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LINEAR DRIFT WAVES
Professor Francis F. Chen

Electrical Sciences and Engineering Department, UCLA

I. INTRODUCTION

In the early days of plasma physics, theoretical studies of plasma
waves were invariably made with the assumption of uniform plasma density.
On the other hand, experiments almost always required a density gradient,
such that the density is higher on the axis of a plasma column than near the
edge. It is not surprising, therefore, that the theory of uniform plasmas
could not explain the observations of low-frequency oscillations below 50
kHz found almost universally in magnetized laboratory plasmas. These
oscillations, typically peaked between 10 and 20 kHz regardless of the type
of plasma, are too low in frequency to be explained by ion acoustic waves,

the lowest frequency waves predicted by uniform-plasma theory.

The explanation of these low-frequency fluctuations was found when
the density gradient was taken into account. Originally, Kadomtsev and
Nedospasov proposed a theory, relevant to weakly ionized gases, which
explained the waves in a positive column. Since then, it has been found that
the instability is a universal one, Voccu;crr'rin‘g in fully ioniged and even colli-
sionless plasmas. These so-called "drift waves' have been best documented
in thermally ionized plasmas (Q-machines), in which this universal instability
can be stabilized by ion-ion collisions so that single modes near threshold

can be studied.

Drift waves are so called because they have a phase velocity propor-

tional to the electron diamagnetic drift V To see this, consider a wave

De’
propagating in the y direction in a plasma in which the density gradient is in

the -x direction and the uniform magnetic field Bo is in the z direction.
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We assume an electrostatic wave, since the frequency is so low, and take a

3

/

perturbation of the form
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where ¢1 is the potential fluctuation of the wave. We also assume k>> kz,
so the wave propagates primarily in the y (azimuthal) direction. However,
we must not let kZ =0; kZ must be large enough that the electrons can stay

in thermal equilibrium by moving along Bo' In that case, an electric field
EZ will arise which is just sufficient to buck out the pressure gradient force
(cc9n/dz) on the electrons, and the potential will obey the Boltzmann relation

e¢ /KT
e ed
= + = (
n=n+n n e >'.='. n_ l-i-KT (2)

Thus if there is density variation in the y direction, the potential will fol-

low it. This gives rise to an electric field E_, which causes ions and

y
electrons to drift in the x direction:

v =Y (3)



As the wave passes by, Ey will oscillate, and the plasma will drift back
and forth in the x direction, causing n to change, because of Vno . If we
focus our attention at a particular point, the rate of increase of density

there will be

5n ano EX. ano
a_tz"vxax='Bo ox (4)

as given by the equation of continuity and Equation (3). Fourier analyzing

according to Equation (1) and substituting for n, from Equation (2), we have

-9 = - 1 _e_¢_ = 1 —L !
1an1 1wno KTe ik B nO , (5)
or
W KTe n(')
E=-—eB 1_1— =VDe . (6)
o o

Thus VDe is a natural velocity for waves in an inhomogeneous plasma.

If n(')/no ~ 1/R, we can get an estimate of V e by using the formula

D

_ - 8 T(eV) 1 cm
VDe 10 B(G) R(cm) sec

(7)

For example, if T=100 eV, B=10 kG, and R =3 cm, we have

VIVDeI = 3x10° cm/sec. For the lowest mode (m=1), we have

w=kV =2v_ =v /r, and f &® 17 kHz, which is of the order of the
De r De De

frequencies observed. Note that Equation (7) is independent of mass and
that T/RB tends to remain constant from one experiment to another. This

is the reason for the universality of fluctuations in the kilohertz range.

Although it was easy to derive the real part of w, it is not so easy to
see why the wave is unstable. The imaginary part of w comes from charge-
separation effects we did not take into account, First, since Ey is time-
varying, ion inertia will cause the ions to drift in the y direction as well as
the x direction. This effect will be covered in Section II. Second, since

the ions have a much larger Larmor radius than the electrons, and since
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Ey varies in space, the ions will see an a{rerrage'Ey” smaller than what
the electrons see. The EXB drift will be smaller for ions, and there
will be a charge separation because this drift is along Vno. This finite -

Larmor -radius (FLR) effect will be covered in Section III

These two small effects both tend to cause a charge buildup and hence
an additional electric field Ey' However, if kZ is large enough, the flow of
electrons along Bo will cancel this charge buildup so as to satisfy the
Boltzmann relation (2). As long as Equation (2) obtains, w will be real and

equal to kV In order to have an instability, kz must be so small that

electrons caD:not flow unimpeded from wave crest to trough along Bo' Then
Equation (2) will be violated, and it will be possible to have Ey and EX dif-
ferent from what is rigorously prescribed by Equation (2). There are
several mechanisms which can affect electron parallel mobility:

1. electon-neutral collisions
electon-ion collisions

Landau damping

inductance

G b W N

electron inertia.
These mechanisms can be considered to "trigger" the instability by allowing

Equation (2) to be violated so that charge buildup can take place.

Effect (1) is dominant in weakly ionized gases, such as a positive
column. Effect (2) is the finite resistivity of a fully ionized plasma and is
the mechanism we shall consider in detail. Effect (3) has to do with a dis-
tortion of the electron distribution function due to the interaction with the
wave of electrons with VZ R w/kz; this is the mechanism responsible for
drift instabilities in collisionless plasmas. Effect (4) is the impedance to
electron flow provided by the magnetic field the flow creates. This effect
is important only at high 8 (3= 8 7rnKT/Bc2)), when w/kZ & VA’ the Alfvén
speed. Effect (5) might be thought to be the dominant mechanism in the

absence of collisions, but it turns out that the effect has the wrong phase



énd does not cause an instability except in higher order. Since (2) is the
dominant mechanism in Q-machine experiments, we shall derive the dis-

persion relation for that case.
II. RESISTIVE DRIFT WAVES WITH Ti=0

The simplest drift instability can be found from the fluid equations
when the resitivity n is finite and Ti is zero. In this case, there is no

FLR effect since rL=0, and ion inertia alone causes instability.

