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Abstract

Helicon waves (whistler waves bounded transversely by a magnetic field surface) occur in the
ionosphere and are used in many industrial applications. Their propagation is investigated
for a cylindrically symmetric curved (flaring) boundary using a finite element method where
the propagation region is divided into a sequence of truncated cones. In each conical segment,
the field lines are represented by a local spherical coordinate system whose origin is the apex
of the cone. A vector wave equation for the fields is formulated for a cold plasma. It is
reduced, in spherical coordinates, to a pair of coupled partial differential equations (PDEs)
for two scalar functions. The PDEs are separable for the azimuthal eigenvalue m = 0.
The separability conditions can be satisfied approximately for m # 0 for small cone angles
far from the apex, and exactly only in the limit that the cone approaches a cylinder. It is
shown that in this limit the solution approaches that for helicon waves in a cylinder. The
f-dependence is a Legendre function, with noninteger eigenvalues determined by the cone
angle. The propagating solutions of the fourth-order ordinary differential equation, which
describes the r-dependence, are obtained using a WKB-like method. When compared to the
exact solutions found in Part II of this paper (Peskoff and Arnush 1995), the approximation
is found to be excellent except near the apex of the cone. As an example of the use of conical
functions for an arbitrarily flaring guide field, the WKB-like functions are used to calculate

the propagation in a slowly diverging parabola of revolution.



I. Introduction

Low frequency electromagnetic whistler waves are well known in ionospheric and laboratory
research. When transversely confined, they are often called “helicon” waves. They develop
electrostatic components and their propagation and polarization characteristics are modified.
An extensive review of the experimental and theoretical research on the properties of helicon
waves confined to a cylinder was performed by Chen (1994). He discussed the unusually high
plasma production efficiency, uniformity, and quiescence of helicon plasma sources, and their

consequent suitability for semiconductor processing and other industrial applications.

In both ionospheric and industrial cases, helicon waves are usually confined to regions
bounded by curved static magnetic field (Bg) line surfaces. Yet, while theoretical and ex-
perimental treatments of cylindrically confined helicon waves are a vigorous ongoing research
subject, there is very little experimental or theoretical published research (aside from ad hoc
WKB treatments) on helicon waves confined in a nonuniform field geometry. In this paper,
we will consider that case by first formulating a vector wave equation for an arbitrary By.
We anticipate calculating the propagation in an axisymmetric guide field by employing a
method (see, e.g., Sporleder and Unger 1979, or Solymar 1959) commonly used for calcu-
lating microwave propagation in horns and couplers. For guided waves in vacuum, authors
usually segment the enclosed region into either a sequence of cylinders, or a sequence of
lenticular regions with coaxial conical sides and spherical surfaces perpendicular to the axis.
In this paper, where a plasma-filled guide is considered, we anticipate a choice of the latter
approach, using spherical coordinates in each region with the origins at the apexes of the
cones. The magnetic field lines then coincide with radius vectors on the conical surfaces and
the axis, and are well approximated by them in between. The bulk of this paper is devoted
to analyzing the fields in the cones. The helicon vector wave equation is reduced to a pair of
coupled equations for two scalar functions, and general solutions to the field equations are
found. Examining the boundary conditions at the conical surfaces, we find that the coupled
equations are not separable in spherical coordinates except for azimuthally symmetric waves
(m =0 mode), or for the small cone angle limit (r — co with rd fixed, i.e. the limit that
the cones approach cylinders) and arbitrary m. The relationship between conically and
cylindrically confined cases are discussed in some detail. The equations are then considered

for the intermediate frequency case
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where w, w. and w, are the wave, cyclotron, and plasma frequencies, respectively, and ¢
and e refer to ions and electrons. A WKB-like solution is obtained which is useful except in a
small range of 7 near r = 0. It is used to calculate helicon wave propagation in a parabola
of revolution. In the following paper (Peskoff and Arnush 1995, hereinafter referred to
as II), solutions of the fourth order ODE valid everywhere are obtained. The solutions
involve convergent expansions about the origin, and asymptotic expansions about infinity

with overlapping ranges of validity. They are joined using a double integral representation.

