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ABSTRACT

Detection of non-Maxwellian electron energy distribution functions

(EEDFs) by Langmuir probes in the presence of radiofrequency (RF)

fluctuations in plasma potential is possible if the probe is properly RF-

compensated.  If the non-thermal electrons are created by wave

acceleration, however, they usually are bunched at one phase of the RF.

In this case, the usual method of forcing the probe to follow

fluctuations in floating potential (Vf) will be inappropriate, since Vf itself

will be time-dependent in such a way as to ensure that the fast electron

tail is not detected.  The probe must be made to follow fluctuations in

space potential.  Computations are given to show the effect of RF on

distributions with high-energy tails with and without the proper

compensation. Singular EEDFs arising in the case of constant energy

gain are also treated for the first time.
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I. INTRODUCTION

In some RF plasma sources, such as the helicon source [1], it has been suggested that

the ionizing electrons could be accelerated by wave-particle interactions [2].  In this case, the

fast electrons, of the order of 50-100 eV, would be bunched in the accelerating phase of the

wave’s parallel electric field Ez, where z is the direction of the DC magnetic field B0, as shown

in Fig. 1.  The occurrence of such bunched electrons has been inferred from the observed time

variation of optical light emission in synchronism with the RF [3].  To detect these electrons

with a simple diagnostic such as a Langmuir probe requires careful RF compensation to

remove the nonlinear averaging imposed by large RF fluctuations in plasma potential.  Many

methods for doing this can be found in the literature on RF plasma sources.  For instance, the

method developed by Sudit and Chen [4] employs RF chokes to filter the fundamental and

first harmonic of the RF frequency and, in addition, a large auxiliary floating electrode to

sense the voltage fluctuations near the probe tip and to couple them to the tip, causing it to

follow the fluctuations.  Unfortunately, the floating potential itself is affected by the fast

electrons, in such a way that Vf shifts negatively whenever the fast electrons are collected. The

result is that the RF compensation is too strong and guarantees that the electron tails cannot

be seen  on the probe characteristics.  This is true of any RF probe method which relies on

feeding back a floating potential signal.  An ideal probe would sense the local space potential

Vs and use that for RF feedback, thus avoiding the self-masking aspect of phased beams.  At

this time we do not know of an easy way to do this.

           
Fig. 1.  The electric potential seen by electrons, showing their bunching at the
phase of a propagating wave at which there is an accelerating electric field.

In this paper, we compute the probe characteristics for typical discharges with various levels

of RF noise and with various fast electron tails, phased and unphased.  The effects of

insufficient, perfect, and excessive RF compensation are calculated.  These current-voltage (I-
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V) curves are similar to those shown previously by others [5] but are somewhat more realistic

in that the rounded "knee" observed in the presence of strong magnetic fields is reproduced in

the computations.  In addition, a distribution of fast electrons other than a shifted Maxwellian

is also treated; this is the case of singular EEDFs which arise if the energy gain of the fast

electrons, rather than their velocity gain, is constant.  Finally, we show experimental tests of

our conclusions.  The ideas conveyed here are general enough to be applicable to any RF

discharge in which the electron distribution function varies at the RF frequency.  Though we

have implied the existence of a magnetic field in order to use a simple one-dimensional

electron distribution, this simplification is not essential.

II.  FORMULATION

Let Vp be the probe bias voltage and Vs the space, or plasma, potential.  We neglect

oscillations in plasma density and temperature but allow Vs to vary sinusoidally at the RF

frequency:

V V ts rf= cosω .                                                        (1)

The probe potential relative to the plasma is defined as V:

V V Vp s≡ −                                                              (2)

The minimum velocity of an electron that can reach the probe is then given by

½mv eVm
2 = − .                                                         (3)

Hence,
v eV m v v eV KTm m e e= − = −( / ) , / //2 1 2 2 2  .                                 (4)

Let the bulk plasma electrons be Maxwellian with temperature Te, and let the ions be cold.

