transi-
tion region, however, this averaging will not give the right probe curve, since
the latter is a non-linear curve. The effect will be to smooth out the curve and
give a spuriously high electron temperature.

Since the magnitude of this effect is difficult to determine theoretically,
it was investigated experimentally in some unpublished work by the writer
(Princeton Plasma Physics Laboratory Report MATT=-62, 1961). The instan-
taneous plasma potential was obtained by a floating probe, and the instantaneous
current was measured by a second probe biased at a constant potential. The in-
stantaneous current and voltage thus found were displayed on the axes of an
oscilloscope to give the probe curve. In a typical oscillatory discharge, a hot-

cathode reflex arc, the effect of the oscillations on the measured value of kTe
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was found to be less than the 10% error in this value.

6.4 Double Probes

In most gas discharges there is an electrode in good contact with the
plasma which can be used as a reference point for potential when applying a bias
voltage to a probe. Such an electrode can be the anode or cathode of a discharge,
or the metallic wall or limiter of an electrodeless discharge, such as that in a
stellarator or a toroidal pinch. In some instances such a reference point is not
available. Examples of this are a toroidal rf discharge in a glass tube or the
plasma in the ionosphere. In such a case a double probe must be used. The
double probe method was originally proposed by Johnson and Malter [ 1950], and
we shall give a simplified version of their thorough analysis. This method was
invented for use in decaying plasma, in which the plasma potential changed with
time, so that it was difficult to maintain a constant probe-plasma potential dif-
ference. With two probes biased with respect to each other but insulated from
ground, the entire system ''floats' with the plasma and therefore follows the
change of plasma potential,

Fig. 6.1 shows the geometry.

+V -

‘| L
—il\
|
PROBE — T PROBE

PLASMA

Fig., 6,1
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Probes 1 and 2 have areas A1 and AZ’ respectively, and are located in a plasma
which has constant properties within the spacing of the probes. A voltage V is ap-

plied between 1 and 2, but the entire system is not connected to any electrode.

For definiteness we shall assume V1 is positive relative to VZ’ and therefore

V=V-V, >0 . (6. 4-1)

A current I(V) flows between 2 and 1 and is positive if V is positive, by definition.

The potential distribution is shown schematically on Fig. 6. 2.

P Vg A
rd ™~
// N
V. N PROBE
PROBE L N \2
d ~
= | N
~ VZ
Fig, 6.2

Since the electron velocities are much higher than the ion velocities, the probes
in general must both be negative with respect to space to prevent a net electron

current from flowing to the whole system. This condition can be violated only if
one probe is so much larger than the other that the ion current to the larger

probe can cancel the saturation electron current to the smaller probe; we shall

not consider such a case.
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Fig. 6.3 shows what the probe characteristic will look like.

Fig. 6.3

This is drawn for the case A1 > AZ; the curve will of course be symmetrical for
A1 = AZ' At V = 0, both probes are at floating potential and no net current goes to

either one; hence I = 0. If V is now made slightly positive, V1 will become less
negative and V2 more negative; thus more electrons will flow to 1 and fewer to 2.
This results in a positive current flow from 2 to 1; that is, a positive I; this is
shown by the dot on Fig. 6.3, For large positive V's, probe 2 will be very nega-
tive, drawing saturation ion current. Probe 1 will still be negative, but close
enough to Vs to collect a sufficient electron current to cancel the ion current to
probe 2. Thus the probe characteristic assumes the shape of the saturation ion
characteristic of probe 2. With negative V the current is reversed, and the same
general behavior occurs; the magnitude of the saturation current will be different
if the probe areas are different.