1) Assumptions

a) T.=0, T >0
i e

b) n#0
c) VXE=0, B= B0 (low-8, electrostatic assumption)
d) m/M=0
=n = <1
e) n,=n_=n (k)\D )

f) Vv, << w/kz<<v

thi the

g) Vpe =KT Vn (isothermal electrons)

2) Equations (e.s.u. -c.g.s.)

oVv.
i _ 2 2 _
Mn(W + Vi ’ VVi) en ( V¢+Vix B) ne n(Vi Ve) (8)

0=-en(-v$+V_xB)- KT Vn-n’e’n(vV_-v)) (9)

on on
_+ ‘70 V . = —
(n 1) ot

ot + Ve (nVe) =0 (10)

The resistivity n is related to the elctron-ion collision frequency Vai

muei
n= 5 - (11)
ne

Since Boltzmann's constant occurs only in the Vpe term, an adiabatic equa-
tion of state will give the same result as these equations if K is replaced

by g K in the final answer.
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3) Equilibrium

We assume V. =E =0andn_ =n (x) in the unperturbed state.
0z o o o

Setting 8/t = 0, we have

2
Mn (V. - VV, )=en V, xB-nze n(V. -V ) (12)
o io io o io o io "eo

0=-enV xB -KTVn —n2e2n(V -V.). (13)
o eo o o eo io

N
Neglecting Vio. VVio for the time being, adding (13) to (12), and taking h
the cross product with B, we obtain
Bano
j = KT ——, (14)

2
° B

where joE eno(Vio-Veo) is just diamagnetic current. The y components
of (12) and (13) yield
. xB) = B) =nj
(V. x )y Vo X )y nig
Using (14), we find

V. =V = -—=7 (15)

!
iox eox 2 o
This is just the "radial" diffusion velocity due to Coulomb collisions. Since
this is a slow process compared to the wave frequencies we are considering,
we shall neglect Vox' The term Vio. Vvio automatically vanishes when we

set Viox=0' The x components of (12) and (13) give

(16)

There is only a diamagnetic drift of the electrons in the "azimuthal" direc-

tion in equilibrium.



4) Perturbation

We neglect classical diffusion by keeping n only in the z component

of the electron equatlon of motion and Fourler analyse as follows

¢,(.y.2,1) =¢(x)e kg ytk, z- wt)

i(kyy+kZ z-Wt)

Vl(x,y,z,t) =V(x)e (17)

ik ytk z-wt)
nl(x,y,z,t)=v(X)no(x)e yoz ,

so that v = nllno. Linearizing Equation (8) and setting Vio=0’ we have for

the ions

-0V, = = (-¥¢+V xB) . (18)

2
M

for frequencies w << Qc = eB/M, the solution of (18) is

lV =_L 2_ ﬂ '.—._a_
ix B Q B ox
k¢
NI A
Viy B Q B (19)
c
ekZ
1z=Mw 0

In the last equation we have indicated that we shall consider kz's so small
that Viz can be neglected; this amounts to neglecting the transition from
drift waves to ion acoustic waves at ''large" kZ/ky. The first term in Vi
and Viy is simply the ExB drift, and the second term is the ion inertia

effect mentioned earlier.
Linearizing the x component of Equation (9) for electrons, we have

O=en (-¢'+V__B)+KT(n v'tvn')+ten V B, (20)
o ey o o 1 oe

The last two terms cancel by virtue of Equation (16). Defining

=€
X = KT

2



we then have

_ KT !
ey¢eB(x v) . (21)

Similarly, the y and z components of Equation (9) give

. _ KT

iv . ky B (x -v) (22)
KT

=ik — w -v), 2
V., "k =5 c'rei(x V) (23)
eB B . . . .
where w r .= = is the important dimensionless
cel my n_en

quantity characterizing the resistivity.

Linearizing the electron continuity equation (10), we have

(W-k.V_In_+in (V' +ik V +ik V ) +iV n' =0,
y oe 1 o ex y ey Z ez ex o -
(24)
Substituting for V., V_, and V__ from Equations (21-23), we find
ex ey ez
that the radial derivatives cancel out (this is a fortunate feature of the fluid
equations for massless particles), and we have an equation which does not

depend on the ''shape' of the perturbation in the x direction:

.. 2 KT
(oky Vel = by Vpetik ; “ep CeTe X - ¥ 2 0- (25)

Atthis point we shall adopt a nomenclature which is the best compromise
among the multifarious notations used by Russian and American authors.

We define

w¥ =k Vv =-k g‘—o.
y De y eB no
K
= — 2
cr" Kk 2 (wcTei)Qc (26)
y
2
a, = KT /MQc
_ _ T
b=k a. , bc" k B cTei

E-8



The quantity 0'" is a frequency proportional to the conductivity and is some-
times called ws. The quantity a; V2 is the ion Larmor radius computed
with the electron temperature, and b is a common parameter in small

Larmor radius expansions. With this notation, Equation (25) becomes

wi*+ ib
yey — 1

Wt ibo" ) (27)

This relation between the density and potential perturbations is a partic-
ularly useful one because it must be obeyed locally (in x) regardless of the
complications to be introduced in the following sections. Note that in the
limit bo ” - o Equation (27) becomes y=Yx, which is simply the Boltzmann
relation (2). Finite bc" introduces the phase shift between v and x which

is necessary for instability.

Our last equation is the linearized form of the ion continuity equation
(10). This is

-iwn_+n (V! +ik V. )+V. n' =0. (28)
1 o 1ix y iy ix o

Substituting for Vi from Equation (19) and for n, from Equation (27), we

1
obtain the dispersion equation

n! 5 Q10! w*~+ibc'r'ﬁ' o6
1" —_— -
¢ +no ¢! ky+w n_ )¢ B, wHbo |~ KT 0. (29

5) The Dispersion Relation

Equation (29) is a complex second-order differential equation with
variable coefficients and must be solved together with some ''radial" bound-
ary conditions — typically, ¢=0 at x=0 and x=R. Other terms would have
appeared had we used cylindrical rather than rectilinear coordinates. The

solution of such an equatlon is the pr1nc1pa1 problem in drift-wave theory.

The e1genfunct1ons of ¢ give the variation of wave aniphtude with x. and the

complex eigenvalues of w give the frequency and growth rate.