We consider the one-dimensional case, in which the normalized electron velocity distribution

is

f v v v ve e e( ) ( / ) exp( / )= −1 2 2π  ,                                            (5)
where

v KT m v ve e e e≡ ≡( / ) , //2 21 2 π  .                                 (6)
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Added to this is a population of fast (beam) electrons of density nb, whose distribution will be

discussed later.  The densities at the sheath edge are related by

n n ni e b= +  .                                                           (7)

1. Thermal electron current

For V < 0, the thermal electron flux collected by the probe is

j n vf v dv n v v v n v eV KTe e e e e m e e e e
vm

= = − =z
∞

( ) ( / ) exp( / ) exp( / )2 2 2π .              (8)

Defining the dimensionless variables

J j n v eV KTe e e= =/ , /η   ,                                           (9)

we can write Eq. (8) as

J ee = η   .                                                        (10)

For V > 0, Je is replaced by its saturation value Jsat.  In a strong magnetic field, the probe's

presence necessarily changes the plasma potential on the flux tube that it blocks, and

saturation starts well before Vp - Vs = 0, if Vs is referred to the plasma on undisturbed flux

tubes.  For the purposes of this paper, it is sufficient to model the saturation current with a

two-parameter curve (a parabola) that resembles the I-V characteristics seen experimentally.

Let a be the value of Je at which saturation begins, and let b describe the rate at which the

saturation current grows.  Matching the slope of the parabola to that of Eq. (10) at Je = a, we

obtain

J a b a b a b asat = − + − +2 2 1 22 2/ [ ln ( / ) ] /η  .                                (11)

The potential ηc at the onset of saturation is given by ηc = ln a.  Thus, the thermal electron

current is given by

J e

J J
e c

e sat c

= <
= >

η η η
η η

                                                  (12)
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2. Ion current

The normalized saturation ion current is approximately [5]

J
n n

n v

KT

M
f

m

Mi
e b

e e

e≈
+ F

HG
I
KJ = + F

HG
I
KJ05 1

2

1 2 1 2

. ( )
/ /π

,                                (13)

where M is the ion mass.  In practice, the ion current varies slowly with voltage and can be

approximated by a parabola.  Since the exact ion current is not critical here, we arbitrarily set

it to have the value in Eq. (13) at a probe potential of -36 KTe.  Thus we take the normalized

ion current to be

J f
m

Mi = + F
HG

I
KJ

−
( )

/

1
2 6

1 2π η
.                                             (14)

3. Electron beam current

The normalized probe current Jb due to accelerated “beam” electrons will be derived

in the next section, giving a total probe current

J J J Je b i= + −                                                       (15)

III. BEAM DISTRIBUTIONS

The distribution function of the non-thermal electrons depends on the acceleration

mechanism.  We assume that the accelerated electrons are concentrated at the phase of the RF

at which the electric field has the proper sign and is at its maximum so that its magnitude is

insensitive to phase.  A runaway population of these electrons can be defined as those which

are quickly accelerated well above their thermal speeds before making a collision.  These

electrons will experience the electric field until they fall out of phase or make a collision with

an ion or a neutral atom.  We assume that the collisional mechanism prevails. If their collision

cross section varies as 1/v, then the collision frequency will be constant, and the electrons will,

on average, be accelerated for a time equal to 1/noσv, where no is the density of scattering

centers.  In that case, the velocity gained by each electron will be the same regardless of its

initial velocity, and the EEDF is that of a shifted Maxwellian, the case usually treated.  On the

other hand, if the cross section is constant, the electrons will, on average, be accelerated for a
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given distance; namely, the mean free path λm = 1/ noσ. This distance is approximately

constant for a distribution of about 3 eV width accelerated to 50-100 eV.  In this case, the

energy gained by each electron will be the same, leading to a different EEDF.  We have

calculated the probe currents for these two extremes; the actual distribution will probably lie

in between.  One-dimensional distributions are used, since the magnetic field has been

assumed strong enough that even the beam electrons move primarily in the z direction.

1) Shifted Maxwellian

At the sheath edge, the distribution function of a Maxwellian of temperature Tb shifted

by a velocity u is:

f v v v u vb b b( ) ( / ) exp[ ( ) / ]= − −1 2 2π ,    where                           (16)

v KT m v vb b b b≡ ≡( / ) , //2 21 2 π  .                                (17)

The beam current is then

j
n

v
v u v vdvb

b

b
v bm

= z − −∞

π
exp[ ( ) / ]2 2 .                                   (18)

This yields

j n v y v u v y vb b b m b b m b= − +exp( / ) ( / ) ( / )2 2 π erfc  ,                      (19)

where ym = vm - u [Eq. (4)], erfc(x) = 1 - erf(x) = 1 + erf(-x), and

erf ( )x e dttx= z −2 2

0π
 .                                            (20)