This qualitative description reveals an important advantage of the double

probe method: the total current to the system can never be greater than the
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saturation ion current, since any electron current to the total system must

always be balanced by an equal ion current. Thus the disturbance on the discharge
is minimized. This has the disadvantage, however, that only the fast electrons in
the tail of the distribution can ever be collected; the bulk of the electron distribu-
tion is not sampled.

and i to

s 12+, 2-

To find the current I(V) quantitatively, we define i, , i

1+ 1-

be the ion and electron currents to probes 1 and 2 at any given V. The condition

that the system be floating is

Ly + L =i -1, = o . (6.4-2)

The current I in the loop is given by
i, =i, - (11+ - 11_) = 21 . (6.4-3)
If we add and subtract (6.4-2) and (6.4-3), we obtain

I =i -i =i, -1 . (6. 4-4)

The currents i are given by Eq. (6.1-2) for the electron current density to a

"‘"\h A

probe in the transition region:

i - A J eevl/kTe

1- P ; similarly for 2 . (6.4-5)

-
T

LI ¢

Here j is the random electron current density. Substituting this into the first

of (6.4-4) and using (6.4-1), we have

I+i = Aj eeVI/kTe N LE(V+V,)/kT,
].+ 11' ].f—
A
_ 1 eV/kTe (6.4-6)
A, 2-
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From the second of (6.4-4),

T, A evr,
i -1 A °
2+ 2

(6. 4-7)

The basic assumption of this theory is that the probes are always negative
enough to be collecting essentially saturation ion current; therefore, i+ can be
accurately estimated at any V by smoothly extrapolating the saturation portions of
the double probe characteristic. The quantities in the numerator and denominator
of (6.4-7) are then easily obtained; they are shown in Fig. 6.3. The slope of a
logarithmic plot of this ratio against V then yields the electron temperature,

We note two special cases. If A1 = AZ’ then il+ —_"-’i2+ §i+, and (6.4-7)

can be solved for I:

I = i, tanh(eV/ZkTe) . (6. 4-8)

This formula has been found to fit the experimental curve quite well. On the
other hand, if A1 >> Az, we can assume that probe 1 is essentially unaffected

by probe 2 and is almost at floating potential, with il+ = il . Thus

<< i = : . 4-
I i, = A, (6.4-9)
Since 12'+ -1 = i, Eq. (6.4-7) can be written
A
.~ 1. eV/kT, |
A/i']"l* = A— 12_ e H (6.4-10)
| 2
and
, _ . ~eV/kT . -e(V]-V2)/kT
i, = Ayje e - A,j.e (V1 €.  (6.4-11)
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eevl/kTe .
Y

o 5

j With this, (6.4-11) becomes

Since i, i, , we have j+

I+ 1-

; eVa/kTe

i, K (6.4-12)

This is just the transition current to a single probe, as one would expect, since
probe 1 has become a large reference electrode. This case of A1 > > AZ has ap-
plication in space physics, where a nose cone casing often serves as a large
reference probe.

The logarithmic plotting of (6.4-7) to determine kTe is quite laborious.
Since only a few electrons are sampled anyway, sufficient accuracy on kTe can

be obtained by merely measuring the slope of the characteristic at the origin. If

we assume that i+ is independent of V, we obtain from (6. 4-4)

di di

dI i~ 2-
™ -9 - “av (6.4-13)
Using (6.4-5), we have
dv dav
. eVy/kT, e 1 . eV,y/kT, e 2
Al_]?e KT dV+A2JT—e KT, av = 0 . (6.4-14)
From (6.4-1) we have
1 = v . 6.4-15
T 4dav T av , (6. 4-15)
so that (6.4-14) becomes
dv dav
eV1/kT, 1 eVy/kT,, 1 _
A 7t Aye (-1 =0 .  (6.4-16)
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The first of (6.4-13) therefore becomes, at V = 0,

E‘] = AlAZ j e eer/kTe
av o Al + AZ Al kTe
AV Zg ¢ . if
Since b-(x PR o
# e
i, =1 eevf/kTe
+ .7 Iy
\‘\ ‘{} oot ¥ <o
wehewe
al | e . M
(o] e 1 2
Finally, since L, = A1J+ and i, = A2J+, we have
i
dar| e 1+ 24
° e 1+ 24

(6.4-17)

(6. 4-18)

(6.4-19)

(6. 4-20)

(6. 4-21)

From this, kTe can be computed from the slope at the origin and the measured

magnitudes of iy and L.

Once kTe is known, the plasma density can be calculated from either

saturation current, with the help of one of the theories of ion collection sum-

marized in Sec. 3. 34.