If n_ is some arbitrary function of x, as measured in an experiment,

it is clear that the wave equation, of which Equation (29) is a simple example,

E-9



must be solved numerically. However, there are four ways to get an ana-
lytic dispersion relation. First, it is sometimes possible by a suitable
choice of the function no(x) to reduce the wave equation to a standard form,
so that the solution ¢(x) can be written in terms of Whittaker's functions or
Hermite polynomials, etc. Second, the use of a ""quadratic form" (Refere
ence 7) allows one to estimate w (k) by using a trial function ¢(x). Third,
by a suitable transformation the wave equation can be put into the form
W'+ Q)W =0, (30)
which can be solved by the WKB approximation. The latter is, in principle,
valid only if 8¢/0x>>08¢/dy. Since, in practice, the opposite is usually true,
it is a better approximation to neglect 8/9x altogether. This amounts to
simply using the equation for the turning points of Equation (30). Finally,
in the same spirit one can neglect the radial derivatives of ¢ in Equation
(29). What remains gives an algebraic equation for w (k), which is called
the "local" dispersion relation. This is the simplest approximation and is

almost universally employed.

If we neglect ¢" and ¢' in Equation (29) and multiply thréugh by

aizw (w+ibcr” )/¢. we obtain the desired dispersion relation for Ti=0:

w2+ io” (W -wx)=0, (31)
In the limit of large c” Jw* , it is clear that w & w* . Solving for w-w ¥,
we obtain an expression for the growth rate in this limit:

W %2
W-w* =

IW B (32)

where we have substituted w * for w on the right-hand side. Note that the
growth rate v = Im (w) is proportional to the resistivity. The other root of

Equation (31) iéﬂeéﬁﬂféafﬁﬁéd in this limit an&1su“r;1mport:;nt

E-10
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The unstable root of Equation (31) behaves qualitatively as shown in

the following diagram.

Vi
) '\
"" e
" _!s‘/ —
Voe R —
! Re(w)
- 0 —_—
Voi |- - -

Inclusion of the VZi terms would have made Re(w) approach the line v
(acoustic velocity) at large kz/ ky' Th'ewlirnes repri§senting the _Alf\fe/n
velocity and the electron thermal velocity are drawn to indicate that other
equations are valid only for w /kZ LKV,,V . A physical pic;ture of this

A" " the
instability is given in Reference 4b.

III. RESISTIVE DRIFT WAVES WITH Ti> 0
1. Equations

For Ti> 0, we shall replace Equation (8) with

Mn %+ V. VV) = en(-V¢+VxB)-Vp-V- 7 + Mng. (33)

The subscript i has been suppressed. We have neglected classical diffu-
sion and have split the divergence of the ion stress tensor into an isotropic
part Vp=—yiKTiVn and an anisotropic part V+ n. The tensor 7 is called the
magnetic viscosity tensor and consists of a part connected with ion-ion col-
lisions and a part which remains in the limit e 0. This collisionless |
viscosity is simply the FLR effect mentioned earlier: the ions have a modi-
fied EXB drift in a nonuniform E field. We have also included in Equation

(33) the term Mng due to a "gravitational" field g, because it does not
g g Ep



complicate the analysis to do so. The ""gravitational" force can represent
the centrifugal force of particles moving along a curved magnetic field or

the centrifugal force of a rotating plasma column.

Deferring collisional viscosity to the next section, we may write the
relevant components of 7 in the collisionless case as follows, correct to

first order in kzri .

1 i ( y X )
o £ - +
7ryy xx 2 Q ox oy
(34)
nKT ov ov
7 =m =k i ( -
Xy yx 2 Qc ox oy
We shall neglect Vzi'
2. Equilibrium
In addition to Veo’ there is now an ion drift Vio given by
Vot VoVl (35)
where KTi n'o ¢
VDi= B ;1-;- and VG= Qc .

We have had to assume n(')/no= constant and g =§x = constant, so that
Vio = constant and Vo-. VVO= 7ro= 0. Equation (35) is the only place where
g will appear.

3., Perturbation

The linear part of Equation (33) is

Mn 8V+V VV) =en (-V9+V xB)- KT, Vn Vernw

ot (36)

1

We shall make the local approxunatlon at the outset and neglect x der1vat1ves

of V,y, and ¢. In evaluatmg 7., there W111 be terms inn VV and n VV o’

1’

E-12
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the latter vanish because we have taken Vo constant. With these assump-

tions, Equation (34) yields

;B KTi 1 KTi
7 =-= 2 ikVv , @ =-Zik—n'V
yx 2 Q y yx 2 Q oy
c c
1 noKTi 1 KTi (37)
= - S e = — 1 = - = 4 !
Txx 7ryy 2 Qc 1ka’ Txx 2 ik QC %o Vx ’
where the subscript y on k has been suppressed. We define
KTi nc’) B
“i=Vpi" * Mo n
¢ (38)
2KT, T,
2 _ i = i
= 5 0= T
MQc e

so that wi-'- - 6w* and b =k2ri/20 . The x and y components of Equation
(36) then give

1 . 1
(w —kVo+ -2- wi)VX = IQC (1 - 3 Gb)Vy
1 KTe 1 @9
(w -kVO+ 5 wi)Vy =k T (x +0y) - IQC(].- —é Gb)VX .

These equations for Vx and Vy may be solved by writing o = w -kVo+ % wi ,

B=1 - % 6b, and 'y=k(KTe/M) (x t6v) and eliminating Vy and Vx’ respectively.
We then have

2 2 _2
(@ -8B Q)V =i v
¢ x c (40)
2 2_2
(¢ - B QC)Vy = ay.

The term a2 can now be dropped because it is of order b2. This can be

’

‘seen by writing

2
et 21%= L<p for kR>1, 6<1.
2

[3}

kR
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With this simplification, Equation (40) becomes

KTe
k—lVI— (X+9V)

Vx =-1 1
Qc(l - -2-6b)
1 KTe (41)
_— (w‘kvo'*' Ewi)k ——M— (x +6v)
y 9 1 2
Q (1 -= 6b>
c 2
The linearized ion equation of continuity is now written
n'
W-kV Jy-kV +iV_—= =0, (42)
"o y X n

o]

Inserting Equation (41) into (42), we find a fortunate cancellation of terms

(due to fluid drifts which are not real particle drifts) and end up with

(w - kVO- 6w*)y + [b(w -kVo)— w¥]x=0. (43)
The electron equations are unchanged, so we use Equation (27) to eliminate
v. We also use Equation (35) for Vo.