In terms of the dimensionless quantities

f n n h v v q u vb e b e b≡ ≡ ≡/ , / , /  ,                                    (21)

the normalized beam current can be written

J j n v fh Y q Yb b e e m m= = − +/ [exp( ) ( )]2 π erfc ,                          (22)

where

 
Y y v h q

q
m m b= = − − <

= − >
/ ( ) //η η

η

1 2 0

0
                                  (23)
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This assumes that the fast electrons saturate above the space potential.  The initial and final

distributions are sketched in Fig. 2; the “final” distribution is that found at the sheath edge,

before it is changed by the sheath electric field.

2) Constant energy case

In this case, let the beam distribution start as a Maxwellian at temperature Tb, and let

each accelerated electron gain or lose an energy W.  The center of the velocity distribution will

then be shifted by an amount vc, where

v W mc = ( / ) /2 1 2 .                                                         (24)

The initial distribution is divided into three regions, as shown in Fig. 3.  Those electrons

originally moving in the direction of the acceleration will gain an energy W; those originally

moving fast in the opposite direction will lose an energy W; and those moving slowly in the

backward direction will be turned around.  The final velocity v of an electron with initial

velocity vo is thus given by

 (Region 1)              vo > 0:    v2 = vo
2 + vc

2       (v > 0)                            (25a)

      (Region 2)    -vc <  vo < 0:    v2 = vc
2 - vo

2         (v > 0)                           (25b)

(Region 3)           vo < -vc:    v2 = vo
2 - vc

2        (v < 0) .                          (25c)

These regions, shown in Fig. 3, map into the corresponding regions of the accelerated

distribution in Fig. 4.

Region 1.  We have

v v v dv v v dvc0
2 2 2

0 0= − =, ( / ) .                                         (26)
Taking

f v dv f v dv0 0 0( ) ( )=

with f0(v0) given by Eq. (16), we obtain

f v
v

v

v v
v v v

b c
c b( )

( )
exp[ ( ) / ]

/
=

−
− −

1
2 2 1 2

2 2 2

π
 .                             (27)
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Note that f(v) has an integrable singularity at v = vc.  That accelerated distributions can be

singular is well known [6].  The physical reason for this is that f0(v0) has zero slope at v0, so

that these particles, which end up at v = vc, are bunched into an infinitesimally small velocity

interval.  Similarly, the Jacobean dictates that f(v) has to vanish at v = 0.  Integrating f(v) from

vc to ∞, we find that the fraction of particles in this region is ½, as expected.

Region 2.  Now we have

v v v dv v v dvc0
2 2 2

0 0= − = −, ( / ) .                                    (28)
This gives

f v
v

v

v v
v v v

b c
c b( )

( )
exp[ ( ) / ]

/
=

−
− −

1
2 2 1 2

2 2 2

π
.                             (29)

The fraction of particles in this region is ½erf(vc/vb).

Region 3.  In this case, we have

v v v dv v v dvc0
2 2 2

0 0= + =, ( / )  ,                                    (30)
so that

f v
v

v

v v
v v v

b c
c b( )

( )
exp[ ( ) / ]

/
= −

+
− +

1
2 2 1 2

2 2 2

π
.                             (31)

The fraction of particles in this region is ½erfc(vc/vb), where erfc is the complementary error

function.  Fig. 5 shows f(v) for various values of W, and Fig. 6 traces how the zero and pole in

f(v) develop as a Maxwellian distribution is given a small energy gain.

The current of fast electrons to the probe is given by

j n vf v dvb b vm
= z∞ ( ) .                                                   (32)

If vm is larger than vc, the integral lies within Region 1, and f(v) is given by Eq. (26).  The

normalized collected beam current is then

J
fh

y q y dy v vb
Y

m c
m

= +z − >
∞

π
( ) exp( ) , ( )/2 2 1 2 2                         (33)

where
y v v v Y v v v h qc b m m c b= − = − = − −( ) / , ( ) / ( / )/ / /2 2 1 2 2 2 1 2 2 2 1 2η  .          (34)
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If vm is smaller than vc, part of the distribution lies in Region 2, and Eq. (28) has to be used

for that part.  The result is

J
fh

q y y dy q y y dy v vb

Y

m c

m

= −z − + +z −
L
NM

O
QP <

∞

π
( ) exp( ) ( ) exp( ) , ( )/ /2 2 1 2

0

2 2 2 1 2

0

2      (35)

where, in the first integral,

y v v v Y v v v h qc b m c m b= − = − = +( ) / , ( ) / ( / )/ / /2 2 1 2 2 2 1 2 2 2 1 2η  .              (36)

In this case, saturation occurs for η > 0, and Ym has a maximum value of q.