II. Vector Wave Equation

We form an orthogonal curvilinear coordinate system &, &, &5, where 83 , the unit vector
along (3, coincides with the magnetic field line (i.e., By = By 33 ). Assuming exp(—iwt)
time dependence, most of the dominant physical properties of helicon waves can be obtained

using the dielectric tensor for a cold collisional plasma (see e.g. Stix 1992),

S —iD O
e=14D S 0 , (2)
0 0 P

where the three tensor directions at any point coincide with the three orthogonal curvilinear

coordinates, and )
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where, in the usual manner, j is the species and ¢; the sign of its charge. Landau damping
cannot be included in this dielectric formulation, except in an ad hoc way, because we do not
Fourier transform the equations along the direction of wave propagation. Using equations

(2), (3), and Maxwell’s equations, we readily obtain

VxB/po = J—iweeE = —iweo| SEy + PEsé, + iDE x E| |, (4)



where B, = E— E3€,. Equation (4) can be inverted to solve for E in termsof V x B.
Using wB = V x E, we obtain

BB =V x [ifié; x (VxB) = 4 (VxB) + fs(V x B)sk,] (5)
where
b = w B = L—R _ D
T ¢ 0 PVT ORI T Dr—g5z . (6)
R+ L S 1
=% T oy M A= pth

The terms multiplying £y, f2, and J3 in equation (5) are primarily due to Hall cur-
rent, displacement current, and a balance between displacement and polarization currents,
respectively. In vacuum, f; = 3 =0, B, = —1, and equation (5) reduces to the vector
Helmholtz equation (V2B + kB = 0). For intermediate frequencies typical of labora-
tory values (ng = 10"%cm™, By = 1kG and w/2r = 27MHz), the inequalities in equation
(1) obtain, and

w

~ 107%, B ¥ B, and B3 = B,

Wee
Hence, 5, > B2 > 5. At higher frequencies, in the w — w, limit, B, approaches B,

but ;5 remains negligible.

III. Vector Equation Separation in Spherical Coordinates

We employ the multipolar potential method, used by Morse and Feshback (1953) to separate
the vector Helmholtz equation in five confocal quadratic coordinate systems, by applying it

to equation (5) in spherical coordinates and assuming that
B=M+N, M =V x (try), and N=VxVx((try) . (7)

Since +*M = 0 and r-V xN = 0, M and N are interpreted as transverse magnetic
and transverse electric fields, respectively. For the vector Helmholtz equation, M and N
and hence 3 and x are decoupled, and each scalar function satisfies the scalar Helmholtz
equation, e.g., V% + k31 = 0. For the helicon wave equation, we insert equation (7) into
equation (5), and find that M and N are coupled. The insertion yields an equation of the

form



VP, x,t) =0

P = [ x (VxB) — B(VxB) + f:f-(VxB)F] — k2[ire + V x (bry)]
(8)

Equation (8) is solved if we can demonstrate that there exists a function, f, such that

P, x,t) = -Vf . (9)
Equating the vector components of equation (9), we find that it is satisfied for
: 2 0
f=16rVix + B E(“ﬁ)

Using this relation to eliminate f from the component equations, we obtain

a . 9 9 dp, 0 0?
k2ryp = o (zﬂlrv X)—l—ﬂgrv P+ %a(r¢)—ﬂ3 rVZiyp — w(r;ﬁ) , (10a)

korx = i&%(WHﬂzrV?x : (10b)

The B;,0,, and P3, and hence the plasma parameters, may be functions of r, but not
0 or ¢. In the intermediate frequency approximation of equation (1) this condition requires
that no/ B, be a function of r only. Thus, in contrast to the usual treatments of cylindrically
confined waves in which exponential z dependence of the fields is assumed from the start,
the equation is separable for plasma parameter variation along, but not transverse to, the
direction of wave propagation. Since ¥ and ¢ derivatives in equations (10a) and (10b)
appear only as V?, we expand % and x in the angular eigenfunctions of V?, the spherical

harmonics Yy, (¥, ¢) = P;*(cos V) exp(imyp), where P["(cosd) is the Legendre function:
rp = D, Fon (r)Yem(d,¢) and rx = Y Gom(r) Yem(d,0) . (11)
Zm £m

The separation constants ¢ and m are determined by the boundary conditions. Since 0 <
¢ < 27, and the fields are continuous, m is an integer and the m-modes are independent.

