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A magnetoplasma in a radial electric field E. suffers from a gravitational instability driven by the
centrifugal force. By using only fluid equations, the theory of Rosenbluth, Krall, and Rostoker was
extended to finite k, and finite resistivity. The theory of resistive drift modes in cylindrical geometry
is included as the limit E, — 0. The shear stabilization was computed, and it was found that the
drift modes are not localized by shear unless ion Landau damping is taken into account. A stabilization
criterion was obtained which is much more severe than those found previously and which is almost im-
possible to fulfill experimentally. However, it is the modes with short radial wavelength which are
most difficult to stabilize, and these may not be harmful to plasma confinement. The role of the
Coriolis force and the importance of these instabilities to experiments in cesium plasmas, stellarators,
rotating plasmas, and beam-plasma discharges are also pointed out. This theory is particularly germane
to cesium plasmas, in which it is shown that E, cannot be ignored.

I. INTRODUCTION

HEN a fully ionized cylindrical plasma column

is made to rotate under a radial electric field
E,, the centrifugal force resulting from the rotation
can produce a Rayleigh-Taylor “gravitational” in-
stability, which tends to destroy density gradients
in the plasma and, hence, cause the column to spread
out radially., This centrifugal instability was first
treated by Rosenbluth, Krall, and Rostoker' and
has been observed experimentally in high-8 plasmas
by Kolb et al.’*®* Our purpose here is fivefold: (1)
to point out the importance of this instability in
certain low-8 experiments; (2) to show that the
results of Ref. 1 can be obtained from fluid equations
without using kinetic theory; (3) to extend the re-
sults of Ref. 1 to larger values of E,, to finite k,
and finite resistivity 5, and to arbitrary T,/T.;
(4) to point out the role of the Coriolis force, and (5)
to compute the shear stabilization.

The complexity of the problem stems from the
fact that the effects of finite Larmor radius ry,
cylindrical geometry, and radial boundaries must
all be taken into account. We use a fluid model,
taking finite r, into account by means of the ion
viscosity tensor =; in cylindrical coordinates. A
result of this approach is that the reason for a puz-
zling asymmetry in the result of Ref. 1 becores clear,
Rosenbluth et al.' found that the instability sets
in at smaller values of the rotation velocity rQ, for
Q, > 0 than for @, < 0. The reason is that the Corio-
lis force, which depends on the sign of Q, whereas the

! M. N. Rosenbluth, N. A. Krall, and N. Rostoker, Nucl.
Fusion Suppl. Pt. 1, 143 (1962).

2 N. Rostoker and A. C. Kolb, Phys. Rev. 124, 965 (1961).

3 A. C. Kolb, P. C. Thonemann, and E. Hintz, Phys.
Fluids 8, 1005 (1965); E. Hintz and A. C. Kolb, bid. 8,
1347 (1965).

centrifugal force does not, produces a drift with a
stabilizing effect if Q, < 0.

The centrifugal instability is particularly interest-
ing because it is the only example of a gravitational
instability in a cylindrically symmetric situation. If,
for instance, the “gravitational” force were due to a
curvature in the field lines, one would have to treat
the problem in a torus rather than in the simpler
infinite cylinder. The centrifugal instability also
provides a mechanism for the transport of plasma
across the magnetic field when only one species is
initially unstable. For instance, high-frequency in-
stabilities can cause the loss of electrons but cannot
directly affect the ions. What happens then is that
an electric field builds up, causing the plasma to
rotate, and the ions are lost by the resulting low-
frequency instability.

II. FUNDAMENTAL EQUATIONS

Following our previous treatment* of resistive
drift waves in very low-8 plasmas, we write the equa-
tions of motion and continuity of the ion and elec-
tron fluids as follows:

@'+ vVv= —Vx — )\Yﬁ-i- uxZ
or n

A(vr ) -, O
0=Vx—(Vn/n) —v.xz2+e(v—uv), (2
—dn/dr = V() = V:(nv.), @)

where v = v,/v,, v, = V./v,, 1 = KT.,/my, v+ =

w.t, w, = eB/m;, B = B2, A = T,/T,, x = e¢/KT,,

¢ = nen/B, Ml = =;/nKT;,and V isin unitsof ¢™* =
+F. F. Chen, Phys. Fluids 8, 1323 (1965).
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w./v.. These equations are valid for quasi neutral,
isothermal plasmas with 8 = (8xnKT/¢’B*) K
(m./m;) and (m,/m;) — 0. Furthermore, in the
perturbed equations we shall neglect v, and 7,
as is permissible* for drift waves in the absence of
classical diffusion. Then finite-r; effects occur only
in Eq. (1), and finite-y effects only in the z component
of Eq. (2).

In cylindrical coordinates (r, 6, z) (normalized
to the length a), the viscosity tensor given in Ref. 4
takes the form

1 1
_Hrr = %a(vr.r + ;vr + ;Uﬂ.l - 2”:.-)

+ 1 (UO.r + lvr‘.ﬂ - lva) )

2 r r

1 1 1
- § <U0.r + ;Uf.o - _UO) y

r

@
1
—Hrﬂ = %<_vr,r + ;],.'vr + ;UO,O)
1 1
+ 4_11. (vq.r‘ +}vr.0 - ;UO) - %vl,l = —Hﬂr,

2 1 1
—Hl‘ = ga(zvs,: — VUp,» + ;'U,- + ;v0.0> )

where the commsa denotes differentiation and « =
w,71;. The ion-ion collision frequency 7;; is propor-
tional to n™', and therefore, « is a function of posi-
tion. The components II,, and Iy, contain only terms
in v, or 3/3z without the large factor « and may be
neglected straightway with the drift-wave approxi-
mation k; < k,, and hence, v, K v,.

For the equilibrium state we imagine an infinitely
long cylindrical plasma in & uniform B with /96 =
3/9z = 8/8r = v, = v,, = 0; a radial electric field
E, causes the plasma to rotate about its axis. We
neglect IT, for the time being and solve Egs. (1) and
(2) for v, and v, keeping only lowest order in ¢,
which is generally less than 107*. The centrifugal
and Coriolis forces are contained in the term v-Vv
in eylindrical coordinates. We obtain

Ugo(l + T_lvoo) = )\6 - Sr) Vego = —(6 + 81‘)) (5)
vo = —(1 + 277g0) *Red, vero = —Red,  (6)

where § = ng'dn,/or, &, = E,/v.B,and A =1+ A
For simplicity we assume that §/r and §&,/r are
constant, so that both the ion and electron fluids
rotate as solid bodies. Then we can define uniform
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rotation frequencies @, = vyo/7 and Qpe = vopo/7,

given by
Dl + ) = N6 —&)/r, Q.= —(8+8&)/r. (T

This assumption justifies our neglect of II,, since
the shear in v, v, now occurs only in the small
classical diffusion velocities® given in Eq. (6). From
Eq. (7) one finds that the uniformity of Q,, requires
7, to be of the form

o = Moo Xp [— 3 (Qos + &./7)]
= oo exp (—1°/r), ®
with
ry = —2r/é = const.

Clearly, if |&,] >> |8], the condition on 7, is not a
strong one, and our results will be valid for arbitrary
distributions n.(r) as long as §,/r is constant.

Next we linearize Egs. (1)-(3) under perturbations
of the form x, = x(r) exp t(mb + x2z — Qr) and
v = »(r) exp 1(m8 + xjz — Qr), where v = n,(r) /n,(r),
& = kya, and @ = w/w,. The electron equations can
easily be solved if we neglect v, and »,, as previously
indicated; we then obtain the relation

Yo + (B — i) — ) =0, ©

where ¢y, = @ — m,, and vy = m/r. The linearized
form of Eq. (1) for the ions can be written
—1Qv + (v Vv + v+ Vv)

= —~Vx—~AVr+ v x 24+ 2P, (10)

where we have neglected the resistance term and
suppressed the subscript 1. P is defined by

P = —[V.II + I-(Vn/n)l,. (11

As shown in Appendix I, the collision-independent
part of P can be written P = A-.v, where A is a
dyadic operator,

Arr = AM = 'i’Y(% L) + %) ] Ar@ = ""AOr

_1(8 l( .1_)(2_ _1_)
_2(ar’—")+2 S+ \er 7/

The r and 6 components of Eq. (10) are, respectively,
—4(Q — mQv, — 2Qovy + v,vle + veov!
= _(X+N),+v0+mr;

8 Note that the centrifugal force causes v, to differ from
vern, and hence a classical mobility exists even for a fully
ionized plasma. If & >> A6 and @y < 1, Eq. (6) yields vyo=—vero
= — 2\ed &,/r. This is usually too small to be experimentally
significant.