AR D A ) ¥ hsud.er) ¢ flect v
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7. Double Sheaths

An important complication to the theory of probes and sheaths is the
emission of electrons from the probe or wall surface. This can be secondary
emission due to ion bombardment or thermionic emission if the probe is heated
by exposure to an intense discharge. The probe can also be heated to emission
on purpose in order to gain more accurate information on the space potential.

When a surface emits electrons by either of these processes, these
electrons may or may not actually leave the surface depending on whether or not
they have enough energy to overcome any potential barriers which they may face.
The energy of emitted electrons is quite low (c.f. Massey and Burhop,

Electronic and Ionic Impact Phenomena, lst ed., pPp. 320, 554 (Oxford Univ.

Press, 1952)). We must distinguish, however, between thermionic and secondary
emission. In either case the energy distribution of the secondaries can be ap-
proximated by half of a Maxwellian distribution; but the equivalent temperature
kTp in the case of thermionic emission is about the same as the emitter tempera-
ture (about 0.2 eV), whereas for secondary emission, either by ions or by
electrons, it is of the order of 1-3 eV, Thus for thermionic emission, the condi-
tion kTp << kTe is almost always fulfilled (an exception being the case of
thermally ionized Cs or K plasma). For secondary emission this condition
would be satisfied in thermonuclear plasmas, where kTe > 10 eV usually, but
would not be satisfied in classical discharges, where kTe ~Z2eV. In what

follows we shall focus our attention on the case kTp << kTe.

If kTp is small, it is obvious that the case of a positive probe is unin-
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velocities is exponential, the height of the barrier need be at most a small
multiple of kTp for any reasonable amount of emission from the surface. If
ch << kTe’ the height of the barrier will in general be much smaller than the
potential of the emitting probe or cathode.

The negative second derivative of 77 in the case of space charge limited
emission indicates an excess of electrons in the immediate vicinity of the surface.
Further out in the sheath, however, the curve has a positive second derivative in
the region of the normal ion sheath. Thus there are two layers of charges in the
sheath; this is what is known as a ""double sheath!''.

Fig. 7.1 bears a striking resemblance to Fig. 2.3 for emission of
electrons in a vacuum. The difference is that in a plasma there are plasma
electrons and ions contributing to the space charge as well as emitted electrons.
Moreover, the boundary condition on the left is no longer given by a simple con-
ducting wall but by the sheath criterion for transition to the plasma region. With
the preliminary work we have done in Sec. 2.3 this problem is straightforward
but involves some algebra.

7.1 Electron Emission: General Formulation

The problem of the double sheath was first solved by Langmuir [ Phys.
Rev. 33, 954 (1929)] . Our treatment here is perhaps a little more accurate and
-systematic. It is given in detail since it is not to be found elsewhere. For
simplicity we shall assume one-dimensional geometry and an absence of colli-
sions in the sheath. We shall assume also that a steady-state solution is pos-

sible, and that the matching condition at the sheath boundary can be specified
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by (2.32-1), namely,

dn, dn
i _ e

e = e o (7.1-1)

where the subscript o denotes quantities at the sheath edge (n =0, § — o),
In order to get a closed expression for n, we shall further assume that the ions
are mono-energetic. In most instances ions will be much colder than electrons,
and this approximation will be very good. The problem will be to calculate the
space charge limited current for a given set of plasma parameters, and also the
potential distribution, even when emission is not space charge limited. The
result will then be applied to several problems, notably the calculation of the
potential of a floating emitting probe.

Since this calculation can be applied to an emitting cathode as well as to
a probe, we shall use the subscript ¢ to denote quantities at the cathode (or probe)
and the subscript P for quantities connected with the emitted, or "primary",
electrons. Thus for thermionic emission, ch = kTp. The algebra would be
much simpler if we could assume ’nc > > 1; however, in some problems this is
not satisfied, and we shall keep the calculation accurate down to almost Me = 1.
There can be few problems in which n o is less than unity, since then plasma
electrons stream freely to the collector, and it would be almost impossible to
maintain the discharge. With a spherical or cylindrical probe, of course, one
can sometimes draw saturation electron current without disturbing the dis-
charge, but as stated above the case of positive probe potentials is uninteresting.