Defining the operator D}

£+ )

2
Dp= =5 - =0 ; (12)




inserting equation (11) in equations (10), using the second order differential equations that
exp(im ) and P;"(cosf) satisfy, and the orthogonality of the exp(:m ) to eliminate the

sum over m, we obtain

L4 +1 : /
Z {ngva_ﬁ2Dl?F£7m_ﬂéFﬁl,m_B3 (7'2 )Ff,m_(zﬁlD?G&m> }Pgm =0 (13&)

£

> { K G — B2 D2 G + iy B }Pr =0, (13b)
I

where the primes denote differentiation with respect to r. We assume an insulating bound-
ary. Then for each m, the component of the current perpendicular to the boundary, Jy,

vanishes. Using equations (4),(5),(7), and (11), we obtain at the conical boundary

d m
pordy = Z{[(l"‘@)@PZm - mﬂlpfm] P, +

¢

) d . m m
—}-Z[ﬂld—e‘Pg —(1+52)mP£]D3G5,m} =0 5 (14)

I=3o

For separability, it is required that there exist a set of eigenvalues of ¢, such that for each
eigenvalue, the curly-bracketed expression in the boundary condition (14) vanishes for all r.
For these eigenvalues of £, the P;"(cos®) would then be an orthogonal set of eigenfunctions.
As a consequence of the orthogonality, the expressions in curly brackets in equations (13a)
and (13b), for each ¢, must vanish, leading to a pair of coupled differential equations for
Fim and Gim . The expression in curly brackets in equation (14) does not separate into
a function of r times a function of #, unless Fypm /D3 Gem 1s independent of r. But
this can be seen to be impossible if F, 2;m and Gy, are solutions of the coupled differential
equations arising from equations (13). (The functions F' and G would be over-prescribed:
three nonredundant equations for two unknown functions). Thus, separability can occur
only if both expressions in square brackets in equation (14) vanish simultaneously for all r.

This is in turn possible if either

d m m m —
Br=1+p and l@ P (cos ) — e PJ*(cos 0)] - =0 (15a)
d
or m =0 and — P/ (cos 0) =0 (15b)
db 6=0o




are satisfied. The condition B; = 1+ (8, in equation (15a) is not physically realizable for
the intermediate frequency case equation (1). Consequently, separability is only achievable
for the azimuthally symmetric case m = 0. In effect, the transverse electric and magnetic
modes satisfy functionally different conditions at the boundary, and their coupling by the
helicon interaction prevents the general simultaneous satisfaction of both. (For fixed £, in
the large r limit, G;/r? can be neglected, F, and G/ approach proportionality and hence
the equation can be satisfied approximately for each ¢. The point is well illustrated in
figure (1), which shows the normalized magnitude and phase of F;/D? G for an outgoing
wave, computed from the solutions developed in II, for 3; constant and B; = 3 = 0. The
result might be anticipated from the fact that for large r and fixed rfy, a conical segment
approaches a segment of a cylinder in which higher order modes are separable.) For further
insights from comparison with the cylindrical case, including a generalization of the familiar
helicon dispersion relation of Chen (1992), see Appendix A. Unlike the case where PJ" (cos 6)
covers the domain of 0 <4 < 7, the eigenvalues, £, are not integers if ¥y # 7. Finding
a spectrum of ¢ values which satisfy equation (14) for m > 0 is beyond the scope of this

work. The goal of the remainder of this effort is to analyze the axisymmetric case m = 0.