4. Dispersion Relation

Equation (43) then yields the following dispersion relation:
0 "'1 .
-W,)+ & + - * -Ww, = .
wlw wl) kVG(w b "+w) 1c"[w W +kVG+b(w w1+ kVG)] 0 (44)
The last term in b can safely be neglected here; this will not be true in the

presence of ion-ion collisions.

a) Pure drift wave. For VG =0, we have the following dispersion

relation for resistive drift waves:

w(,w-wi)+ic" (W-w*x) =0 , (45)

In the limit o) Jwx>>|, wehave

Wk (Wk=w i)

2
*
W-wW* Yy 1 =iw (1+6) .

7| °l

(46)



Compared to Equation (32), the growth rate is increased by the factor 116,

representing the increase in total plasma pressure. This is reasonable

from an energetlc v1ewp01nt K1nemat1ca11y, the growth rate is 1ncreased

through the FLR effect in the ion drifts.

b) Resistive-g mode. If we retain the kV_, terms in Equation (44) and

take the same limit o”/w* >> 1, noting that kb”1

w¥=-Qn'/n, we find
co o

w¥(w*-w.)-gn'/n
W N Wk-KV_ +1 = o ©
G a"

(47)

If g is due to a curvature in B, we may set it equal to&KT/MRc , Where Rc
is the radius of curvature. Depending on your point of view, Equation (47)
then shows either the increase in drift wave growth rate when gn(') <0 or the

decrease in gravitational instabiiity growth rate (see below) due to finite kz.

c¢) FLR Stabilization of Flute Modes. When kz= 0, Equation (44)

becomes

2 . -
w +(kV wi)w gnO/n0 0 (48)

G

In the absence of the middle term, one obtains the usual growth rate

= (- gn(')/no)ll2 for what is known as the interchange, Rayleigh-Taylor,
or gravitational flute instability. The kVG term arises from finite ion
inertia, and the W, term from finite Larmor radius. Together, these terms
lower the growth rate and reduce it to zero for sufficiently large k. This is
known as FLR stabilization. Note that the real part of w is -;— kVoi; flute

modes (kz=0) travel in the direction of the ion diamagnetic drift.
IV. DRIFT WAVES WITH ION VISCOSITY

Equation (45) predicts that drift waves are always unstable regardless
of ky and kz, as long as they are both finite. Experimentally, it was found

that drift waves could be stabilized by lowering B, and hence increasing

kzri . To explain this, we must include the collision terms in the magnetic
viscosity tensor w. If one takes the full tensor as given by, say, Bernstein

E-15



and Trehan [Nuclear Fusion Dlw 3(1960)] and takes the limit Qi Tizi >> 1,

one finds that for motions pefpendicular to B one can write V-7 as

9 nKTi
Ver=-p VOV, p=——=i
104 L 4927..
Cc 11
2 (49)
s ( v /2 (KT
.o ]
i g m VKT nefinA

where In A is the usual Coulomb logarithm and C is a constant between 1
and 2 which depends on numerical calculation. Toaccount for ion-ion

2
collisions, we merely add a term uLOVLV to the right-hand side of Equa-

tion (36).

This term, after Equation (36) is divided by Mno, becomes

1,2
-kzyl/Mno =-=-k Gaizl'r = —%

4 9bv11= i ] . (50)
The solution of Equation (36) which replaces Equation (41) is now

nl
v 2 =jux (x +6v) (unchanged)
X n 1
o 1-= 6b
2
and (51)

(x +6v)
(-5 0)°

The o, term represents an ion flux in

2 1 .
- - - + — +
Vy | kai (w kVo zwi 1‘7;)
2
o
the y direction which can short-circuit the fluctuating electric field in that

2
We have assumed Iw +ioJ1| <L

direction if b is large enough; when this happens, the wave is damped out.

Equation (51) is now inserted into the ion equation of continuity (42),

and v is eliminated by virtue of the electron equation (27). Stfaightforward

algebra yields the local dispersion relation

(w+ioJL (B -wi)+ io" [w-w*+b(w-wi)+ ibol (1+6)}] =0 . (52)

E-~16
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In Reference 5 it is pointed out that a simplification of the algebra is
achieved by noting that the terms MnOV0 +VV and V° L (collisionless part)
in Equation (36) happen to cancel to the order desired. While this is not
exactly true, since the term b(w -wi) in Equation (52) Would be replaced by
b(w+ 6w), there is no practical difference for w S w *, Equation (52) can be

simplified in the long- XH and short-A" limits.

Long-A“ limit. We assume bc“ <<w* . The two terms in b in Equa-
tion (52) can then be neglected compared to the first term in the equation,

since we consider w = 0(w*) and o, = O0(w*). The dispersion relation becomes
(wtic ) W —wi) + io" (W-w*x) =0 , (53)

which clearly reduces to Equation (45) for v~ 0. For that case, we
obtain an explicit expression for the growth rate in the a" >2 w* , or short-

A ” , limit. We can still do this, provided b can satisfy the inequality

o-" <L wk<<bg ” . Solving (53) for w-w* and letting w = w* on the right-hand
side, we obtain
o, iwH(w *-w )
W=k = - — (w*—wi) t—_— (54)

o o

[ I
In this limit, the growth rate is not affected by UK but the real part of
W =-w* shows that the assumption w &~ w* that we made is valid only for

o, << o". To obtain the condition for viscous stabilization, we rewrite

Equation (53) as follows:
w2- (wi- io)w -iw* (cr" -60,)=0, (55)

where o = o" to, . If the quantity Ac= o" -fo, vanishes, we have a real
solution w=0 and a damped solution w=wi- ioc. To examine the stability
threshold, we should therefore consider w= 0. Assuming w<<w* and
neglecting the w2 term, we obtain

iw* Ao
W —

io-Ww (56)



for ¢ << Iwi|, this simplifies to

_ W iAo
W == GAO"I'—e— . (57)
Yi

For o >> Iwil , we obtain instead

2

¥k
W= Wk Ao+19 Ao
o o o

(58)

In either case, o" = 6o, is a necessary and sufficient condition for marginal

stability. As o increases or o decreases from this value, both ﬁn( w) and

Re(w) increase from 0. The general solution of Equation (53) for

cr">> Wk >>bc" , found by straightforward expansion, is

2 olAc
w=wx A% 1(1+e)w* ” 3 ’ (59)

o c
6o

which reduces to Equation (54), (57), and (58) in the proper limits.