(12)
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. 1 1
—i(2 — mQo)vy + vivho + - vivee + vrovh + " vrove

= —iy(x + N) — v, + AP,  (14)

where the prime indicates 9/9r. We shall neglect v,,
which is negligible compared to v,,, so that the 2
component of Eq. (10) is not needed. In Eq. (14)
the terms v,v}, and v,vs/r coming from the v-Vv,
term and the Coriolis force, respectively, combine
to give 2Qov,, as a consequence of the definition of
Q. A similar term —2Q, in Eq. (13) is the first-
order centrifugal force. These terms give rise to a
factor C = 1 + 2%, which appears repeatedly in
what follows. To keep track of these effects, we write
as O, that factor due to centrifugal force and as C,
that factor due to Coriolis force and its companion
term, where C, = = 1 4 2Q,.

Defining ¢y = @ — mQ, and ® = x + Ay, we
obtain from Eqgs. (12)-(14) a pair of coupled second-
order differential equations for v, and v, for the case
of negligible ion—ion collisions,

'iler + (Cl + Lz)”o = (I)’, (15)
iLyw, — (C2 + Lx)vr = iv®, (16)
where L, and L, are the linear operators
=y + M@ — 17, a7
AP (1. 2)( a_)]
L, = [281"— —rz—r:‘l""'ar - (18)

In the absence of collisional viscosity, only L, is
differential. The linearized form of the ion continuity
Eq. 3) is

W — e+ i(8 + %)v. 4+ =0. (19
The eigenvalue equation for @ is obtained by in-
serting the solution of Eqgs. (15) and (16) for v(®)
into Eq. (19) and substituting for ® the expression
found from the electron equation (9). The de-
stabilizing term due to zero-order centrifugal force
will then appear from the difference between the
Doppler-shifted frequencies ¢ and ¢,; from Eq. (5)
this difference is seen to be proportional to Q5.

In some mirror-confined plasmas of low density
and high temperature the assumption of quasineu-
trality breaks down, and finite Debye-length effects
play a role. These effects are computed in Appendix
IL

N=-m
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III. SOLUTION FOR SMALL ROTATIONS AND k; =0
Small Larmor Radius Expansion

To solve Egs. (15)-(18) for v(®), we make an ex-
pansion in the small parameter p = a/l, where [
is the scale length of macroscopic gradients. Since
r and r, are.measured in units of a, Eq. (17) gives
L, = O(p"). By small rotations we mean values of
E, such that ¢ = O0(p°); then L, is also of O(p°).
Clearly, an expansion in powers of p will break down
for values of m such that vy = (m/r) & 1; similarly,
the expansion will break down for radial wavelengths
of order a. Multiplying Eq. (15) by L,, operating on
Eq. (16) by C, + L., subtracting, and retaining
terms of O(p®) or larger, we obtain an equation for
v, alone. The commutator (L,L, — L,L,) is of O(p*)
and is dropped. The complementary procedure yields
an equation for v,, We thus obtain the separated
equations

[0102 + (Cx + Ca)Lz]Ur

= ¢{L,® — i(C, + L,)(v®), (20)

[C.C: + (C, + C;3)Ls]vs
= (Cs + L,)®' — Lv%®. 1)
If we write v = v 4+ v, where v\’ = 0(")v'?,

Egs. (20) and (21) may be solved order by order
without integration. We then obtain

iC%, = (C — L)y®) —
= (C — L;)& — Ln®,

22)
@3)

where for brevity we have dropped the distinction
between C, and C,. Carrying out the operations
indicated in Egs. (22) and (23) and substituting
the result into Eq. (19), we find that a large number
of terms cancel out, including the coefficient of
@', The first term in Eq. (19) can be put in terms
of & by use of the electron equation (9); for k; = 0
this gives

24
v +

v=—&%/(y — mﬂg);

where we have used the relation y, =

y(A8§ — rQ2). We finally obtain from Eq. (19) a

second-order differential equation for ® = x + My,
q>"+(}—gf)q>'——q>+ N =0, (25

where
2!#(1 + 2% + Mo’%Y) + m@(1 + 20 — 2)\7‘8'2) (26)

(¥ — 2amr) (¥ — mQ)
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N is a constant in virtue of the assumed uniformity
of Q, and 7.

Solution of Whittaker’s Equation

Following the procedure of Ref. 1, we can put Eq.
(25) into standard form by the transformation

® =24 We), =1/, 27
whereupon it becomes Whittaker’s equation,®
(d'W/dd)

+ {—1+ @)+ G- ODNRW =0, (28)

with p = 3(1 + N), ¢ = 4m. The solution of this
which vanishes at z = 0 is given by Kummer’s
function M, ,(2), which for ¢ > 0 has the series
expansion®

M, () = z‘”*e"*'[l + ——-————i,'&g_'_ I

G+q-pE+g—p . ]
T et e+ ° T

If the other boundary condition is M, (Z) = 0,
then if Z < 1 the eigenvalue of p is approximately

= (1 4+ m)& + Z), obtained from the first
two terms of the series. On the other hand, if Z >
1, M, .(2) is exponentially decreasing at large z if and
only if the series terminates; this requires p = ¢ +
i1+ norN = 2n+ m, wheren = 0, 1,2, .- ,1is
the radial wavenumber. This eigenvalue, obtained
by Rosenbluth et al.,' is independent of Z = R’/r}
and is not necessarily accurate because Z is not
very large in practical situations; furthermore, ®
does not decrease exponentially when M, (z) does.
However, if we adopt this eigenvalue for convenience,
Eq. (26) then yields the quadratic dispersion equa-
tion

o [2p(-3) - mil-4) 258

+ mﬂo[ (1 +29) + 25 (1 _ %,—)] —-0, (30)

(29)

where N is a positive real number approximated by
2n 4 m.

To recover the stability criterion of Ref. 1, we
set A = 1 and neglect all terms in ©f except the lead-
ing term in the last bracket; we then obtain

¢ E. T. Whittaker and G. N. Watson, A4 Course of Modern
Adnalyszs (Cambridge University Press, Cambridge, 1952), 4th
ed, p. 3
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Ny* + [ — N)@m/r}) + 2mQo]y
+ m*Q =0. (31

For N = m = 1, ¢ is clearly real. For N > 1, the
condition that the discriminant be positive, and
hence y real, works out to be

—(NP 1) <0 < (NP —1). (32)

Remembering from Eq. (5) that @, &~ (6 — &,)/r =
—(2/r%) — (8&,./r), we find stability when

31— NY < (&/0) <3@+NH. (33

This is identical to the criterion of Ref. 1 because
8,/8 is equal to the ratio W/W, appearing there.
The validity of Eq. (30) is limited by ¢ = 0(p"),
which from the solution of Eq. (30) requires Q, <
O(r;?). For such small rotations Eq. (31) is suf-
ficiently accurate. Extension to larger values of @,
is accomplished in Sec. IV. We note, however, that
whereas Eq. (31) predicts stability for N = 1, Eq.
(80) predicts instability for N = 1, €, < 0, with a
growth rate Im @ = 0(p") if 2 = 0(p").

Physical Interpretation

The first term in the coefficient of ¢ in Eq. (30)
or (31) is the usual finite-r; stabilization term. It
vanishes if A = T,/T, = 0 or m/r3 = k.6 — 0. As
pointed out previously,' it also vanishes if N = 1
because for n = 0, m = 1, the perturbed electric
field is uniform, and no difference in ion and elec-
tron E/B drifts can occur.