Poisson's equation now has a third term on the right, corresponding to
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the density of emitted electrons:

2
Vv = ¥ . trem.-n -n) . (7.1-2)
2 i e P

dx

This is supplemented by the boundary conditions

dV/dx = V = 0 at x=o , (7.1-3)
Also, we have
2
-d—V:0=n.-n -n at v=0 (7.1-4)
de oi oe op

and

V =V atx =0 ,
c

These relations and (7.1-1) are necessary to fix the behavior and relative magni-
tudes of the density terms.

We shall use the following dimensionless parameters:

n = - eV/kTe

€ = x/h h = (kTe/41rnOie2)1/2
u = v/v v = (2kT /m)l/2
N © © (7.1-5)
Vv = n/nOi
B =rT)/T
j mnm 1/2
t no, (ZkT A
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Eqgs., (7.1-2) and (7.1-4) become

[ — - - _21

nto=v.o-v, Vp (7.1-27)
= /+ d . J1-4"

Voi Voe\ /,lf)op (7.1-4)

2
If the ions enter the sheath with a uniform velocity Vi and if 7 [ Smv, /ZkTe,

then the ion density is given by (2. 31-6):

n -1/2
= (1 ++ . 7.1-6
v, (-an ( )

Later N will be determined from (7.1-1).

If the plasma electrons are Maxwellian, their distribution is

/2 e-m(vz- ZeVy /o,

m
fe =Cn e lomer (7.1-7)
e
In dimensionless form, this is
2
£, =Cn__ L e (7.1-8)
N%Vé

The density n_ is found by integrating this over all possible velocities. Since we
are concerned with 'r)c's which may be small, we must not include electrons with

ositive u and ener reater than - 7, since these are lost to the collector.
P u gy 8 n c n

Thus
Cn ° vn -m zd_
nezveS‘fduz oee’r] S‘eudu+S‘ eu .
RO =
- 00 (o)
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We shall need the following definition and properties of the error function:

X
2 _¢?
erf x = — S e dt, erf ©o=1 (7.1-9)
N
o
2
2 -
-cid;erfx - =" (7.1-10)
N
-1/2 -
1-erfak = (wx) Y ex(l-—z—lx+...) , x> 1 (7.1-11)

-x 1

1 4+erfnk = 2 - (nx)_l/ze (1—-ZT<+'°') ,y x> 1 (7.1-12)

S' e erfnk dx = e erfnk - 2 /E: ) (7.1-13)

From (7.1-9), the electron density becomes

-C -1 - -
v, =5V e (Lterf fT_-7) . (7.1-14)

C =2/(1 +erfq[n,)

If the cathode potential is so large that all electrons are reflected, the error
function in (7.1-14) becomes unity, and the density reduces to the Boltzmann law.

As for the emitted electrons, their distribution is also given by (7.1-7)
except that VC is their zero of potential and Tp their temperature. Thus (c f. 2.33-4)

1/2 —m[v° ——Zrﬁ(v--vc)] /2kT

£ =2 m /e, P (7.1-15)

n
cp 2nkT
P P p

or

2
¢ 224 Bl/z 1 -Blur4m-n )

P cp Nt v
e

(7.1-16)
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The density is found by integrating over v du. Since these electrons are ac-
[~

celerated as they move towards the plasma, there are no electrons with velocity

less than U/ Thus

2

n, <2n g2 V2 M pien

p cp
7 )

To evaluate ncp' we note that the emitted current jp is
0 L]
j = §Vf dv = v §uf du
p p e
o o
<2
-1/2 -
=2n Bl/z 1/ S‘ e Bu du
cp e
o
-1/2
= v ncp(rrB) .
Thus
. ,1/2 1/2 1/2
ncp = _]pB ' /v = LB n_.

by (7.1-5), and
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(7.1-18)

(7.1-19)
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It remains to find Voe from (7.1-4"). Voi is 1; and from (7.1-20), v is
vop = L G(nc) , (7.1-21)
where we have made the convenient definition
G(x) = 31/2 eBX(l - erf /B—x‘ ) . (7.1-22)
Thus
voe = 1-1 G(nc) . (7.1-23)

With the densities given by (7.1-6), (7.1-14), and (7.1-20), Poisson's equation

(7.1-2"') becomes

-1/2
nu o= (1+,%) -HI1- G e @+ et /=T )-tGm_-n) ,

1
" ) , (7.1-24)
i e )
where H('r;c) =(1 +erf'\/;?c)—1

By means of the integrating factor 7', this can be integrated once:

lzn'z = g(r.h.s.)dn . (7.1-25)

The first term can be integrated easily:

S‘Vid'r) = 27,01 +77717)1/2 . (7.1-26)

1

The second term can be integrated with the help of (7.1-13), withx =7 - 7:
c
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- - 2 -
§e T’(l+erf ,f'r]C-’r] )dn = -en(1+erf /nc-n')+genc /'r]C—T} .