4. Recovery of f(v)

For three-dimensional distributions, f(v) is proportional to the second derivative of the

probe current; but in strong magnetic fields, the electron motion is one-dimensional, and f(v)

is given by the first derivative:

j n vf v dv d j dv n v f v dj dV n e m f ve e
v

e m e m m e e m
m

= z = − =
∞

( ) , / ( ) , / ( / ) ( ) ,        (37)

where Eq. (4) was used for vm.  In terms of the dimensionless quantities J and η [Eq. (9)], we

have

f v
v

dJ

dm

e

( ) =
1

π η
 .                                                   (38)

For a shifted Maxwellian, Eq. (22) gives

dJ d fh h qb / exp[ ( / ) ]η η= − − −−1 2 .                                   (39)

Though the maximum of this curve occurs at the expected potential, the e-folding points of

the curve are separated by ∆η = 4qh2, a factor q >> 1 larger than the width of 2h2 of the

original energy distribution..  The beam distribution, as it would appear when plotted against

probe potential, is shown in Fig. 7 for various beam temperatures and velocity shifts. The

distribution seems to widen as it is accelerated, but this is because ∂J/∂η ≈ f(v) is plotted

against v2, not v.

For the constant-energy case, the peak of the beam occurs at the probe potential

corresponding to the energy gain (Fig. 8), but the width of the beam narrows (in velocity
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space) as W is increased (Fig. 5). Since f(v) is no longer Gaussian, the width of the observed

f(v) depends on how well the singularity is resolved.  With good resolution, a probe might

yield the f(v) curve shown in Fig. (8), which was computed from Eqs. (33), (35), and (38)

with a grid size  ∆η = 0.1.  The width appears to be less than Tb = 1 eV, illustrating the well

known effect of acceleration cooling.  A coarser grid or probe resolution would give,

however, a wider apparent f(v).   Figure 9 compares the apparent f(v)’s for two types of beam,

one with constant-velocity acceleration and the other with constant-energy acceleration, both

starting with the same temperature Tb and suffering the same mean energy gain Eb.  It is clear

that the apparent widths can be very different.

IV. COMPUTED PROBE CURVES

In this section we use the formulas of Secs. II and III for computations illustrating the

effects of RF fluctuations, fast electron populations, phased beams, and Vf-compensation on

probe I-V curves.  To permit the ion saturation current to be seen, we have increased it by

choosing a light ion, namely He, in all the calculations.  We have also simplified the

calculation by choosing a shifted Maxwellian for the beam electrons.

1. Effect of RF pickup on dc beams

Fig. 10a shows the model probe curve given by Eqs. (15), (12), (14), and (22).   Fig.

10b shows how the I-V curve, averaged over an RF cycle, is distorted by varying magnitudes

of Vrf.  This behavior is in general agreement with results published earlier by Hershkowitz [5]

and others.  In practice, the RF potential fluctuation in the plasma can be as large as several

hundred volts;  in this case, Vrf  represents the amount of RF pickup remaining after attempts

to eliminate it.  Fig. 10c shows the apparent velocity distribution f(v) obtained by

differentiating the curves in Fig. 10b.  Even 5V of uncompensated Vrf is sufficient to distort

the Maxwellian distribution beyond recognition.  In Fig. 11, the effect of adding a dc beam of

varying density nb, temperature Tb, and center energy Eb is shown.  In Fig. 12a, the effect of

RF on a probe curve with a dc beam is shown.  The apparent f(v)’s for the thermal part of the

distribution is indistinguishable from Fig. 10c, but the high-energy portion (Fig. 12b) shows

the presence of the beam with the correct central energy even with Vrf as large as 20V.
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2. Phased beams

We now consider electron beams which occur only during the accelerating phase of

the RF cycle.  Fig. 13a shows the assumed time variation of the beam, and Fig. 13b the probe

characteristics for various values of the maximum beam density.  Fig. 14a shows the effect of

RF pickup on one of these cases, and Fig. 14b the corresponding distribution functions

derived therefrom.  Note that the beam can be detected as long as Vrf is less than Eb.