The term proportional to &, in the coefficient of ¥
is the one which causes the asymmetry in the
stability criterion (32). An asymmetry in Eq. (33)
is expected, since an &, > 0 adds to the rotation due
to the pressure gradient § < 0, whereas an §, < 0
reduces it. Equation (32) shows, however, that the
criterion is not symmetric even in the total rotation
velocity ,. If one had kept separate the factors C,
and C, subsequent to Eq. (21), one would have found
that the term causing the asymmetry arises not from
C, but from C,, that is, from the Coriolis force and
its companion term in Eq. (14). The physical reason
for this effect is that the Coriolis force —uv,2,6
causes a drift in the r direction which can either aid
or oppose a similar drift due to the finite-r,, effect.
From Eq. (31) it is clear that the Q, term aids
finite-ry, -stabilization if @, < 0 and vice versa.
Consequently, in Eq. (32) the stable region is larger
for Q, < O than for , > 0. The net result is that the
asymmetry in the condition (33) on &, is reduced to
half of what it would be if it were due entirely to the
effect noted at the beginning of this paragraph.
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Solution by the Wentzel-Kramers-Brillouin Method

Equation (28) is in the standard form for
the phase-integral (Wentzel-Kramers-Brillouin)
method’

W + QRW =0, (34

except that Q(z) is singular at the origin. Since this
method is often used for the case k; £ 0, we wish
to check the accuracy of the method for the case
k; = 0, where an exact solution is possible. Since

QR = —1 + [A + N)/2] + [A — m")/4"), (35)

the turning points Q(z,,.) = 0 occur at z,,, = 1 +
N+[Q1+N?+1—m . If Nisreal and N >
m > 1, then z, and 2, are positive; and @ is positive
between the turning points and negative outside.
We can then match an oscillatory solution between
z; and 2, to exponentially decaying solutions outside
by the usual quantization condition

[ @@ i =0+ (30
The integration can be carried out with standard
formulas; this yields

N =2n + (m* — 1)}, (37

to be compared with N = 2n + m, obtained from
the solution of Whittaker’s equation. Thus the
WKB solution is quite accurate even for m = 2.
The WKB method is useless for m = 1 because
there is only one turning point. The reason the
singularity in @ is not harmful for m > 1 is that @
is large and negative near the origin, and the solution
decays very rapidly for z < z,, so that the behavior
at z = 0 is irrelevant. Note that the agreement
between Eq. (37) and the exact result applies only
to cases where Z > 1; the eigenvalue for practical
cases where Z = O(1) can be found only numerically.

If we had chosen N to be complex, the turning
points would have been complex, and Eq. (36)
should be interpreted as the path-independent line
integral in the complex z plane between 2, and z,.
As long as Q(2) is not explicitly complex, the real
and imaginary parts of Eq. (36) would yield the
result that N, 2, and 2, must indeed be real; and ¢
must be complex to make them so.

IV. SOLUTION FOR LARGE ROTATIONS AND &k, = 0

To extend the calculation to larger values of &,
and Q,, we must consider ¢ = 0(p*). If we let y =

7J. Heading, An Iniroduction to Phase-Integral Methods
(John Wiley & Sons, Inc., New York, 1962).
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0(1) in Eq. (17), L, is no longer of O(p°) but can be
written L, = ¢ + Ls, where Ly = 0(o%). We can
then follow the same procedure as before, solving
Eqs. (15) and (16) order by order for v in terms of
®, and inserting v(®) and »(®) from Eq. (24) into
Eq. (19). After considerable algebra, we then obtain
a rather cumbersome fourth-order differential equa-
tion for ®, which we shall not write down. If one
assumes ¥ = O{p), however, the third and fourth
derivatives of ® may be neglected, and one again
obtains Eq. (25) but with some additional terms in
N. The transformation into Whittaker’s equation
and its solution are the same as before, so that for
¥ = O(p) the dispersion relation is given by

~N=—-(2n+m=m

.tP(Cz — 20" + (¢ — mQ)(—C + 2M5° + C'l'l/z)'
(¥ — 2amrg ) (Y — mQp)

(38)

Since C = 1 + 2Q,, this is seen to be identical with
Eq. (26) except for the terms containing ¢° explicitly.

Equation (38) is a cubic in y, which for A = 1 and
n = 0 can be written

—o'm 4 (1 — mp's)m¥’
+ 1 —m+ 25+ p%s°4 — m)}¥
+ &[1 4+ p*2s + m — 1)] = 0, (39)

where p* = 2/r2, s = Q/p’, and ¥ = y/mp’. We
have also replaced C ™" in the last term of the numera-
tor of Eq. (38) by 1, which is legitimate for [Q] << 1.
Equation (39) has been solved numerically for
ro = b8, corresponding to a typical stellarator
plasma, and for , = 10, corresponding to a typical
cesium plasma.

In Fig. 1 are shown the stability limits according
to the cubic equation (39) and the appropriate
quadratic equation (31). It is seen that the simple
stability criterion (33) is very accurate even for
|&,/8] > 1. The assumption ¢ = O(p) breaks down
for values of |§,/5| larger than shown on Fig. 1; for
larger rotations, the fourth-order differential equa-
tion has to be solved. In general, for larger rotations
finite-r,, stabilization sets in at values of m smaller
than is indicated by Eq. (31) or (39). In Fig. 2 is
shown the growth rate Im © vs m for various values
of &,/]5|, the ratio of E/B drift to diamagnetic drift.
Curiously, the region of stability is centered around
a small negative value etther of &, or of rQ, =
— |8] — &,. The growth rate seems to vary inversely
with |3|, but this is a consequence of the assumed
shape of n,(r), which simply requires the instability
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Fig. 1. Stability limits for the lowest radial mode according
to the cubic equation (39) (solid curve) and the approximate
(gxadmtic equation (31) (dashed curve), for Sa) ro = 58 and
(b) ro = 10, where ry 18 essentially the plasma radius in
units of the Larmor radius. &,/|3] is the ratio of E/B drift
velocity to the magnitude of the diamagnetic drift velocity
(for T; = T,), and m is the azimuthal mode number.

to occur at larger r if 7, is increased. The local growth
rate, of course, is proportional to |3 and vanishes if
|6 — 0. The dashed curves in Fig. 1 are valid for
n % 0 if m is simply replaced by N = 2n + m. From
this it is clear that increasing the radial wave-
number increases the finite-r,, stabilization, so that
the frequency spectrum will be shifted toward the
low-frequency end if n is increased.

V. EXTENSION TO FINITE &,

The Radial Equation

‘We now consider finite but small values of %, such
that ion motions parallel to B may still be neglected;
the condition found previously* for this is k}/k} <
8% If electron motion along B is controlled by col-
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lisions with ions, as is the case when ¢ >> (m,/m,),
Eq. (9) is the proper equation of continuity for the
electrons. The ion velocity v is the same as before,
but into the ion equation of continuity (19) we
must now insert

&y — e ]
¥ — mQ + ke k;’

WP = — (40)

008 T
T {a) rp=58
007+

T T
£ fidi=-l

006}
00s|-
Im{yr) 004

0.03*»
L

002

0.08

007 4
0.061-
t 0.05F

Im{t) 004

0.03|-

0.02F

| PRI RSN
] 10 . 100 1000

m—e

F16. 2. Growth rates versus m-number, computed from
Eq. ﬁ39), for various values of the normalized electric field
&./18|, for (a) ro = 58 and (b) r, = 10. The growth rates
generally increase with m but cut off sharply when finite-ry
stabilization sets in.
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found from Eq. (9), instead of Eq. (24). We then obtain Eq. (25), in which N is now a function of

r. For ¢ = O(p), N(r) is given by
vy —

CHIm + ip%(M)] + m(C — Np’ —

CYAOYy — mQ; + ﬂf(r)]

N() =

16) = €4 = Bii@)/[emo()]. (42)

Using the transformation (27) and simplifying N(r)
by restricting ourselves to ¢ = 0(p®), we finally

obtain
W'+ QRW = W
p[L1NO 1oy oo
where
NG = T2 ;&’, — ;)(‘I' —Ne@ ()
9() = (B/nocen)lei(2)/mp'], (45)

¥ = y/mp’, 8 = Q/p’, and p* = 2/r:. We have used
Eq. (8) for the form of n,. In this section we con-
sider magnetic fields w1thout shear, so that «, is
constant.