(7.1-27)
The third term can similarly be integrated by (7.1-13):
.31/2 S G(x)dx = eBX(l - erf Bx ) = [Bx
N
= B—I/ZG(X) = [Bx (7.1-28)
N
-1 2
. g G(77C'77)d77= - B G(ﬂc-'r])-——/nc-n'
N (7.1-29)

Putting (7.1-26), (7.1-27), and (7.1-29) together, we obtain for (7.1-25)

12 n 1/2 -n 2 -7
00 = 20 +HI1- v Gm ) le " +erf M=) -— e '€/ =71

1 m

+ B _lG('nc- 'l])+é mc- 7] +C, (7.1-30)

with G(x) defined by (7.1-22).
In the case of temperature-limited emission, when L is known, the
boundary condition 7' = 0 at 7 = 0 is put in at this point; and this equation can
be integrated numerically to give the potential distribution for any given 77C.
In the case of space-charge-limited emission, no additional quadrature is neces-

sary to find the value of L, since the two boundary conditions in this case, ' =10
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atn =0andn = T’c are sufficient to give an algebraic equation for (.
It remains to determine n, from (7.1-1), in which n +n is to be substi-
tuted for n_. If we differentiate (7.1-6), (7.1-14), and (7.1-20) with respect to n

and evaluate the derivatives at 7 = 0, then the condition Vo'i = Vo'e + Vc; becomes

- -1/2 -1/2
- = -HI[1- G )1+ ert /] +e T e(ny ) S (v ) /2. G(n )] .
(7.1-31)
Referring to the definition (7.1-22) for G and the expansion (7.1-11), we find that

the last bracket in (7.1-31) differs from zero only by a higher order term in

-1/2

(BT)C) . Similarly, from (7.1-12), the second bracket in (7.1-31) differs from 2
1/2 1/2

only by a higher order term in 7]; , we have

Thus to first order in T]C-

1 -7 -1
e ~-1)] (7.1-32)

The dominant term is just ni = 1/2, the value derived in Sec. 2. 3], where np was
0, and the erf term in n_ was neglected. The magnitude of the correction term
can be estimated by using the result of the next section, in which t will be com-

puted as a function of n. for space charge limited emission when n, = 1/2. 1t

1/2

will turn out that L varies approximately as 7 c for small 9 c and approaches

L \1/2

-1/2
(zm) at large nc. For 8 > 10, the term L(Trnc) 1/ is about 15% for all

nc < 20 and is smaller for 'r)c > 20. Since L is always less than the space
charge limited value, the correction is always less than 15%.
-3/2

If we go toterms in 7 in the expansion for 1 + erf x, the result is
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; “Me
n. 1::2 n 1 (1 + e )(e T’c_‘ ZL) _____L_,(l + e_ —l) . (7,1-33)
i am, N N P

I I
We note that the terms containing t have the effect of increasing n; while term I
decreases it. This can be seen physically by making a schematic plot of the

densities, as was done in Fig. 2.4.

b

PLASMA CATRODE

0 Y]% e
Fig. 7.2

In Fig. 7.2 the three densities ni, ne, and np are shown; the total electron
density n =n, + ,np is shown by the dotted line. The effect of the positive slope
of ﬁnnp at 1 = 0 is to decrease the (magnitude of the)slope of ant; this corres-
ponds to the term II in (7.1-33) and results in a higher value of ni since the
slope of {n n, decreases with U The finite value of np at 171 = 0 also has the
effect of shifting n_. upwards at 7 = 0; this also increases m; and corresponds to
most of the terms in (7.1-33). Term I, which is independent of ¢, reflects the
deviation of dne/dn from a straight line due to the truncation of the Maxwellian
distribution. Unfortunately, this effect is not large enough, when t is not zero,
to ensure that n; < n. for small yR (less than 0.5). If n. < 1/2, it is a little
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hard to imagine how the ions can be accelerated to an energy n; = 1/2,* and
it must be assumed that our sheath criterion breaks down.