Setting m = 0, and using the orthogonality of the P, in equations (13), we obtain

0+ 1)

r

k2 Fy, — By DX Fy — B, F! — B Fo—(ipD2G) = 0 (13¢)

IV. Intermediate Frequency m = 0 Waves

We now proceed to investigate the solutions to equations (13c) and (13d) in the intermediate
frequency regime of equation (1) for m = 0. Neglecting 8, and fs, defining the function
H, = D} G¢, and eliminating F, = i () H;/k?, equations (13c) and (13d) can be reduced

to the single equation

(e+1) ,
2

pe &
[/31 — (B He)] - B 7z (B He)—kgHe = 0. (16)

dr? dr?

To explore the solutions to equation (16), we follow Chen (1992) and assume, for the sake
of simplicity, that there is no plasma production and negligible transverse plasma transport

in the flaring field. In that case, we expect that S; o« Bo/ng will be constant. Defining
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Figure 1: Comparison of G, and H, as a function of £ and z = gr for py =
constant and (3, = 3 = 0:
and (b) phase of H, minus phase of G,.
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¢* =k2/B1 and z = gr, where ¢ = ko/ﬂll/2 is the whistler wave number in an unbounded

medium, equation (16) takes the deceptively simple form

d e+1) &
—Hl—ﬁi——ﬂg—ﬂgzo : (17)

dzt x?  dx?
The fields take on a simple form in terms of H:

(L1 P R .
By, = r%ngHe + ~F (b 17" — ip ;) (18)

w
qr

&
o
I

P (D H, —ig HY)

For fixed £, in the limit £ — oo the second term in equation (17) becomes negligible,
and the four independent solutions to the equation take the form exp(p; z), where the p;
are the four roots of one, corresponding to outgoing and incoming waves, and growing and
decaying exponentials. To further describe the fields, we exploit the connection between
small angle cones and cylinders. The fact that the second order differential equation for the
Legendre function in the small angle approximation, sind & 9, becomes Bessel’s equation,
provides an approximation to P, which is accurate to about 1% in finding the zeros of P}
at Yo = 1(n ~ 3), and improves for larger n. For:

' = —J1 (jun) =0, Py(cos®) = Jo ([£ + 1] 9) , 0, = 31;—’: —1 19
Noting Appendix A, equation (15'b), for r ~ a/¥y we have £/z ~ (j1./%0) (Fo/a/q) ~
T'/q, showing directly the correspondence between the cone and cylinder equations and

eigenvalues.

Obtaining propagating solutions of the stiff equation (17) by straight-foward numerical
integration is complicated by the presence of exponentially growing solutions which amplify
the numerical noise. In the following paper (Peskoff and Arnush 1995), we solve (17) by
developing power series expansions about z = 0 for the four independent solutions. We
then develop asymptotic series for the outgoing and incoming waves, as well as the growing
and decaying exponential solutions, which can represent the solution for large 2. These two
sets of solutions are then connected, using a double-integral representation valid for all .
In this paper, using a WKB approach, a simple function is found that represents the two

propagating waves accurately except for small z.



V. WKB-like Solution to Equation (17)

A WKB-like solution to equation (17) can be obtained by assuming the form

T

H(z) = A@)exp(i6(e) = Ale)exp (i [ bu)dy) (20)

0
where zo is an arbitrary location where the phase is chosen to be zero. A(z) and k(z)
are assumed to be slowly varying functions, so that we can neglect (using a prime to denote
derivative with respect to =) A", k", k' A’, and (k') , with respect to A, k, A’ and '.
Inserting equation (20) in equation (17) and requiring that both the real and imaginary parts
of the equation be satisfied, we get
K4+ U*k* -1 =0 (21)
2k (2k* + U) A" + (6k* + U ) KA =0 (22)

where U?*(z) = £({ +1)/z? corresponds to T? in the cylindrical case. We choose the
propagating roots of equation (21):

ko) = + [1(JT@) +1 - v3@)]” (23)

Differentiating equation (21) and inserting the result in equation (22), we get

Ko 1 dU?®
ko 2(2k24U?)? de
A 6k +U? dU? l3\/U4+4—2U2 du? (24)
A Y (k2402 dz 0 ® Ut +4 dz ’
which can be integrated exactly to yield
3/4
U(z) + /U%(z)+4
Aw) = L@+ YUE) 1 4] 25)

[2(U4(x)+4)]1/4

Thus, the form of equation (20) with the phase obtained from equation (23) are analogous to
the WKB solution of a second order equation. However, the amplitude differs significantly
from the second order result, A = 1/(k)'/2.