3. Effect of Vf compensation

Fig. 15a shows the time-averaged characteristic for a probe in a plasma with a phased beam in

the absence of RF pickup, but with compensation circuits designed to follow fluctuations in

floating potential.  This curve was computed by shifting the I-V curve at each RF phase so

that the floating potential occurred at the same probe potential as it did when the beam current

was zero.  The derivative of this curve gives the apparent distribution function shown in Fig.

15b.  We see that the oscillation in floating potential causes f(v) to be smeared out, as if there

had been RF pickup.  Fig. 16 compares these curves with the ideal curves which would be

obtained in the absence of both RF and RF compensation, or in the presence of RF pickup but

with ideal compensation following the fluctuations in space potential Vs.  In Fig. 17a we

compare the curve of Fig. 15a with the curve obtained with 20V of uncompensated RF.  Fig.

17b shows the derived distribution functions.  Since the characteristic has already been

distorted by Vf compensation, the further addition of RF pickup has only the effect of shifting

the curve.  Finally, in Fig. 18, we compare the probe characteristics with RF pickup and a

phased beam for the cases of no compensation, Vf compensation, and ideal Vs compensation.

We see that the presence of the beam cannot be detected with Vf compensation.
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FIGURE CAPTIONS

Fig. 1.  The electric potential seen by electrons, showing their bunching at the phase of a
propagating wave at which there is an accelerating electric field.

Fig. 2.  The beam distribution functions before and after wave acceleration, for the case of
constant velocity gain.  Electrons faster than vm are able to overcome the probe bias.

Fig. 3.  Velocity regions of a Maxwellian beam distribution before each electron is given an
energy W = mvc

2/2.

Fig. 4.  The beam distribution after acceleration in the constant-energy case.  The numbered
regions correspond to those in Fig. 3.  Electrons with v > vm reach the probe.

Fig. 5.  Velocity distribution of beam electrons in the case of constant energy gain W, for
various values of W/KTb.

Fig. 6. Velocity distribution of beam electrons for small energy gains, showing the
development of the singularity in f(v).

Fig. 7.  Apparent velocity distributions of electrons in a shifted Maxwellian for (a) various
beam temperatures and (b) various velocity shifts.  These curves are obtained by
differentiating the probe I-V curves and are therefore plots of f(v) vs. v2.

Fig. 8. Apparent velocity distribution of electrons accelerated by a constant energy W.  This
curve is obtained by differentiating the probe I-V curve and are therefore the apparent
width depends on the resolution of the computation.

Fig. 9.  Apparent velocity distributions of a 1-eV electron distribution, after acceleration by
the same mean energy, in the constant-velocity and constant-energy cases.  The remarks
under Figs. 7  and 8 apply.

Fig. 10.  (a) Normal I-V characteristic for a Te = 3eV, Ti = 0 Maxwellian plasma in a magnetic
field.  (b) The I-V curve of (a) after distortion by RF oscillations of magnitude Vrf.  (c)
Derived velocity distribution f(v) vs. normalized probe voltage.

Fig. 11.  (a) I-V characteristics for a 3-eV plasma with a Tb = 1eV beam of various densities.
(b) Apparent distributions f(v) derived from (a).  (c) Apparent f(v)’s for a plasma with 50-
eV beams of various temperatures.  The I-V curves from which these were derived are not
shown.  (d) Apparent f(v)’s for a plasma with beams of the same density but different
energies.

Fig. 12.  (a) Probe characteristics for a plasma with a dc beam after distortion by various
amounts of RF pickup.  (b) Apparent distribution function in the region of the beam
obtained by differentiation of the curves in (a).
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Fig. 13.  (a) Time variation of phased electron beams used in the calculations.  (b) Probe
characteristics for a 3-eV plasma with a phased beam of various peak densities in the
absence of RF pickup and of RF compensation circuitry.

Fig. 14.  (a) Uncompensated probe characteristics for a 3-eV plasma with a phased beam and
various levels of RF pickup.  (b) Apparent distribution functions derived from (a).  The
rapid oscillations are due to the coarseness of the numerical grid and should be ignored.