For large M.» M; can be set equal to 1/2, and the error functions in
(7.1-30) can be expanded by (7.1-11) and (7.1-12) to give a fairly simple equation
What limits the accuracy of our treatment for small yR ? 1If the exact expression
of ni, Eq. (7.1-31), is substituted into (7.1-30), the resulting equation is exact
providing that a) condition (7. 1-1) is accurate (which is true if X >> h) b) the ions
have no thermal speed, and c) the electron distribution is given exactly by (7. 1-7).
It is the last condition which probably limits the range of n. to M. > 1, since if
electrons are lost quickly from the system, they do not have time to come to
thermal equilibrium. To the extent that the electrons are in equilibrium, the
calculation is good for any n.» even below 1. However, for 1 < < 10 and
M. < 2, the exact expression (7.1-31) for n; must be used. For larger M. 's the
approximate expression (7.1-33) for n, may be used, or it may even be suffi-
ciently accurate to let n; = 1/2. Note that although the theory breaks down for
very small nc’s, it can give the right picture for the case 8 = 1, n. = 0. In

this case, the emitter can give back the electrons it collects and is effectively

absent; hence n = 0 everywhere, and the value of m, is irrelevant.

*One might think that this could happen even if = 0, if a potential barrier of
height n > 1/2 were built up in front of the cathode. However, since our treat-
ment has implicitly assumed a monotonic potential, 7. is to be taken as the
potential of this barrier if it exists, and not of the cathode itself. Fried and
Heflinger [Space Technology Laboratories Rpt. TR59-0000-00870 (1959)] have
treated the case of such a barrier, but the entire question of the plasma-sheath
transition was side-stepped by assuming fixed ions, corresponding to n, = ®-
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1
In the following section we shall for simplicity assume that 7, = 5, but
the numerical results given were computed exactly.

7.2 Space Charge Limited Emission

The condition for space charge limited emission is that the current
emitted by the cathode, jc, be so large that dn/dé vanishes either at £ = 0 or
at some point gm’ as shown by the top curve in Fig. 7.1. When this happens,
the current actually emitted into the plasma, jp, is less than jc, and the differ-
ence is the current reflected back to the cathode by the small potential hill.

If N is the magnitude of 17 at the top of this hill, we can calculate jp by using
(7.1-30) merely be replacing . by U The difference between M. and nm is
usually small and can be neglected. However if 8 is small, it may be neces-
sary to calculate this difference; it is simply given by

=

Jo T

; NN/ KT

m (7. 2-1)

where jc is, of course, given in terms of the cathode temperature by Richard-

son's equation.

i

We now have two boundary conditions for (7,1-30): n = Oatn =0

1
andn = 0atn-= nm. It is a little more convenient to apply the second one

first. At UL have

n -
0= 2,1 + 2 /2 , H{-0Gm )] [e ™1 + UF GO)] +C

7.

1



n
-C = 21+ nrf‘)l/z +He'77m[1 - LG )] + LB'l/Z . (7.2-2)

1

Atn =0, (7.1-30) becomes, with this value of C,

Tm 1/2 A 2 -7 -n
0 = Zni[l-(l-l-ni) ] +H[1-LG(17m)][1+erf'\fl7—I—n-$ m'\ht'n-e m]
+ L[B'lc(nm) +i~/ﬁm' - B'I/Z] . (7.2-3)
N
With the abbreviation
F(n ) = Hll+erfnp - ¢ Tm 42 —-"2)] : (7.2-4)

this becomes

n n
2n [1- (1 +-n—m—)1/2] FFL- G +1B G +2 /%n-ﬁ'l/z) -0

1

(7.2-5)

This can be solved for (:

L= , (7.2-6)

where G and F are to be evaluated at 17m and are defined by (7.1-22) and
(7.. 2-4). This gives the space charge limited current as a function of 8and 'r}m
(essentially the voltage between the plasma and the emitter). It is therefore
the plasma equivalent of the Child- Langmuir law (2.2-5). For small ')7m (~1),