It is convenient, particularly in view of the exact solutions obtained in II, to fix the phase

of the WKB-like approximation so that

6(@) = [ kw)dy = 2+1() .



where I(z) vanishes at infinity. Taking zo arbitrarily large, subtracting the arbitrarily large

constant, and changing variables, we obtain

dz) = x + @/{)U(ﬂ dy {1_ [@]1/2}

y3/2 2
- w[1+1U()—iU2() L) + | %
e g U 96 T 160 z)+...| . (26)

Thus, the WKB-like approximation provides an excellent bridge to the cylindrical limit

r—o0, Ulk)—>T.
The condition k> k’'/k is well satisfied for £ 2 5 for
x 2 PP (27)

We borrow from II to display, as a function of z and £, the ratio of the WKB-like to the
exact amplitude in figure (2a), and the difference between the WKB-like and exact phases
in figure (2b). The contour plot projections shown at the bottom of the figures illustrate the

fact that the WKB-like approximation is excellent for many cases of physical interest.

The fields in this approximation are given by equations (17) and (18) with

£ _ . k+U (U2

H ~ ' Ui +4 \2z) °

H" , 4k U2

=t [1“: m] ,

oM s . R2U? 2k — [J?

I - —1k” + PR Ut 14 (28)

VI. Propagation in a Slowly Flaring Guide Field

We calculate the propagation of helicon waves in a guide field of arbitrary axisymmetric
shape by approximating the guide by a sequence of finite elements, each of which is a
lenticular truncated cone (with spherical base and cap), as described in the introduction.
Each element defines a spherical coordinate system centered at the apex of the cone. The
cone angle y determines the eigenvalues £, and the field solution in each element is given
by the above analysis for the helicon wave in a conical region. We may pass to the limit

of infinitesimal element thickness to treat a field shape exactly. For concreteness, consider

10



magnitude ratio

Figure 2: (a) The ratio of the magnitude of the WKB-like to exact solutions. Con-
tours of constant ratio are shown at the bottom.  (b) The difference
between the WKB-like and exact solution phases. Constant phase differ-
ence contours are shown at the bottom.
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figure (3), where we index each truncated conical element by the z-coordinate of its left-hand
boundary circle. Consider a wave incident at z = 0 from a cylindrical guide on the left.
Conical waves propagate from element to element, with all components of their vector fields
continuous at the spherical interfaces. At the spherical surface separating regions n and
n + 1, to insure that the fields be continuous as a function of 9, the field solution of the
n region is expanded in spherical harmonics of the n + 1 region in the well established
manner. Thus, a spectrum of £-modes is generated. Consider a single order ¢-mode (the
order corresponding to the order of the solution to equation (15) ). To insure field continuity
in the radial direction, H,, H;, Hj, and H;” must be continuous and, in the general
case, all four solutions of equation (17) have to be employed. For z < 0 (in the cylinder)
we have an incident and a reflected wave, and a solution which decreases exponentially to
the left. In the interior elements, we have all four solutions. If there are N interfacial
surfaces, in element N + 1, which includes the point at infinity, we have an outgoing wave
and a wave that decreases exponentially to the right. For a unit incident wave, there are 4 N
functions and 4 NV equations corresponding to the conditions at the surfaces. If we terminate
the eigenfunction series at L, it is necessary to solve 4 LN simultaneous equations in 4 LN
unknowns. In this section, as an illustration of the properties of the conical helicon functions,
we investigate the case of propagation of the fundamental /-mode in a parabolically flaring
field, where the flare is sufficiently gradual for the influence of reflected and exponential

waves and higher {-mode generation to be negligible.