Since w=0 at threshold, the phase shift formula (27) reduces to

w*+ibo“ sk

= X = X
i o" 1bo"

vV =X (60)

This shows that in the long-A, limit, n, and ¢1 are 90° out.of phase at

I

threshold. In the zero viscousity case, n
Im(w) =0,

1 and ¢1 were in phase when

Short-kn limit. If we keep the b terms in Equation (52), we obtain
another stabilization threshold for short 7L” . For large o" /w*, we would

expect W w*; so we let w=(1+e)w* and expand in € to obtain

w*z-bo" 0++ i(qi-l-bo" Jw*

“ew* = (1+6) io" (1+b)+(2+e)w*+ic5 (61)
for c">> Wk, g'">> o) this reduces, after some algebra, to
-k = l__[- (0. +boy Yok + i(w*z-ba o). (62)
o L ” " '

There is therefore a stability threshold at bo” o = w*z.
2
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~_ The dispersion diagram with viscosity looks as follows.

V’ S— -— _—
L A
0 m(s) Re(w)
o ki/Ly >

The long-A" and short-)\” stabilization points can be seen. The long=-A

stabilization criterion, 6g > c" , with the definitions (26) and (50), works

out to be ‘
) Ti' k; KT,
e el v..v . > 1:
4 Te 1{2 MQZ MQz il ei
z c c
or

B/k_ = \| x const.
y

(63)

(64)

Contours of constant growth rate for Equation (52) can be displayed on a

plot of B/ky Vs, )t” .
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1500 —

10001~
B/kyv B
gouss-cm L
500 |~
| 7 4
- /‘\lmw=0 for -—I-<<kvd 4
/ tIl ¥
/ .
./ — -
[¢] t Lot I N SR |
0 500 . 1000

E-19



For given A” , the wave is stabilized at sufficiently small B/ky. The

long-)t" approximation Equation (53) is shown as the dashed line.
The short-)t" stabilization criterion, bo” ol> w*z , works out to be

2 .2
1 2 Ti kZ V.
70 = 5 0. o > (65)
T k cVei
e Yy

/2

The ratio vii/vei depends only on the mass ratio. Taking vii/ VR 4(m/M)1

2,n" 2
4> (2)(50)°

The short-)k" stabilization criterion is independent of B and ky . This

and T.= T , we obtain
i e

peculiar result has never been observed.
V. DRIFT WAVES IN EXPERIMENT

1. Q-machine Geometry

In a typical alkali-metal plasma, a cylindrical plasma column is con-
fined radially by a uniform magnetic field between 1 and 10 kG. Axially, the
plasma is terminated by thermionically emitting metal plates, and one
charged species can be confined by the sheath drop at the plates. The other
species is not conﬁned and must be continuously replenished. Understanding
the operation of the hot plates and of the sheaths there is crucial to experi-

ments in such ""quiescent' plasmas.

The figure shows an idealized arrangement. The endplates P, which
may be tungsten, tantalum, or rhenium, are heated to emission temperatures
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(2000-3000 OK) by electron bombardment from the filaments F. Atomic

beam ovens O, operating at 400-800°C, direct a collimated neutral beam of

Cs, K, Li,or Na4dtoms ontuthe plates Slnce a1ka11 metals have a low ioni-

‘zation potential and the endplate has a h1gh work funcxtlron, there is a h1gh .
probability (> 95% for the Cs-W combination) that the plate will snatch an
electron from the atom and ionize it. A stream of positive ions is then
emitted from the plates. To neutralize them, the plates must also supply
an equal flux of thermionic electrons. If the plates are so hot that the elec-
tron supply is more than sufficient, the plasma potential will be negative,
and the sheath drop will be just large enough to reflect the excess of elec-
trons back to the hot plate. This sheath drop will also confine the ions in
the plasma. If the electron supply is insufficient, the plasma potential will
be positive, and emitted ions will be reflected back to the hot plate. The
electrons in the plasma will then be confined axially by a Coulomb barrier.
These are called electron-rich and ion-rich operating conditions, respec-

tively.

By controlllng the collunatmn of neutral atoms the density gradient
can be made smooth, as requlred in rcareful studle;;f dr1ft‘;aves émce
stray neutrals are condensed on the cool vacuum chamber walls, the de-
gree of ionization is nearly 100%. The plasma is thermally ionized and is
at the same temperature as the endplates (kT I 0.2 eV). Since no currents
are driven through the plasma to ionize it, no instabilities are excited
thereby; this allows the weak drift instabilities to be observed. The aper-
ture limiters L are normally used to define the plasma edge and to prevent
high energy electro;ls from the filament F from entering the plasma. Be-
cause the limiters are cool, a thermoelectric potential exists between L
and P. This causes a local instability called the "edge oscillation". To
avoid the complicating effects of this instability, it is best to make the den-
sity fall radially to a very small value at the edge. In "single -ended" opera-
tion, one of the hot plates is replaced by a cold, negative collector. Experi-

ments in this configuration are more difficult to analyze, because the sheath




conditions are not symmetrical, because there is a flow of plasma axially,
and because the lifetime of the ions is not long compared to the growth rates

of drift waves.

2. Sheath Conditions

In electron=rich operation, the axial potential distribution looks as

follows.