Eq. (7.2-6) must be solved simultaneously with (7.1-31) for ni (with the change

Tagortatgs otn Lamguis:
D el derw w W 'em‘d";
1!) ch h"\ " “‘ ‘L“‘:'f k meﬂﬂ‘{(
Doy it Gtm aisa

w X \o‘»M \’ ‘5
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nc - nm). The result is shown on Fig. 7.3. For large nm, we can set ni =1/2,

whereupon (7.2-6) becomes

1+ 27 e g
L o= kS . (7.2-7)

Z-\/'nm/n + B’lG - 3-1/2 - FG

-1/2

For large Ny G(’I]m) - (-n’r)m) and F(nm) — 1. Thus for large
voltages,

L — (277m)l/‘z/z(nm/wr)l/2 = (% ‘rr)l/z . (7.2-8)

In real units, the emitted current approaches (by (7.1-5)):

2kT kT
2 1/2 2
~ 3 T = 5 -V

(7.2-9)

This illustrates what is physically happening. In the presence of a plasma jp is
much larger than its value in a vacuum but has an upper bound proportional to
the ion current. This is because it is the ions which cancel the space charge of
th: electrons, thus allowing more to be emitted. The factor (M/m)l/2 merely
reflects the fact that ions are more effective in producing space charge on
account of their large mass and small velocity.

Since L is a function only of My and 3, the emitted current jp, by
(7.1-5), is proportional.to plasma density n .. In a discharge in which the
neutrals are ionized by the primaries, n_. increases with jp. Thus if M is

fixed, n . and jp can increase indefinitely. In practice the current is limited
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either by jc or by the external circuit. In the latter case nm drops as jp in-
creases, until the ionization potential is approached and n_. no longer increases
with jp. This explains why arcs tend to maintain a constant potential drop inde-
pendent of current, the drop depending primarily on the ionization potentié.l of the
gas.

7.3 Emitting Probes

The results of the previous section can now be applied to probes which are
heated to emission either purposely or accidentally, We first consider the case
of a floating probe emitting a space charge limited current. We assume that
kTe is much larger than kTC(= kTp), so that the difference between 7 c and M,
can be neglected. The assumption of one-dimensionality will be valid whenever
the probe is much larger than the Debye length or the electron gyroradius.

The condition that the probe be floating is that

o= do-d (7.3-1)

where ji and je are the ion and electron flux densities to the probe, and jp is the

flux density of emitted electrons. From (7.1-8), (7.1-23) and (3. 34-1)
we obtain
Ve -N 1 kTe /2
p ~ 1701:/_% Hi-tG@e =3 nm(_l\T) ’ (7.3-2)
Using the definition of t (7.1-5), we have
He.nf—-l U m)l/z
M 11 om /2 VIRV (7.3-3)
Lt = Hl-tG) e —Z (—2 —ﬁ) = —
1 + GHe 't
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The floating potential is then found by the intersection of this curve of L vs. 7§
and the curve of Fig. 7.3. The result for several values of M is shown in
Fig. 7.4 on a logarithmic 17 scale.

The important point to note is that for the large (B's usually encountered
(B > 10), the floating potential of an emitting probe is not much different from that
of a cold probe. The reason is that the emitted electrons are of such low energy
that a given current of them contributes more to the space charge than an equal
current of incoming plasma electrons. Thus the emitted electrons become space
charge limited at a small current and cannot effectively cancel the incoming
current of electrons. The hope that a hot probe will float at space potential
[ Bohm et al, 1949] , because if it were negative it would emit a large electron
current and if it were positive it would collect a large electron current, is
therefore in vain., A floating hot probe is only a little more positive than a cold
probe, and the frequency response of the sheath cannot be improved this way.
If B were smaller than 1, M., would indeed be near 0, but then U would differ
from nm by an appreciable amount which depends on the exact probe temperature.

In using (6.1-1) for ji we have implicitly assumed the result, since if the
probe were indeed at space potential, the ion current would depend on kTi and
not kTe. However, the effect of using‘kTi instead of kTe in ji is to make N even
larger, so that (6.1-1) is indeed the proper equation to use.