Let A(¢, z) be the outgoing wave solution in a cone, normalized to unit amplitude at
& = 00, and the solution throughout the bounded region be H(z). In any element, the ¢
value will be fixed and = will vary. Let the ¢ value be identified by the z value at the

left-hand surface. Thus, in region 1, where 2y < z < z;, we have for H (z) = 1:

hl€(z0), 2(2)]

1) = A1), = ol =
Define the quantities
H@ = H(z,) and |lpn = h[l(zn), 2(2:)] . (30)
Hence, Hy = hoy [ hog . In region 2, where 2z < z < z,
o) = g R )] o

h[€(z1), z(z1)]

11



Figure 3: Construction of a finite element (conical segmentation) in flaring fields. In
a plane which includes the axis of symmetry, z, boundary points b, are
selected at uniform z-coordinate intervals (for example). A, is the intersec-
tion of the z-axis and the line which includes b, and b,4; . The nth conical
segment is bounded by the cone with its apex at A,, and the spherical
surfaces with centers at A, and radii given by the distances (A, , b,) and
(Any Ant1) + (Ant1, buga) .



and H2 = H1 —_ = —= = . (32)

By induction, we have

hn,nt1 7 PG, 2 (z4)]
H (Zn+1) = n+l — Hn L i - . 33

b RI2G), 2(2) o
Equation (31) is the basis of the numerical calculation to follow. It is of interest to write this

result analytically, by passing to the limit of infinitesimal truncated cones. From equation
(33), we have

Hn+1 - Hn _ hn,n+1 - hn,n
H, - P ’ (34)
which we rewrite as
i éﬂ — _1_ Agh E 35
H Az B h Az AZ £= constant ( )

If the tangent angle of the bounding curve is ¥, then in the infinitesimal limit dz /dz =

cos ¥, and we have

mlHE] = [

0

" d [cosﬂ(z') % In { h(t,z) } } (36)

1=L(2"), z=z(2")
Propagation was calculated for helicon waves incident from the left at z = 0 into a region
where the bounding magnetic field lines form a parabola of revolution with a cylindrical

radius
p(z) = a (1 + 22/62) . (37)
Reflections and higher order {-mode coupling were neglected, and the WKB-like approxi-

mation, equation (20), was used for the propagating cone function A(¢, z). The plasma

parameters were characterized using

o = 10710 % cm2 Gt

and w/2m = 27 MHz. For comparison with “typical” parameters for a plasma processing
tool (A. Chambrier of Plasma Materials Technologies (PMT), Inc., private communication),
B, was calculated on the axis (§ = 0) for ¢ = 4cm, b = 10cm, and ¢ = 0.5, 1, 2, as
shown in figure (4a). Similar calculations using the exact functions of II yield essentially
identical results. The apparent “wavelength” (distance between the first two zero crossings)
varies inversely with o and the fields diminish rapidly, in qualitative agreement with PMT

results. The variation with field geometry (i.e., the parameters a and b) are shown in figures

12




4b, ¢, and d. Figure (4d) approximates the case of a cylinder (b > a) and reproduces
the anticipated result that the waves are sinusoidal with the wavelength nearly inversely

proportional to o. The geometric variations for fixed o =1 are summarized in figure (5).
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APPENDIX A: Helicon Waves in a Cylinder

Eliminating F' from equations (12) yields a fourth order differential equation for G, with
four independent solutions. To analyze equation (13) further, it is instructive to consider
propagation in a cylinder using the multipolar potential formulation. In that case, use
equation (7) with the substitution #r — Z. The separation proceeds as in equations (8)
and (9), resulting in equations (10), with the derivatives with respect to z rather than r,
and the factor r everywhere replaced by 1:

0 . dg, 0 5 0? ,
ki = e (lﬂlv2x>+ﬂ2v2¢+ :Zi—za—f — B3 [V Y — 8;5] , (10%a)