Fig. 15.  (a) I-V characteristic of a Vf - compensated probe in a 3-eV plasma with a pulsed, 50-
eV electron beam.  (b) Apparent f(v) from the derivative of (a).

Fig. 16.  (a) I-V curves for probes driven to follow Vs and Vf in a plasma with a phased beam.
(b) Apparent  f(v)’s derived from (a).

Fig. 17.  (a) I-V characteristics for Vf-compensated probes in a plasma with a phased beam,
with Vrf = 0 and 20 V. (b) Apparent  f(v)’s derived from (a).

Fig. 18.  I-V characteristics for a probe in a plasma with a phased beam and Vrf = 20 V, for
cases of no RF compensation, Vf-compensation, and ideal Vs-compensation.
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Fig. 4.  The beam distribution after acceleration in the constant-energy case.
The numbered regions correspond to those in Fig. 3.  Electrons with v > vm
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Fig. 7.  Apparent velocity distributions of electrons in a shifted Maxwellian for
(a) various beam temperatures and (b) various velocity shifts.  These curves are
obtained by differentiating the probe I-V curves and are therefore plots of f(v)
vs. v2.
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Fig. 9.  Apparent velocity distributions of a 1-eV electron distribution, after
acceleration by the same mean energy, in the constant-velocity and constant-
energy cases.  The remarks under Figs. 7  and 8 apply.
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Fig. 10.  (a) Normal I-V characteristic for a Te = 3eV, Ti = 0 Maxwellian
plasma in a magnetic field.  (b) The I-V curve of (a) after distortion by RF
oscillations of magnitude Vrf.  (c) Derived velocity distribution f(v) vs.
normalized probe voltage.
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Fig. 10.  (a) Normal I-V characteristic for a Te = 3eV, Ti = 0 Maxwellian
plasma in a magnetic field.  (b) The I-V curve of (a) after distortion by RF
oscillations of magnitude Vrf.  (c) Derived velocity distribution f(v) vs.
normalized probe voltage.
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Fig. 11.  (a) I-V characteristics for a 3-eV plasma with a Tb = 1eV beam of
various densities.  (b) Apparent distributions f(v) derived from (a).  (c)
Apparent f(v)’s for a plasma with 50-eV beams of various temperatures.  The
I-V curves from which these were derived are not shown.  (d) Apparent f(v)’s
for a plasma with beams of the same density but different energies.
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Fig. 11.  (a) I-V characteristics for a 3-eV plasma with a Tb = 1eV beam of
various densities.  (b) Apparent distributions f(v) derived from (a).  (c)
Apparent f(v)’s for a plasma with 50-eV beams of various temperatures.  The
I-V curves from which these were derived are not shown.  (d) Apparent f(v)’s
for a plasma with beams of the same density but different energies.
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Fig. 12.  (a) Probe characteristics for a plasma with a dc beam after distortion
by various amounts of RF pickup.  (b) Apparent distribution function in the
region of the beam obtained by differentiation of the curves in (a).
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Fig. 13.  (a) Time variation of phased electron beams used in the calculations.
(b) Probe characteristics for a 3-eV plasma with a phased beam of various peak
densities in the absence of RF pickup and of RF compensation circuitry.
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Fig. 14.  (a) Uncompensated probe characteristics for a 3-eV plasma with a
phased beam and various levels of RF pickup.  (b) Apparent distribution
functions derived from (a).  The rapid oscillations are due to the coarseness of
the numerical grid and should be ignored.
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Fig. 15.  (a) I-V characteristic of a Vf - compensated probe in a 3-eV plasma
with a pulsed, 50-eV electron beam.  (b) Apparent f(v) from the derivative of
(a).
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Fig. 16.  (a) I-V curves for probes driven to follow Vs and Vf in a plasma with a
phased beam.  (b) Apparent  f(v)’s derived from (a).
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Fig. 17.  (a) I-V characteristics for Vf-compensated probes in a plasma with a
phased beam, with Vrf = 0 and 20 V. (b) Apparent  f(v)’s derived from (a).
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Effect of Vf compensation on I-V with phased beam
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Fig. 18.  I-V characteristics for a probe in a plasma with a phased beam and Vrf

= 20 V, for cases of no RF compensation, Vf-compensation, and ideal Vs-
compensation.