From Eq. (44) it is clear that N (z) cannot be made
real at all z by any choice of ¥; hence, N(z) and
Q(2) are complex functions of z. Equation (43) is
therefore in the form of Schrodinger’s equation with
a complex potential energy. This type of equation
always arises in the theory of universal instabilities
and is customarily solved by the complex WKB
method.®

Local Dispersion Relation

If the radial wavelength is much larger than the
azimuthal wavelength, the local growth rate at each
radius can be estimated by neglecting the radial
derivatives in Eq. (25) and using Eq. (44) for N.
This yields the following algebraic equation for ¢:

v+ Doy + ) — 28y + Y ]Y
— &y 'mQ) + A&YY =0, (46)

where Y = «}/ev’ and & and v, defined previously,
are the local density gradient and azimuthal wave-
number. Setting ¥ = 0 yields the local growth rate
for the centrifugal, or ‘gravitational,” mode dis-
cussed in Sec. IIL. If ¥ > O(p°), we can expand the
solution of Eq. (46) to obtain the local complex fre-
quency ¢ for the drift, or “universal,” mode. This is

= —\&y + 1Y

(R&F[1 + v (No/r — 28,/0)] — o). (47)

8 A. A. Galeev, Zh. Eksperim. i Teor. Fiz. 44, 1920 (1963)
[English transl.: Soviet Phys.—JETP 17, 1292 (1963)].

(¢ — amp)[¥ — mQ; + INf(r)]

(41)

The last term in the curly brackets is simply the
“gravitational” growth rate found previously,* but
with the centrifugal force Mnvl/r replacing the ef-
fective gravitational force AMKT,./R in a curved
magnetic field. The first term in the curly brackets is
the usual growth rate for the “universal” resistive
overstability* (resistive drift mode), modified by
some geometrical and Coriolis effects which vanish
in the limit r — o,

The effect of radial variations can be estimated by
replacing the radial derivative by 7x,, where «, is
the local radial wavenumber. It is convenient to do
this in Egs. (43) and (44), which give

¥+ [-X+ N7\ + 25 + ig)1¥

+ N-'(s" — dhg) = 0, (48)
in which, since &} = —8°/82" = «7/22¢’,
N =[m"—1)/2] + /o) + 32— 1. (49
For the drift mode (large g), we have
¥ =X+ ' NN + N+ 2) +5].  (50)
This is equivalent to Eq. (47) if N = m’/2z. Note

that because of the transformation Eq. (27), Eq.
(46) is not exactly the same as the equation for
the turning points of Eq. (43), as it would be in
plane geometry.

From Eq. (50) we note the following: (1)
Re ¥ = }, so the wave travels at the electron diamag-
netic drift velocity; (2) the gravitational part of the
growth rate is independent of N, and hence of «,; (3)
the universal part of Im ¥ is proportional to N,
and hence to «* if x, > (m/r). This is opposite to
the behavior of the centrifugal mode of Eq. (31),
where the growth rate decreases with radial wave-
number n. The reason is that the drift mode is
excited by finite-r., effects whereas the gravitational
mode is damped by them, as shown in a previous
paper.’

Wentzel-Kramers-Brillouin Approximation

Formal application of the WKB method to Egs.
(43)-(45) gives the quantization condition

“| 1, A, +id,expz l—mz]*
f_‘[4+ = + 1| s

=(n + %)7")
9 F. F. Chen, Phys. Fluids 8, 912 (1965).

(1)
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_ F16. 3. Schematic of the curves k; and ke, whose intersection
gives the turning point 2, for the drift mode, for three values of
A, and one value of 4,. The coefficient of ks is proportional to
the growth rate. The behavior of the wave function W is
illustrated for the case 4; > 0 and X = 2, X being the
boundary.

where
A, =1—[¥0\+ 29 4+ &)/[TE¥ - N], (52
A; = (Ki/eomp){(¥ — N/[T@ — N}, (53)

and ¢, is the normalized resistivity at r = 0. The
dependence of ¢ on density, which varies exponen-
tially, is shown explicitly in Eq. (51). The integral in
Eq. (51) between the complex turning points 2, and
2, is independent of path, and the real and imaginary
parts of that equation give, in principle, two equa-
tions for the real and imaginary parts of ¥. Once
the eigenvalue of ¥ is found, the finiteness of the
solution at 0 and « can be checked by computing
the antistokes lines defined by Im [, @' dz = 0
and seeing whether or not they cross the real axis;
if s0, the solution is exponentially decaying at small
and large radii. Clearly, the Wentzel-Kramers-Bril-
louin method is not very useful here because the
integral in Eq. (51) is intractable, and even the
turning points cannot be expressed simply in terms
of ¥ because the equation @ == 0 is transcendental.
The integral cannot be evaluated numerically until
¥ is known, so that in general a trial and error pro-
cess is necessary; in such a case one may as well solve
the original equation (43) numerically.

We can, however, make some progress with the
drift mode occurring at “large” values of . If one
assumes ¥i <« ¥T, where the superscripts indicate
the imaginary and real parts, then A, is essentially
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real. If one further assumes that @ is nearly real,
then the turning points z,,, = ., + ., are nearly
real, and the integral in Eq. (51) can be approximated
by an integral along the real axis. This requires 4,
to be pearly imaginary; from Eq. (53) we see that
this happens when either «} &~ 0 or ¥ = X. The
former corresponds to the centrifugal mode of Sec.
I1I; the latter to the drift mode we are considering
here. Setting ¥* = X, we find for the real part of
Eq. (51)

T3 x _ 2 |
f [__1+A,+Aze+l m]dx

4 2z s
=@+ Hr, (4
where
Ay =1—[\+ 28+ (*/N)], (55)
A, = (Gi/emp’)¥'/X. (56)

The turning points occur at the intersections of the
curves

hz) = &8 — 24, x + m* — 1,
ho(x) = 24,%¢".

67
(58)

In general, there is only one intersection and hence
only one turning point.

Consider first the case m > 2. The curves h,(x)
and k,(z) are shown schematically in Fig. 3 for dif-
ferent values of A,. For more than one turning point
to exist, A, must be larger than that value which
makes the h, and h, curves tangent. Remembering
that z = r*/r2 > 0, we are then led to the approxi-
mate condition 4, > (m® — 1)} From Eq. (55) we
see that A, has a maximum of 2 at s = —X. Thus
for m = 2 it is barely possible for three turning
points to exist. Except for the case m = 2, A & 2,
there exists only one turning point z, for m > 2. To
the right of z, the exponential term in Eq. (54)
dominates and @ is positive; hence,

WNQ"*exp'i[ Q! dx

is oscillatory. To the left of z,, Q is negative and W
is exponential.

The drift mode, therefore, is not localized. If we
require W to take on the subdominant solution for
r < z,, then by the usual connection formulas we
find that W is a standing wave for z > z, and decays
only slowly with = because of the factor Q% This
oscillatory solution must have a null at the boundary
2z = X if the boundary is conducting. In practical
devices the boundary is often defined by a conducting
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aperture limiter. If the device is not too long, the
potential of the cylinder defined by the limiter is
a constant determined by the sheath drop at the
limiter; a conducting boundary is then a good ap-
proximation. Although localized solutions do not
exist, the WKB condition (54) can still be used if
z, is replaced by X. Moiseev and Sagdeev'® found
localized solutions for the resistive drift mode
(6, = 0) by ignoring the exponential behavior of e
and expanding around the region where the density
gradient is a maximum. However, it is inconsistent
to assume that the perturbation is localized to a
region where ¢ can be regarded as constant; it is
precisely the fast-varying exponential term in Eq.
(54) that makes it impossible to have a second
turning point. Note that & = 0 corresponds to
s=—land A, = §if A = 1.

In retaining the exponential term we cannot ob-
tain the usual solution in terms of Hermite polyno-
mials. However, we can estimate the growth rate of
the drift mode in certain cases. For large radial
wavenumbers n, ¥1 is approximated by assuming
X > x,, so that the exponential term dominates in
most of the region of integration. The integral in
Eq. (54) can then be evaluated, giving

5.4 z\ 4
wrven [ (5) @
= 24P FGX) — & F(z,)Y,

where

¢

F(t) =" f ¢ du.

0
The function F(f), tabulated by Miller and Gordon,™
has a broad maximum ~0.54 at z = 0.92. Letting
F ~ 0.5 and neglecting exp (3z,) relative to exp (3X),
we obtain (n + 3)w =~ A} exp (3X), or
¥~ Regmp'ipi(n + 3)'n” exp (—X), (largen). (59)
This varies as n’, in agreement with Eqgs. (49) and
(50), and is independent of s. The reason is that the
gravitational part of the growth rate is diminished
by finite-r,, effects at large values of n, leaving only

the universal part. For small n, a lower limit on ¥*
can be found by the condition z, = X. We then find

¥ 2 WMempi’[X — 24, + (m* — 1/X]
-expr(—X),
which does depend on A, and, hence, on s.