0
Ky = _zﬁla—f + B V2iy . (10'b)

To expand in eigenfunctions, use in place of equation (11)

o= Y Frn,(z)Jm (T'p) exp(imp) and xy = TX: Grm (2) Jm (Tp) exp(ime) , (11')
T,m m

where the T's are the radial separation constants, and J,, is the Bessel function. The
azimuthal eigenvalue m is an integer, as in the conical case. For the insulating boundary
condition at the boundary of the cylinder p = a, we have in place of equations (12), (13),
and (14), suppressing the subscript m (except in J,, ):

d? 9

D} = 7z (12')

13
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Figure 4: B, on the axis of a parabola of revolution for ¢ = 0.5 (— ) 1 (=—=-),
and 2 (---)em™ G™'. (a)a=4cm, b=10cm; (b) a=2cm, b= 5cm:
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v {ngT—ﬁzD%FT—ﬂ;F}—ﬁg,TQFT— (mlD;GT)'} T =0 | (13'a)
T

S {kGr—pDiGr+ipFpJn =0 (13'b)
T

wi = S {[asms - 2 s ms

T

=0 (14')

p=a

+i [ﬂlJ;—(HﬂQ) %Jm] D%GT}

where J! is the derivative of J,, with respect to p, and the primes of F' and G denote
derivatives with respect to z. If the (s are independent of z, F' and G proportional to
exp(ikz) satisfy equations (13') and (14') for each T' in the summation and all z. Otherwise,
as in the case of the cone, equation (14') can only be satisfied for each T' if m = 0. In the

latter case, equation (15b) becomes

J(Ta) =0 | (15'b)

which yields a dispersion relation which is biquadratic in both 7% and k*:
(kR 17) g2 — [k + B (K2 4+ T2) [k + B (K2 +T7) — B T2 = o,

which is a generalization of the familiar result of Chen (1992), k2+T2 = o2/k? = (k%/:)° /K2,
for 83 = B3 = 0. Combining equations (13') and (14’) provides unique solutions for 72 and
k? , which may in general be complex. In the case m = 0, where equation (15" b) obtains,
T is real, and for the parameter regime of equation (1), k* has a positive and a negative
root corresponding to propagating and exponentiating solutions. In propagation through a
flaring magnetic field, calculated for example by the methods of Section VI, the previously
unidentified exponentiating solutions can play a small but crucial role in the self-consistent

treatment of helicon waves.
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Abstract

It was found that the wave equation for a helicon wave in a cold plasma bounded trans-
versely by a conical magnetic field is separable in spherical coordinates for m = 0, and the
dependence on the radial coordinate () satisfies a fourth-order differential equation (Arnush
and Peskoff 1995). A straight-forward numerical integration of the equation from z; to z,
fails unless z — z; is small, because of the existence of an exponentially growing solution
to the equation. Consequently, a different approach is needed. Four independent solutions
in the form of series in powers of z (PS) are obtained by expanding about z = 0. Each
series is asymptotically proportional to e as x — oo. Four asymptotic expansions (AE)
are obtained in the form of series in 1/z times e**® and e**. The problem then is to
extend the AEs backward to z = 0 by finding four linear combinations of the four PSs,
each of which approaches one of the AEs in the limit z — oo (i.e., only one of the four
linear combinations approaches e®). This is accomplished by first finding a double-integral
representation of each PS, valid for all z, and then using its £ — oo limit to match each
AE to a linear combination of the PSs. For special values of £ (£ =4N —1 or 4N, N an
integer) the series in the AE terminates after a finite number of terms, and in such cases
closed-form solutions (polynomials times exponentials) result that are exact representations
of the solution for all z. Solutions are computed and illustrated for an outgoing wave using
the closed-form solution for special values of ¢ and as a function of ¢ and z using the PS

and AE, which have a large range of overlap.