/, Xe
/ X=0
7

2 >

Let x = e /KTe’ and suppose that between the sheaths there is a uniform
density n. The random flux of electrons entering the sheath from the plasma
is

2

V1:he

j. =nV

- the * = KTe/27rm. (67)

In steady state this flux must be replaced exactly by those emitted electrons
which penetrate the Coulomb barrier.r Let the hot plates emit a half-
Maxwellian distribution at temperature Te, and let the Richardson current
‘at“this témperature be jT. The flux getting into the plasma is then jTexp(-xc),
and this must equal jr' In general (nonsteady-state), the flux into the plasma
is

(68)

Je= JT exp(-xc) B thhe

The condition je= 0 for steady-state prescribes the sheath drop X g for given
n and Te. It can be shown (Reference 8) that f(Ve) is Maxwellian every-

where, even in the sheaths, and n, simply follows the Boltzmann relation.

This is because the acceleration of plasma electrons falling toward the hot

pAlaLte”;;roduces a high-velgcity stream which exactly compensatesrwfdr»'fﬁgérew
emitted electrons which get over the Coulomb barrier and cause a deficit of

high-velocity electrons reflected by the barrier.

22
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The situation for the ions is slightly more complicated. Ions in the
plasma are confined by the sheath, and the flux reaching the hot plate is
therefore thm exp(-x ) However, these ions are not all lost, for they
have a probability p of bemg reionized, and only the fraction (1-p) is lost.
This is replenished by the inward flux pjo, where jo is the flux of neutral

atoms directed at the plate. Thus the net ion flux into the plasma is

j; = piy - (1-p)aV,, . exp(-x ). (69)
If there are no radial or volume losses, the ions also will have a
Maxwellian distribution everywhere independent of the collision rate. This is
obvious from thermodynamic arguments. However, if there are losses, one
must rely on collisions to keep the distributions Maxwellian. At low densi-
ties, when the plasma is essentially collisionless, the incoming ions will be
accelerated by the sheaths, and the ion distribution will consist of two high-

velocity streams. These can cause instabilities. Clearly, for drift wave
studies, one would want a large ratio of collision rate to loss rate; this

usually requires n > 1010 m—3.

3. Axial Boundar‘y Conditions

To apply our theoryw of drift waves to experiment, we consider the y
direction to be the azimuthal direction, so that the waves propagate primarily
around the column. In the radial or x direction, the waves tend to be stand-
ing waves, with nodes at the axis and at the edge. The x variation is usually
neglected, but this approximation is valid only for large m, where m is the

azimuthal wave number (¢ ~ exp imf). The x dependence has been computed

numerically in Reference 6.

In the z direction the boundary condition is complicated by the fact that
it is the sheath, not the conducting hot plate, which bounds the column.

Since the sheath has a finite conduct1v1ty, we cannot simply set ¢1=0 at the

sheath edge Instead what must be preserved is the cont1nu1ty of current

through the sheath We need only cons1der electrons, since V 1s negh-

gible for the frequencies in question. As the wave propagates toward the
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sheath, the potential of the sheath edge will oscillate. The frequency is

low enough that the sheath adjusts adiabatically to this potential change.

A current je of electrons will be injected into the plasma, according to
Equation (68). However, to be consistent with the wave, je must equal nVez,
where Vez is the electron fluid velocity in the wave, as given by Equations
(23) and (27). Reference 8 shows that this procedure yields the axial bound-

ary condition for ion-rich operation:

n j
kLtankL-—( en)(27rm) (ﬁr'fh_)’ (70)

where 2L is the distance between the sheaths. The last factor is to be re-

placed by 1 for electron-rich operation.

Equation (70) shows that when the right-hand side is large, as in electron-
rich operation, kzL = /2, and the wave is a standing wave in the z direction
with a node at each end. The sheaths act as perfect conductors in this case.
When the right-hand side is small, as in ion-rich operation, kzL< /2. The
wave is still a standing wave with a maximum at the mid plane, but the oscil~
lation amplitude at the sheath edge is now finite, corresponding to an axial
wavelength greater than 4L. The effect of the hot plates is to fix kZ in this

manner. Equation (70) has been verified experimentally (Reference 10).

4. Doppler Shifts and Phase Shifts

The dispersion formulas we have worked out are valid in the frame in
which EO= 0. In Q-machines there is usually a radial electric field in the
equilibrium. If this field E is proportional to r, the plasma rotates as a

SOlld body, and the wave frequen01es will be Doppler shifted by this rotatlon
| In addition to thls effect, there will be a centr1fuga1 force caused by the rota—

tion, and a grav1tat10na1" instab111ty may arise; in Q machmes the centr1— )

fugal effect is usually negligible.

That Q-machines have an Er can be seen from Equation (68) when
je=0. Since n, is a function of r, clearly X" e(cbc-q:)/KTe must vary with

r. The potential is high where the density is high, so Er is positive. This



is true if Tc’ the hot plate temperature, is constant. In practice, TC also
varies with r; and since jT varies exponentially with Tc ,» a small tempera-
ture gradient in the hot plate can cause an appreciable variation in jT and

hence in ¢(r). Usually, Tc falls with radius; in that case, Er is decreased
from the constant —TC value, and may even be reversed. Most experiments

are performed in this last condition.

If care is taken to make Tc constant, then it can be found from Equa-
tion (68) that the Er/B Doppler shift is equal and opposite to VDe' The
measured drift wave frequency will then be small compared to w*. Being
the difference of two large numbers, w* and kEr/B, the measured frequency
can be compared with theory only if there are accurate measurements of both

no(r) and ¢o(r).

When Eo is not 0, Equation (27) relating density to potential is changed

to
. W *+ ibo" 1)
X w-wE+ibo" ’
where
wn = - (m/r) (Er/B\).

S
In general, 0 Ve

be valid locally, regardless of FLR and viscosity effects (which do not

, and c" can all vary with r; but Equation (71) will still

affect the electron equations) and of the x dependence of v and ¥

(which cancels out in this equation).

When wE is not constant, the phase and amplitude difference between
v and x will vary with r. Furthermore, there will be Kelvin-Helmholtz
effects due to the zero-order shear in velocity. These will be discussed in

the next section.

The phase angle § by which v leads x has the following significance.