10 §. 8. Moiseev and R. Z. Sagdeev, Zh. Techn. Fiz. SSSR
34, 248 (1964) [English transl.: Soviet Phys.—Tech. Phys.
9, 196 (1964)].

1 W, L. Miller and A. R. Gordon, J. Phys. Chem. 35,
2875 (1931).

(60)
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Consider now the case m = 1, for which the
turning points are given by x — 24, = 24.¢".
Remembering that z > 0 by definition, one can
easily show that for 2 > A, > 0, there are two turn-
ing points for A, < A, and no turning points for
A, > A, where 4, = } exp (—1 — 24,); for
0 > A, > —1}, there are two turning points for
A, > A, > —A,, one turning point for 4, < —A4,,
and no turning points for A, > 4,; for 4; < —3},
there is one turning point for 4, < —A, and none
for A, > —A,. When there is one turning point,
the situation is similar to the previous case of
m > 2. When there are two turning points, a region
of evanescence separates two regions of propagation;
and when there are no turning points, the solution
is oscillatory everywhere and is determined by the
boundary conditions W = 0 at z = 0 and z = X.
Equations (59) and (60) are still applicable in the
limiting cases, and the growth rate increases with
radial wavenumber.

In the general case when n and «j are not large
enough for these approximate formulas to be valid
and m is not large enough for the local dispersion
relations to be accurate, Eqs. (43)-(45) must be
solved numerically. Since the solution for a non-
localized mode in cylindrical geometry is not usually
given in the literature, we have performed this cal-
culation for a few typical cases. The results will be
given a subsequent paper.

V1. SHEAR STABILIZATION
General Remarks

We begin with a discussion of the mechanism
of stabilization of drift-type instabilities by shear in
the magnetic field, a subject previously treated
by Mikhailovsky and Mikhailovskaya,'® Galeev,’
Stringer,'® and Frieman.' Consider a magnetic field
of the form B = B,2 + B,(r)8. Because of the shear,
a perturbation with a given «, will have a different «;
at each radius,

) = x + (m/nB,@)/|B|. (61)

This has the effect of localizing perturbations to a
range of r in which «, does not vary widely. Only
those perturbations with a sufficiently large effective
radial wavenumber x, can then be excited. If the
shear is sufficiently large, some modes are completely

2], V. Mikhailovskaya and A. B. Mikhailovsky, Nucl.
Fusion 3, 28 (1963).

13T, E. Stringer, Princeton Plasma Physics Laboratory
Report MATT-320 (1965).

4 E. A. Frieman, K. Weimer, and P. Rutherford, in

Second Conference on Plasma Physics and Controlled Nuclear
Fusion (1965), Paper CN21/118.
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stabilized because the region of localization is smaller
than the shortest possible radial wavelength.

There are several reasons for the localization of
a given mode. One is that the “natural” turning
points of the mode tend to come together when
x; is a function of r. Localization also occurs because
as y is increased terms not normally included in the
theory begin to be important and cause other turning
points to appear. For instance, there is Landau
damping. It is well known that the parallel phase
velocity of drift waves lies in the range v, < w/k; <
¥en1, Where vy, and v, are electron and ion thermal
velocities, because otherwise the waves would be
Landau damped. Since the waves cannot propagate
outside this range, there must be turning points at
radii where &k, & /v and by & w/v4,. Further-
more, there must be turning points where x, =
k,a =~ 1, because the theory breaks down for wave-
lengths of the order of a (=r.), and the mode cannot
exist for x, > 1.

The situation is elucidated by Fig. 4, which is a
schematic plot of the real part of the potential
energy —Q against the coordinate z = r’/rj. We
choose «, to be 0 at z = z, and assume that the shear
is large enough that the points z;, where ky = /9.,
lie between the axis x = 0 and the wall z = X.
There is a narrow potential well near xz,, where the
x; =~ 0 mode of Sec. III can exist. This mode cor-
responds to the classical interchange instability,
which at larger values of «, turns into an Alfvén
wave. Surrounding this region is a potential barrier,
in which the wave decays exponentially. Beyond the
turning points x, are other potential wells in which
the drift mode can exist. With ion Landau damping
neglected, these wells deepen monotonically away
from z,; but, as Galeev® has shown, the ion damping
term brings the curve back to the axis at z;, some-
what as shown by the dashed lines. Thus the drift
waves are localized between z, and z;. The potential
—Q depends on the frequency ¥; the outer wells
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exist only if ¥! > (0—that is, if the wave is over-
stable.

The points z, and z, are places where w/k; = v,
(the Alfvén speed) and w/ky; = v, respectively. In
this paper we are concerned with 8 < (m,/m,); this
is equivalent to v, > v, Therefore, as «, is de-
creased, the drift mode is affected by electron Landau
damping before it is affected by the damping due to
excitation of Alfvén waves. Thus the value of v,,
and hence of 8, does not enter the problem, as one
would expect at low 8. Actually, the value of z,,
and hence of m,/m;, does not enter either, since in
neglecting electron inertia we have assumed ¢ >
(mo/m;), so that the value of z;, depends only on e
In unclosed systems with conducting endplates and
in closed systems with a rotational transform the
value of x; is limited from below, so that usually the
center potential well does not exist at all. Then the
entire region of nonelectrostatic, g-dependent phe-
nomena is irrelevant, and the shear stabilization is
independent of B. This picture is intuitively more
satisfying than previous results,®'**'** which indicate
a B dependence of the low-8 shear stabilization
criterion, because experiments on stellarators'® in-
dicate that for 8 < (m,/m;) the confinement time
is independent of 8 over several orders of magnitude.

To characterize the shear it is customary to define
u(r) = B,(r)/r |B|, so that ¥, = x, + mp and | =
mu'. Here r and 8/dr are still normalized to the
length a & ri. The change of pitch angle of the lines
of force over a distance r, is given by the dimen-
sionless quantity 6 = |ry/| ro. In what follows, the
radius 7 = zir, at which &, is chosen to be zero is
arbitrary. For definiteness we choose this to be the
radius at which the density gradient is maximum;
Eq. (8) then gives # = p™' or o, = 3. Then ¢ =
2 |u'| /V2 and «} = /2m6/r}. When the instability
is sufficiently localized, we can expand x,{r) about
r=Ff ) = gFe - F 4 -, or gz) =
K% (zo)(x — o) + - -+, where «% = 9x;/3z = «|/rp’.
This expansion is valid if 3«§* (o) (%; — %0) K x% ().

The point z; is determined by the condition
V() = vas/v. X AL For the drift mode, ¥ *
Amp®, so that z; — 2, & 2mp’/«} for A = 1. Thus
the validity of the expansion for «; is valid if mp® <
k¥?/«k¥*, which is easily satisfied. The condition
that the points z; lie within the plasma is [z; — x| <
zo or X — x,, whichever is less. If 2, and X — z, are
of O(1), the above expressions for z; — z, and «%
yield

8 W. Stodiek, J. O. Kessler, and D. J. Grove, Princeton
%l’asma. Physies Laboratory Report MATT-Q-22 (1964), p.
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0> 4/r,
as the condition for this sort of localization.

Localized Modes

(62)

First we follow the usual procedure and look for
highly localized modes whose amplitudes vanish at
«, It is convenient to start from Eq. (25), with N
given by Eqs. (44) and (45). We assume that the
natural turning points are much closer together than
the length r,, so that the first derivative term in Eq.
(25) can be neglected, and m/r can be replaced by
m/7. Further, we assume that «;(r) varies much more
rapidly than exp (—r*/r3), so that Eq. (45) can be
written g = go(r — #)?, where

go = (B/nooeﬂ)(e;’/”’/ mP4)Kﬁ2(7-')-
Equation (25) then becomes

7’ __ﬂz;___ 3‘1’(_)‘-'_'_2_8)i§i
¢ +[ 7P Tew -y

(63)

- ip’goq—f‘("gi_%r”}b =0, (64

where we have shifted the origin of r to 7. With the
transformation

_ [4se’q¥ — X)]*
t= [ ¥ =N 7, (65)
this is put into the form of Weber’s equation:
(@'2/6) + n+ 3 — )2 =0,  (66)
with
2 2
1o _(m z‘I’()\+23)+8)
nti= (f’ TP Ty — N
(4’0 — 7\))"*
( v —»n /) - ©
Solutions which vanish at « have as eigenvalues
n=0,1,2 ... Specializing to the case A = 1 and

f = 1/p, we can write the dispersion relation (67) as
follows:

m¥* — 2mp + i)V + 2m’s + p* + V)V
—2p+ i)+ =0, (68)

where

Y = @2n + D)"/ef)mp’.