Although the space potential cannot be obtained directly from a floating
hot probe, it can be measured from its probe characteristic. The procedure is

to take two probe characteristics successively, one with the probe cold, and one
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with it emitting. The current to the cold probe is given by

im) = 3m -5 m . (7.3-4)

The current to the hot probe is given by

im = 5 - m i m (7.3-5)

where jp(’n) is given by Fig. 7.3. When the probe is positive, jp = 0, and the
two characteristics coincide. As soon as the probe becomes negative, jp begins
to be emitted, and the characteristic of the hot probe will deviate from that of

the cold probe. This is shown in Fig. 7.5.

colLD

HOT

Fig, 7.5

The point of bifurcation of the superimposed characteristics then determines

the space potential. The accuracy of this method is limited by the fact that the
behavior of the L-7 curve is difficult to calculate near 71 = 0: either the devia-
tion from planar geometry must be taken into account, or the plasma electron

distribution must be calculated.
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7.4 Secondary Emission

Secondary electrons can be emitted from bombardment by both electrons
and ions. The primary effect of secondary emission on a probe characteristic
will be to increase the apparent value of the saturation ion current at high nega-
tive probe voltages. This is because secondaries cannot leave the probe when it
is positive, and because in the transition region neither ions nor electrons have
sufficient energy to cause much secondary emission. We shall therefore be con-
cerned only with part C of the characteristic.

Let § be the secondary emission coefficient for ion bombardment, so that

the emitted current jp is

j =0 ji . (7.4-1)
If all emitted electrons are able to escape, the saturation ion current becomes

iy = jmir+dml . (7.4-2)

Since 0 depends on the ion energy, it is a function of 7). For most metals
reaches a maximum at several hundred eV, and the maximum can be as large
as 1 or greater; thus the correction is not always small. It is difficult to com-
pute, however, because it depends sensitively on angle of incidence and cleanli-
ness of the surface.

The potential distribution in the ion sheath éan be computed from

(7.1-30), with L determined by (7.4-1). In terms of 'r)i this is

L = G(mwni/M)l/Z . (7.4-3)
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In this case the slope of 77 at §= 0 is not known, but the value of Lt is known, and
(7.1-30) can be integrated numerically.

If the value of § is large enough, it is conceivable for a double sheath to
be formed and for the secondary current to be space charge limited. A necessary
condition for this is that the density of emitted electrons be larger than that of

ions near the probe surface. The density of ions there is:

j.

i oM 1/2
n, =5 = i)

1 e

(n + ni)'l/2 . (7.4-4)

The density of emitted electrons is

.

. P _ ., mmu 1/2
np = = = Jp ZkTp) . (7.4-5)
p .
Since jp = ﬁji, the necessary condition is
2
n+n, > M/muB6” . (7.4-6)
If we neglect n, this becomes
2
lev]| > MkTp/mnG . (7.4-7)

For 6 's of order 1 and kTp of order 2 eV, the probe potential must be greater
than about 1300 volts, even for hydrogen. This condition is rarely satisfied,
and we conclude that (7.4-2) is valid since space change limitation almost never

occurs with secondary emission.
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8. Practical Applications

When electrostatic probes are actually used experimentally, a number of
considerations neglected in the foregoing theories must be taken into account.
For example, a common experimental difficulty is a changing contact potential
between the probe and the plasma, arising from a changing layer of impurities on
the surface. This is important at low kTe, when a change of tenths of a volt will
affect the characteristic. Thus a probe must be kept clean. Another example is
the macroscopic potential and density gradients in the discharge. These cause
the conditions surrounding the probe to be asymmetric even if the probe itself is
symmetric. The asymptotic values of V and n may be different in different
directions. A third example is the effect of photoelectric emission. This
becomes important when the plasma density and therefore the probe current is
very small, as in the ionosphere.

For examples of difficulties arising in thermonuclear plasmas the reader
is referred to review papers by F. F. Chen [1961] and Jones and Saunders [1961].
These papers also give representative diagrams of circuits used in probe work.

For an exposition of the use of floating probes in measuring correlation
functions of potential fluctuations in a plasma, the reader is referred to the

work of Kees Bol [1962] of this Laboratory.
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