Drift instabilities can give rise to "anomalous transport" of plasma across
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magnetic fields. The radial flux is the time average <n1vr>, where

. n.¢
n.v =n -—9 5 - E -——1 1 ° (72)
When b0'" is either very large or very small, w is real, and v and x are
nearly in phase. Then n, and V are 90° out of phase, and <n1V > =0,
The amount of anomalous loss thus depends on the phase shift between vy and

X . The phase shift is also proportional to the growth rate (Reference 4B).

Separating Equation (71) into real and imaginary parts, we obtain

boll[w*-(w-wE)]

sgnw tan § = (73)

(bo" )2+ W *(w -wE)

This shows that 6, and hence <n1vr> , depends only on win the E=0 frame,

as it should. The sgnw factor takes into account the fact that § may be re-

versed in the lab frame by a sufficiently large Ve When wE varies with r,

v_2», must also vary with r.

Equation (73) shows that §, and hence <n1 .

5. Observations of Resistive Drift Waves

The most complete study of drift waves was made by Hendel, Chu,
and Politzer (Reference 5) whose Q-machme data we shall show. By work-

ing at h1gh densities (10 11 <n< 1012 cm ) they were able to suppress all

large-m modes (m= rky) by io;;is&)slty. Thus one steady, sinusoidal wave
at a time could be observed in detail. After making a local correction for
W it was found that w= % w* in the E=0 frame, which agrees roughly with
the frequency expected at maximum growth rate. No exact check could be
made because wE varied with radius. The oscillation amplitude was peaked
in the region of large nc’) / n_ . asone would expect. The next figure shows
the wave amplitude n /no as a function of B. It is seen that the m=2, 3, and
4 modes occur one at a time as B is increased. From the B/ky VS, A " con-
tours shown previously, it is seen that for each B there is a k for maximum
growth rate. Apparently, it is this mode which grows to saturation at the

expense of all the others. The threshold for excitation of each mode is
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given by the condition o = GIL (6=1), which is given in Equation (63). The
measured thresholds agree with Equation (63), but only if B is scaled down
by a factor 1.5. From Equation (63) it is seen that Vs scales as B4 hence

the measured thresholds correspond to a value of Vi wh1ch is (1, 5) 5 times

wkhat it should be. Recent theoretical work ‘taking fluctuations in T into

account has removed part of this discrepancy.

From Equations (11) and (49) we see that v,, and v . are proportional to

111/2

n, Equation (63) then shows that B/k_scales as n_'~. This dependence is

verified in the next figure.
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From Equations (49) and (63), one sees also that B/k, scales as M3/8.

By injecting Cs atoms at one end and K atoms at the other, it was possible
to vary M from 39 to 132. The results shown below are consistent with the
3/8

M dependence, although the constant of proportionality is off by a factor
of 2.
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VI. OTHER RELATED INSTABILITIES

1. Collisionless Drift Wave

In the absence of collisions a truly universal instability is predicted to
occur. Here the impedance to electron flow along B is caused by the slowing
down, by the wave, of electrons moving slightly faster than the wave. Since
a distortion of the distribution function is involved, a kinetic theory deriva-
tion is required. We give the local dispersion relation in a form in which

the effects of FLR can be separated out from the effects of ion inertia by set-

ting wi=0:

W -w¥ + b(W-0)+ iVT —— (W-w#) =0, (74)

i kV
z the
For w~ w* and w/kZ << Vthe’ we have
. k2
Im(W) ~ V7 (1+6)b =————— , (6=T./T ) (75)
kV i e

e z the T

This is a very weak instability requiring very large l" . Whether or not it

has been identified in the laboratory is debatable, but ?olitzer (Reference
12) claims to have seen it.

2
Kinetic theory also gives results for arbitrary b = kyaiz. Defining

B Ee-bIO(b), where Io is a Bessel function, we then have (for Ti= Te)

2
= B wk B(1-g)
Re(w) = w¥ <~ , Im(w) = 2V7 - . (76)
2-B - szthe (2-/3)2

2. Kinetic g-mdde )

The resonant electron effect mentioned above can also destabilize a
gravitational instability even if kZ is required to be finite. This instability

has been calculated by Yoshikawa.

3. Centrifugal Instability

Reference 6 given the results for resistive drift modes when plasma

rotation (due to Er) adds a centrifugal “gravitational" force. It is found that
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Er 2 0 is more destabilizing than Er < 0 due to an asymmetry caused by the

Coriolis force.

4. Temperature Gradients (References 1 and 11)

Since it is the radial pressure gradient, rather than density gradient,
which supplies the free energy to drive a drift mode, one would expect that
a gradient VT in the equilibrium would be destabilizing. The results for
VTi are complicated, and we quote here only the results for VTe. If we

define
dln Teo
**qma, ()

Equation (74) for the collisionless drift wave becomes

ivr 1

TV W(W- w3+ 3 wkxg)=0 (78)

W-w* + b(w—wi)+
z the

From this it can be shown that £ is destabilizing only if it lies outside the

range 0 < & < 2,

Resistive drift waves with finite VTe and finite heat conductivity k have
been calculated by Moiseev and Sagdeev (Reference 3). If we define
o | KT T’
k—— =2 (79)

T eB T °’
e

W

Equation (45) is replaced by
(1ta)w
T
w(w—wi) + icr" W~wk - ———o— | . (80)

|2 ikgK

3 wn
o

Here a=0.71 is a term arising from a thermal force proportional to aTelaz
For small k, it can easily be seen from Equation (80) that Té'o is destabiliz-

ing if d 1n~Teo/~d Inn_ <0, as in the collisionless case.

5. Parallel Drifts

If the electron and ion fluids have a relative drift along B in equilibrium,

the energy in this drift can be coupled to a drift wave if Vzi is taken into



account., There is then an enhanced growth rate. In the collisionless case,

if w/sz is large enough for ion Landau damping to be neglected, the

thi
dispersion relation becomes
vy iv7
Wk - (w-w ) + = Www-w*+k V )=0, (81)
2 kV Z 0z
w z the

where Voz is the ion drift in the frame in which the electrons are at rest
in equilibrium.
For the resistive drift case, the dispersion relation becomes
(:J-w)w*+ bww + ibo" (W-wx)= 0, (82)
where 0 = v - kzvoz' For w A w* , we then have the growth rate
k V w*

O ™

which indicates that the traveling wave with kzvoz <0 is unstablew;

6. Dr1ft cyclotron Instab111ty

If we had not made the low-frequency approximation w2<< Qi , the

retained cyclotron terms would have given two additional roots w & * QC

These are electrostatic ion cyclotron waves modified by the density gradient.