We next separate Eq. (68) into real and imaginary
parts and assume ¥i < ¥* and ¥ > m*. The latter
is a good assumption if § = O(r;') and ¢ < m™.
The imaginary part of Eq. (68) then reduces to
(" — 1)(¥" — 2) = 0 or, for arbitrary A,

p=m’—1-—2s
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(¥ -~ NF -\ =0.

The root ¥* = X is the drift mode; and putting
¥ = X into the real part of Eq. (68), we find that
¥! < 0. Thus the only localized drift mode is a
stable one.

The root ¥* = \ corresponds to0 a mode which is
purely unstable in the frame in which & = 0. The
real part of Eq. (68) gives

v = (s + 1)*/7. (69)

This is the only highly localized unstable mode and
corresponds to the small center potential well in
Fig. 4. Note that the universal mode §, = 0,s = —1,
has neutral stability in this approximation. For
|&.] > 0 there is no absolute stability, but the growth
rate decreases with increasing shear. The turning
points for this unstable mode can be determined
now that ¥ is known; they lie on a 45° line through
f in the complex r plane, and their separation is much
larger than r,-if 8 3> 2(s + 1)(2¢/m)}/r,. This is
a much weaker condition than that given previously
for the localization of the drift modes by ion Landau
damping.

Of interest to an experimentalist is the ratio of
growth rates with and without shear. For the cen-
trifugal mode with x, = 0, the growth rate Q! is
found from Eq. (31). Comparing this with mp*¥i
by Eq. (69), we find for the lowest radial mode n = 0

Q' (shear) _ ¢°T'(s, m)
Q' (no shear) wre
where ¢ and u’ are evaluated at #, and T is an alge-
braic function of s and m. Typical values of T are
shown in Table I.

(70)

TaBrLE 1. Typical values of 7.

m
s 2 3 4 6 8 10
-2 0.38 0.19 0.13 0.086 0.095 ©
1 1.5 077 0.52 0.34 0.38 ©
+2 1.9 0.90 0.57 0.31 0.21 0.15

For s = —1, T = 0 because & = 0 with shear. For
s = 0 orm = 1 or for sufficiently large m, T is
infinite because Q' = 0 in the absence of shear; of
course, this is only a consequence of our using the
formula for k, exactly equal to zero for Qi in the
absence of shear. From Table I one sees that high
values of m are more greatly affected by shear. From
the n dependence of Eq. (69) one sees that the higher
radial modes are also more easily stabilized. Since
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T = O(1), the magnitude of shear necessary for an
appreciable effect on the growth rate is, from Eq.
(70), '] > o or

8 > 2¢'/ro. (7

This is an extremely small shear. For example, if
the shear is provided by a current I along the axis
(hard core), then

k() = @mI/aB)(r™" — 73, (72)
6 = 81/Bra, (73)

where I is in emu, B in Gauss, and 7ea in cm. Then
Eq. (71) requires I > 1aBé, which for a cesium
plasma (¢ & 107*) at 4000 G means only 13 A in the
hard core. Stabilization of this localized mode is
therefore no problem in practice.

Once the eigenvalue problem is solved and ¥ is
known, the antistokes lines can be computed. It
is often supposed®'*® that if the antistokes line does
not cross the real axis as r — =, the plasma is
stable. However, all it means is that there are no
localized solutions, such as the one discussed above,
whose natural turning points lie well within the
plasma. There still exists the possibility of non-
localized unstable solutions which are oscillatory
near the boundary and have a node at the boundary.

Nonlocalized Modes

We now consider the drift waves which can exist
in the outer potential wells of Fig. 4. These over-
stable modes, discussed in Sec. V, are in general not
localized in the absence of shear because they have

=—F =3 ==
_><

x=ryrt—

Fia. 5. Schematic of the curves ki and hy, whose inter-
gection gives the turning points z for the drift mode, for
the case of large shear. The perturbation is parallel to the
lines of force at z = z,, and ion Landau damping occurs at
2 = z;. The behavior of the wave function W is also shown.
The sign chosen for h; corresponds to a growing wave.

F. CHEN

only one turning point for z > 0. In the presence of
shear, localization occurs only when Landau damping
is taken into account. The amount of shear neces-
sary is given by Eq. (62): 6 > 4/r,. If the shear is
weaker than this, it only modifies slightly the theory
given by Egs. (564)-(60) for zero shear. We again
define the drift mode to be that described by ¥* =~ 5
so that Q and the turning points 2, are almost real.
Then the quantization condition is again given by
Egs. (54)-(56), but with A, a function of z since «
now varies with z. In general this causes ho(z) in
Fig. 3 to rise more steeply; hence, the factor ¥iin A,
must be smaller to preserve the same radial wave-
number 7 as in the zero shear case. However, the
point at which «, is chosen to vanish is arbitrary, and
by moving this point to larger values of x one can
restore the zero-shear value of ¥!. Thus for small
shear the growth rate, given in certain limits by
Egs. (59) and (60), is unaffected by the shear al-
though the radial variation of the mode is changed.

For large shear such that 8 > 4/ro, the drift mode
is localized by ion Landau damping. The behavior
of hy(z), ho(x), and W is shown schematically in Fig.
5 for the case £, = %. The wave is localized between
x, and z; on either side of z,. If the shear is so large
that «j(z) varies much faster than any other factor
in Q, the quantization condition (54) can be written

s _l A, + Az — xo)z 1-— mz]}
f,l [ i 22, tgm |
=@m+Phr, (79

where we have used the expansion for «;(z), 4. is the
same as before, and

A4, = K (zo)e T /Reomp’. (75)

For large values of n the 4, term dominates in most
of the region of integration. Equation (74) can then
be integrated approximately, yielding

(A3/2:co)§[(x,~ - xo)z - (2 — xo)z]
—@n+Dr.  (76)

For simplicity we henceforth assume A = 1; then
z; — %o & 2mp’/«%. With the neglect of (z, — o)’
Eq. (76) yields

¥ A etz + 3)n°/m*pt, (largen),

0

in which e}’ is to be evaluated at . At first sight
it would appear that the growth rate increases with
shear, but this is true only if n is fixed. As the region
of localization becomes smaller, the effective «, must
increase to keep n constant. From the local dis-
persion relation, Egs. (49)-(50), we see that ¥
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increases with «,; hence, it increases with «%. If «,
were kept fixed instead of n, ¥ would be independ-
ent of «%.

To compute the experimentally interesting ratio
of Wi with and without shear, one must let the radial
wavenumber n vary with shear-in such a way as
to keep the radial wavelength constant. Thus we
take n(shear)/n(no shear) & (r; — 7)/R = 2mp/R«¥.
The latter equality assumes z, = 4. Using Eqgs. (77)
and (59), we then find

Q' (shear) _ exp(X — %) _«
Q' (no shear) 2X m’p"’
where X = R?/r:. If L is the length of the plasma,
k, is often given by , = wa/L. Equation (78) then
becomes

Q' (shear)
Q' (no shear)

(large n), (78)

_ep(X — (‘E_’l@)z (79)

8X ma L

y
cm

in which r, has been converted back to normal units.
Note that this ratio is independent of the shear as
long as 6 >> 4/7,, and that large values of m are pref-
erentially stabilized by shear. For X = O(1), shear
diminishes the low-m growth rate significantly only
if r2 < aL.

For small values of n, a lower limit to ¥! is given
by the condition z, = z;, or hy(x;) = ha(xz;), where
h.(z) and h,(z) are given by Egs. (57) and (58). Since
(x:) = ¢ = 2ma, we obtain for large shear

¥ >
4dmzx,

(x2 — 24,1, + m* — De

-exp (—o). (80)
Comparing this with the no-shear growth rate of
Eq. (60) and again setting x, = wa/L, we obtain
Q' (shear) _ Xe*hy(xo) ( ks Qﬁ)z
Q' (noshear)  ze”hy(X) \dm a L/o’

(81)

which has the same general form as Eq. (79) for
large n.

In the foregoing we have implicitly assumed
|z, — Zo| > |z — %o|, where z, is the turning point
which would arise if the radial wavelength became
as small as the Larmor radius, or «, =~ Q& 1.
Replacing @ by its dominant term, we find that we
require ¥ < e exp (—a,)/mp’. This is consistent
with the growth rate of Eq. (77) if 8 < v2/[r(n + $)].
Thus our results are valid if

4/r, K 6 < (V2/m)(n + D7

This gives the maximum value of n for a given 6.

(small n),
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Our results on shear stabilization of the drift mode
may be summarized as follows. Values of 6 less than
4/r, are insufficient to affect the growth rate. For
6 > 4/r, the growth rate for modes of the same
radial wavelength A, is independent of shear and is
given by Eq. (77) or (80). The effectiveness of shear
in reducing the growth rate for different azimuthal
modes goes as m®. As shear increases, the region of
localization decreases, so that large values of A, are
eliminated; however, the short wavelength modes,
which are the fastest growing, are unaffected. Ab-
solute stability cannot be achieved until the region
of localization becomes comparable to a Larmor
radius. This requires |r; — 7| = 2ma/«f < 1, or

0 > 2v2. (82)

As a numerical example we take the cesium plasma
with a hard core considered previously. Using Eq.
(73) with ¢ = 0.13 cm, r,a = 1 cm, we find that
Eq. (62) requires 2.6 kA and Eq. (82) requires 14 kA
in the hard core. This assumes x, = %; somewhat
higher currents are required to stabilize modes local-
ized farther from the axis.

The short-radial-wavelength modes are the most
difficult to stabilize. Fortunately, these are the least
effective in transporting particles across a magnetic
field. The m dependence of the growth rate [see
Eq. (78)] is also helpful because the fastest growing
azimuthal modes are easily slowed down by shear.
Therefore, a significant increase in plasma confine-
ment time may be obtainable even if the shear is
much smaller than that required for complete sta-
bility.

Discussion

The stability criterion (82) is considerably more
severe than those found previously.®''*'* Since the
completion of this work, the appearance of a paper
by Krall and Rosenbluth'® clarifying and extending
the Soviet work has enabled us to understand the
essential difference between our results and those
of others. First, in treating the resistive, rather than
the collisionless, limit we find that the explicitly im-
aginary term 7A.e* in Q(z)[see Eq. (51)] is propor-
tional to k? rather than to (kw.)™", as in the case of
the universal instability due to resonant electrons.
Therefore, as k} increases because of shear, the A4,
term in Eq. (74), proportional to ¥i, becomes dom-
inant rather than negligible. This term allows «, to
become arbitrarily large if ¥! is chosen sufficiently
large, and k. is limited only by the breakdown of

8N, A. Krall and M. N. Rosenbluth, Phys. Fluids 8,
1488 (1965).
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the small-r,, expansions. Second, the localization in
the absence of shear in previous papers®'"**** was
attributed to a radial variation of the drift frequency
Q.. This is an artifice used to create turning points
and is not intrinsic to the instability. In taking Q.
to be constant, we face up to the fact that the drift
mode is basically nonlocalized. Coupled with the
radial decrease of e, this fact leads to our conclusion
that the nature of the potential well —Re Q(z) is
not completely changed by shear, as previously
thought.®"**

Tinally, our advocacy of the stabilization criterion
(82) rather than Eq. (62) stems from a difference in
interpretation of the effect of the terms due to ion
Landau damping. Aside from an insignificant numer-
ical factor, our criterion of Eq. (62) is the same as
that found by Krall and Rosenbluth'® and cor-
responds to a shear sufficient to bring the ion Landau
damping points z; (Fig. 5) inside the plasma. Galeev®
and Krall and Rosenbluth'® argue that the growth
rate must be averaged over the whole region of
localization, and since large damping occurs near
z;, the net growth rate is negative as long as x, lies
within the plasma. Specifically, if one multiplies the
equation W’ 4+ Q@)W = 0 by W* and integrates
along the real axis from z = 0 to z = X, the im-
aginary part gives [3 Im @ |W|? dz = 0. Since Im @
is small for the drift mode except near z = z;, where
the ion damping term becomes large, the integral
cannot vanish unless Im © is such as to make Im Q
small near z = z,. When Im Q(z,) is written out, it
is found® that Im © must be negative. We cannot
find fault with this argument, but neither do we see
that necessity for Im © to be the same everywhere.
Physically, a wave packet starting near z = z, will
not “know” about the existence of an ion-damping
region until it has spread to z = Zs and will, there-
fore, grow at a rate which is unaffected by ion damp-
ing. A normal mode analysis is not sufficient to
describe the physical situation.

The accuracy of our results, however, can be
supported by a test suggested by J. M. Dawson. The
question is whether or not our treatment of z; as a
reflective turning point is valid, since the dissipative
mechanism of Landau damping prevents incoming
waves from z; towards z,. However, our analysis
is valid even for running waves if the group velocity
is so small that many growth times are needed for a
wave packet to travel from z, to z; then the wave
energy will build up before it can be dissipated. This
evidently requires

QT /3x) /¥ K | — .
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Equation (50) shows that the local group velocity
is very small, since ¥* is essentially constant. To
find 8¥*/dk, one has to expand the solution of Eq.
(48) to third order in ¢~". Using Eq. (49) for N and
Eq. (50) for ¥4, one then finds that the small value
of 8¥*/dk, decreases even further as x — z.. Ap-
proximating x, = Q! by the A, term of Eq. (74), one
can show that for N >> 1, A = 1, z, = } the above
inequality is equivalent to 6 K (ero) . Since ero is
generally much less than unity, the radial group
velocity is always small enough. The instability is
convective, but the speed of convection is very small.
Hence, Eq. (82) rather than Eq. (62) is the proper
criterion for absolute stability. This point can easily
be checked by experiment.

VII. EXPERIMENTAL IMPLICATIONS
Cesium Plasmas

The radial electric field in an alkali-metal plasma
created by thermal ionization at hot end plates is
determined by the balance of electron fluxes into and
out of the end plate. If the plasma is electron rich, the
flux into the plasma is j, exp (e¢/KT), while the
flux out of the plasma is }n7,. Here j, is the therm-
jonically emitted flux, ¢ the plasma potential relative
to the end plate, and T the common temperature of
the end plate and the plasma electrons. Equating
these fluxes, we find

e¢/KT = In (inb./j.)-

We allow T and n, and hence 7, ji, and ¢, to vary
with radius. With the use of Richardson’s equation
for j,, differentiation of Eq. (83) gives for the radial
electric field

K 7
Tn (¢

- e n

(83)

14
E, 3 KT) T 84

w ¢ + 2 ¢ 71- )
where the prime denotes 8/dr and ¢ is the work
function of the end plate. In an ideal device the
end plate is uniformly heated, and T' = 0. Then
E, > 0, since n’ is normally negative. The radial
electric field in an ideal cesium device produces an
azimuthal drift equal to the ion diamagnetic drift
and equal and opposite to the electron diamagnetic
drift. The plasma column therefore possesses angular
momentum; this is taken up by the end plates be-
cause each time an jon strikes an end plate it
tends to turn the end plate in the same direction
because of the ion’s Larmor gyration. )

If T # 0, the electric field is as shown in Fig. 6,
which is a schematic plot of Eq. (84). The stability
zone, given by Eq. (33), for the m = 2,n =0
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mode of the centrifugal instability with &k, = 0 is
also shown. It is seen that the plasma is unstable
to this mode if 7’ = 0 but that if T falls off with
radius, as usually happens, the plasma lies in the
stable zone at a not unreasonable value of 7", If T"
is very large and negative, the plasma becomes un-
stable again. This instability may explain the oscil-
Jations observed by Buchel'nikova'’ at densities
so low that finite resistivity effects could not have
been important.

At high densities, electron—ion collisions allow k;
to be finite, and the drift mode can be excited. The
allowed values of k; depend on the boundary con-
ditions imposed by the end sheaths; we have pre-
sented this computation previously.'® Since a radial
electric field is nearly always present in a cesium
plasma, so that the centrifugal instability and the
universal resistive overstability must be considered
together, the present work is a considerable im-
provement over our previous treatment,’® which
was confined to the resistive drift mode and the
Rayleigh-Taylor instability in plane geometry.