The real part of w is given approximately by

T
2 _ 2 ( e) 2, 2 2
(w kyVDi) = Qc+ 1+ T ky (VDi+ Vthi)‘ (84)
The wave which travels in the electron diamagnetic drift direction is un-

stable for finite kZ if ky < n(’) / n. This drift-cyclotron instability arises

when the cyclotron wave has nearly the same velocity as the drift wave; i.e.,

when Q /k ~ w*/k . Thus the interaction is strong for
Q ~ w* -k aZQ n /n , or k a2n '/n =~ 1. The small Larmor radius
c y i y i o} T

expansion breaks down in this case, and one has to use kinetic theory for

the exact growth rate [c.f. Mikhailovsky and Timofeev, ZET® 44, 919 (1963)].
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These authors found that if electrorriagnetic effects are included (B1¢ 0),

there is an instability even if kz= 0. The unstable condition is

o m YAy
1772 ﬁ**c—z) ’ (89

where V, = cBO/(élrrnM)ll2

A is the ,Alfve'ﬁ velocity.

Experimentally, drift-cyclotron instabilities have been detected and
are important only in magnetic mirrors and multipoles. In these devices
the magnetic field is highly nonuniform, and the wave is greatly affected by
the VB drifts.

7. Drift —Alfvén Waves

As mentioned at the beginning, finite-f8 effects can hinder electron
motion along B via the inductance effect, and this can lead to an instability
of Alfvén waves in an inhomogeneous plasma. The coupling between drift
waves and Alfvén waves occurs for w*/kzz VA'
8. Trapped Particle Modes

Recent work on multipoles has revealed still another mechanism for
impeding electron motion along B. This occurs when BZ varies along z, so
that some electrons are trapped in the regions of low B by the magnetic
mirror effect. Drift-type instabilities can then arise even in thé absence of
collisions. However, many other modes, some with kz=0, also arise; and

the situation is too complicated for us to summarize here,

9. Kelvin-Helmholtz Instabilities

For ordinary hydrodynamics, a shear flow can excite a Kelvin-
Helmbholtz instability. The same phenomenon occurs in a plasma, but the

physical mechanisms are quite different for shearin V. andV . IV
- : oz o1 oz



varies in the x direction, it is a simple matter to include V'OZ in our equa-

tions to obtain, for n=0,

1 1, . .2 KTe V(') i
= Z(w* —(w*- -k — .
W kzvoz+ 2(w +wi):l: 4(w wi) +(1+6) M kz(kz ky Qc) (86)

In this instability, the density gradient is a stabilizing effect; by neglecting

n , we neglected the destabilizing effect of né .

If it is Voy which has shear, so that VO=V0y(x)§, we have the case of
nonuniform Eo' In this problem, the radial or x variation of the wave is
essential, and one cannot make the local approximation. For kz=0, the
radial wave equation is

(TY"? - k(T - o =0, (87)
where

T = p(w-kVE) (w-kVE- wi) ,

and p=nM, VE=E0x(x)/ Bo’ g is a gravitational potential, and w=Vx /(w—kVE) is
the Lagrangian displacement of the ion fluid. If FLR effects are neglected

by setting wi=0, the zeroes in T would coalesce, and we would have the same
equations as in classical hydrodynamics. Even in this case, Equation (87)

can be solved analytically only for very simple functions p(x).

For kZ # 0 and n# 0, we can combine this result [due to Rosenbluth
and Simon, Phys. Fluids 8, 1300 (1965)] with the electron continuity Equa-
tion (27) to obtain

(Tw')'+k2[-T+gp'+io I° (w*-w+kvE)1¢/ = 0, (88)

An equation similar to this but including also cylindrical geometry and ion
viscosity effects has been analyzed recently by Perkins and Jassby (Refer-

ence 15).

The first identification of the transverse Kelvin-Helmholtz instability
in a plasma was made by Kent et al. (Reference 14) in explaining the "edge
oscillation" in a Q-machine. A more careful experiment by Jassby (Refer-

ence 15) has confirmed this identification.
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VII. FEEDBACK STABILIZATION

Drift instabilities can be cured by supplying shear or minimum-B
geometry to the magnetic field. Recent work has been concerned with a
simpler method: feedback stabilization. The wave is detected by a probe
or by an optical method, and the signal is amplified and applied to the
plasma locally by one of several methods. If the applied signal bears the
right phase relationship to the detected signal and is sufficiently large, the

drift wave can be suppressed.

If a probe is used to apply the feedback signal, the probe current can
be used to aid electron flow along B and cancel the resistive drag. An
oscillating source of electrons can be added to the electron equation of con-
tinuity, and the phase and amplitude for stabilization calculated (References

16 and 18). This has been verified experimentally (Reference 18).

If a beam of microwaves is used to apply the feedback signal, the
interior of the plasma can be reached without an electrode because the
microwaves interact with the plasma only at the place where their frequency
equals the upper hybrid frequency. This has been done experimentally by
Hendel et al., (Reference 19) and Wong et al., (Reference 20). Stabiliza-

tion of the drift waves occurs through a nonlinear effect.

A beam of neutral atoms can also be used to reach the interior of a
high temperature plasma (Reference 17). The plasma must be dense
enough to ionize the neutrals by electron impact. There are then two dif-
ferent mechanisms for applying the feedback signal. First, if the beam is
modulated so that it is ionized at the density minima, then n1/n0 can be
decreased. By Equation (27), if v =0, so does x. Second, as the beam
is ionized, it also imparts an impulse to the plasma because of its initial
momentum. This impulse can be phased in such a way that the plasma is
pushed back whenever it oscillates outwards. This theory cannot easily be

checked experimentally without a thermonuclear-type plasma.
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