Stellarators

In a stellarator ions which have small velocities
parallel to B do not greatly benefit from the rota-
tional transform and tend to drift out of the dis-
charge, leaving a net negative charge. The resulting
E, builds up until it gives the plasma enough rotation
to stop further loss of ions. Thus a radial electric
field is necessary for the operation of a stellarator,
as shown recently by Bishop and Smith.”* Fortun-
ately, the direction of the field (§, < 0) is the more
stable one for the centrifugal instability [Eq. (33)],
and a field of the order of 50 V/em is required to
drive the m = 2 mode. The gravitational instability
due to curvature of the magnetic field dominates
over the centrifugal instability for |[E.| < 100 V/cm.
In any case, these instabilities with ky ~ 0 are
easily stabilized by shear, as shown by Eq. (71).

The resistive drift modes with finite &, are far
more dangerous. The criterion of Eq. (62) is barely
achievable in a stellarator, and this is sufficient to
slow down only the large-m modes. The criterion of
Eq. (82) for complete stability is unattainable. Thus
there is no solace to be had from the linear theory,
but one can hope that a nonlinear theory will show
that the large-x, modes do not affect the plasma
confinement. Another possibility is to allow the

7 N. 8. Buchel’'nikova, Nucl. Fusion 4, 165 (1964).

8 F, F. Chen, J. Nucl. Energy C7, 399 (1965).

1 A, 8. Bishop and C. Smith, Princeton Plasma Physics
Laboratory Report MATT-Q-22 (1964), p. 278. .
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F1a. 6. The radial electric field in a cesium plasma as a
function of the temperature gradient in the emitting end
plate. The stability zone is for the m = 2 mode of the centrifu-

: gal instability with k; = 0. Here A is the scale length of the

ensity gradient.

interior of the plasma to be unstable, so that the
density gradient is small there, and to try to shear-
stabilize the boundary layer, in which the density
and potential gradients are concentrated. This layer
would be of the order of several Larmor radii thick,
and obviously the stability of this layer would be
very difficult to analyze.

Rotating Plasmas

In devices such as Ixion,*® a large radial electric
field is used to ionize and help confine a plasma. Such
rotating plasmas have been reviewed by Lehnert.”
Taking Ixion as a typical example, we find that
Q & 0.05 so that the gyration radii are still much
smaller than the plasma radius, and our theory is
valid. The plasma was found to be “stable’” for
s < 10°. According to Eq. (32) the plasma should
be well outside the limits for stability against the
k; = 0 mode. If the end plates were conducting, the
ky = 0 mode would be absent, but the drift mode
should occur. The length of the plasma and the
requirement of no Landau damping would limit the
unstable modes to those with m >> 20. Such high-
frequency modes could well have escaped detection.,
The current measuring loop used to check the in-
sulating properties of the end plate could not, of
course, show whether or not the end plate was a
short circuit for high-m modes.

Another instability apparently develops for s >
10?, so that the rotation velocity cannot be raised
above this limit. We are unable to explain this. Of
course, the theory is not valid for such large values of

1D, A. Baker, J. E. Hammel, and F. L. Ribe, Phys.
Fluids 4, 1534, 1549 (1961).

2 B. Lehnert, in Plasma Physics_and Thermonuclear Re-
search, edited by C. L. Longmire, J. L. Tuck, and W. B.
Thompson (The Macmillan Company, New York, 1963),
Vol. 2, p. 201.
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s; and it is possible that if one were to do the theory
for large s, one could explain the velocity limit with-
out invoking the presence of neutral atoms.

Beam-Plasma Discharges

When an energetic electron beam shot into a
neutral gas is used to create a plasma, low-frequency
oscillations are often observed in addition to the
expected high frequency phenomena due to beam-
plasma interactions. We have recently shown®® that
the low-frequency oscillations cannot be drift waves
directly excited by the beam. However, they may
well be caused by the centrifugal instability dis-
cussed in this paper because a large radial electric
field can be built up by the injection of fast electrons.
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APPENDIX 1. THE VISCOSITY TENSOR IN
CYLINDRICAL COORDINATES

The nondimensional ion viscosity tensor in strong
magnetic fields such that o’ > 1is given in Ref. 4 in
Cartesian coordinates,

_IISZ = a Tz:r + Tv”) + TZ’I’
~II,, = & T.. + Tw) — Tey,y
_Hn = M,,, (I-].)
—ﬂu=—nw=1@u—ru+ln),
2 a
(x. +32.)
_H:u = —le =2 Tyl + —Tz: ’
a
_Hw = —th = 2(l Tn - Tz:) )
a
where a = w.Tii,
T = }(Vv + V') — ¥V, (1-2)
5 mi(KT)}
= g (-8)

1 7, F. Chen, Phys. Fluids 8, 2115 (1965).
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To transform to cylindrical coordinates, we replace
z and y by r and 6, respectively, in Eq. (I-1) and
evaluate Y by writing out ¥V = (#/dr) +
[(8/r)3/06] + (29/32) and v = v, + vy + Zv, and
performing the operations indicated in Eq. (1I-2),
taking care to differentiate the unit vectors:
at/99 = 8,36/96 = —t. For the relevant components
of II we then obtain Eq. (4).

To evaluate P = —(V-II + II-3t),, we write
I as (FII,# -+ OT0,80 + -- - etc.), operate on it with
V, again taking care to differentiate the unit vectors,
and then form the scalar product. We then obtain

_Pr = Hrr.r + }Hh,d + H:r,l

+ia, - m) + o,

1
—Py, =14, + ,’THao.o + L.,

+ 3@+ 1) + o1,
) (1-4)
_Ps = Hrl.r + ;Hh,v + Hu,s

+1im, + o,

Here II is the first-order Il and will contain terms
like ;X as well as aoX';, since o is a function of
n = m, + n,. However, the former terms may be
neglected because Y, is very small if @, is uniform.
Thus we may substitute o, for o. In taking the de-
rivatives indicated in Eq. (I-4), we use the relation
o' & —ba, obtained from Eq. (I-3).

We next neglect the II,, and II,, components in
Eq. (I-4), whereupon the transverse and z compo-
nents of P separate. Substituting Eq. (4) into Eq.
(I-4) and performing the differentiations, we obtain
for the transverse components

P, = Av, + Awvs, Po = Agv, + Agove,  (I-5)
where
m=—§B"%Qa]
+ iv(g + %) — 7 /4e,
an= - [F-205)]+ 0+
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+;[§(“+;)+”(3+4a)+za]‘

Here we have neglected v, and have used 8/08 =
im/r = 1v. The collisionless limit cannot be obtained
by letting @ — « because of the presence of terms
proportional to a. However, as shown in Ref. 4,
these terms enter in such a way as to cancel them-
selves, so that the collisionless limit is correctly
obtained by simply omitting the terms in which «
appears. We then obtain Eq. (12).

APPENDIX II. FINITE DEBYE LENGTH

To take finite Debye length effects into account
we define »; = Ni1/Nio, Yo = Ne1/Meo, Mio/Teo =
s, ¢ = h*/a’, where h is the Debye length
(KT,/47m.oe’)*. Poisson’s equation in first order
then reads

o) — ¥'x — Kix] = ve — s & —ov’x, (1I-1)

981

where we have assumed «; =0 and n < m. Equations
(15)-(19) for the ions are still valid if » is replaced
by »:. Equation (9) for the electrons is still valid
if » is replaced by ». Equations (9), (19), and
(II-1) are now three equations for »,, »;, and x.
Replacing x by the variable & = x 1 A»;, we can
obtain the differential equation (25) for @, except
that N now contains terms involving 8, and o. The
latter are related by the zero-order Poisson equation,
which yields

ss=14+dV:&E~=1— 20(2N57 + Qo) (11-2)

with the help of Eqgs. (7) and (8). After performing
the indicated algebra and transforming to Whit-
taker’s equation as before, we obtain Eq. (41), with
N(z) now a function of z only through terms con-
taining . If o is small, we can estimate its effect by
neglecting the z dependence of N and setting N =
2n + m, as before. We then obtain, for y = 0(o"),
the dispersion relation

WV + 3ovr)¥" + 2m[k(1—§gﬂ - %) + 90]\"

20\

p)
To

+ mz[ﬂ?, + M — 4N — 2&20)] =0, (1I-3)
which reduces to Eq. (31) when ¢ = 0 and A = L.
It is clear that the ¢ term in the coefficient of ¥ adds
to the finite-r,, stabilization. The ¢ term in the last
bracket can possibly be destabilizing, but if @, =
0(®) and ¢ = O(p’) this term is negligible. Also,
when N — « the equation gives stability. Thus
finite Debye length gives a stabilizing effect.