I. Introduction

In the preceding paper (Arnush and Peskoff 1995, hereinafter referred to as I), a fourth-order
differential equation was derived for describing a helicon wave in a conical region containing:
(1) a magnetic field By with field lines directed radially outward from the origin of the
spherical coordinate system centered at the apex of the cone, (2) a plasma with density
proportional to Bg, and (3) a conical boundary on which the normal component of current
vanishes. An approximate, WKB-like solution for a propagating wave was obtained which is
accurate except when close to the origin. This WKB-like solution was applied to a particular
example of a flaring field where the boundary was a segment of a parabola of revolution.
To consider more general cases in which behavior closer to the origin may be required, or in
which reflected waves and higher mode generation may be important, it is necessary to find
the complete solution to I, equation (17) (rewritten as equation (1) below.) This we do in
the present paper.

In applications, it may be necessary to follow the solution over a large range of the
nondimensional radial coordinate x. The direct numerical approach to solving an initial
value problem by integrating the equation numerically, for example, using the Riinge-Kutta
method (Dahlquist and Bjorck 1974) does not work in the present case for the following
reason. There is a solution to the equation that grows exponentially with z. Consequently,
any error in the initial value, or in the numerical computation, eventually will be amplified
exponentially as z increases and will overshadow the desired solution. Our attempts to solve
the equation numerically on a PC in double precision (16 digits) failed for radial distances
(22 — 1) 2 20, and so a different approach is taken.

Instead of direct numerical integration, we find analytic functions which represent the
solutions to the equation. The usual special functions that arise in mathematical physics
(e.g., Bessel, Legendre and hypergeometric functions) are solutions to second-order differen-
tial equations. For the present fourth-order equation, no such previously obtained solutions
are available.

In Section II, we find four convergent series solutions by expanding about z = 0 using the
method of Frobenius (Morse and Feshbach 1953). Each of these four series is asymptotically
proportional to e for large x. However, for large z, equation (1) has four independent
solutions that approach e* and e**. For physical problems of interest we want incoming
and outgoing wave solutions (e**) which extend back to 2 = 0. Consequently we must

remove the exponentially growing components from the Frobenius solutions. This is done



by finding four linear combinations of the four series solutions which approach e*® and
et?  respectively, as ¢ — oo. In Section III, we obtain four asymptotic expansions for
the solutions to I, equation (17), in the form of series in inverse powers of the normalized
radial distance = (see I, preceding equation (17) for the definition of z) times e** or
et®. The range of validity in z is similar to the WKB-like solution in I. However, for
particular integer values of the eigenvalue ¢ (£ =4N,4N —1; N =0,1,2,...), the series
terminates after £ — 2 terms and the asymptotic result becomes exact for all z. In Section
IV, a double-integral representation of the solution is obtained. In Section V, by asymptotic
evaluation of the integral representation in the limit of large z, the connection between the
series expansion about z = 0 and the large-z asymptotic expansions is made. The general
solution is computed using the appropriate linear combination of the series solutions for
small = and the asymptotic expansion for large z. Results of the computation are shown

for an outgoing wave.

II. Power Series Expansion

To develop the power series representation of the solution to I equation (17), i.e.

d* L0+1) d?
L LR (1)
we assume that
H(z) = Z Azt (2)
n=0

and insert equation (2) in equation (1). For compactness, we have omitted the ¢ subscript
on Hy(z). It is assumed in equation (2) and henceforth that H(z), A,, and s depend on

£, without so indicating. The requirement that Ag # 0 provides four possible values for s:
(Sl, S2, 83, 84) - (ﬁ + 3, 1,0,2 - E) . (3)

Gathering the coefficients of equal powers of & and requiring that they vanish provides the

recursion relation
(n+s;sl)(n—|—3—52)(n+s—33)(n—|—3—s4)An = An—q . (4)
Setting Ao = 1, we may solve for A, provided ¢ does not take on the particular values
¢ = 4N +2,4N+3, or 2N -1 | (5)
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where N is a positive integer. With that restriction, we obtain the four independent solu-

tions:

s;,x) = x% SR F(1+(51“3i)/4) 1=z 4n
Hlose) = ;iﬂl P(n+1+(s;—si)/4) ™ (4> | "

Tl

Morse and Feshbach (1953) provide a straightforward but lengthy algorithm for calculating
H when £ takes on the values forbidden by equation (5). We will not repeat it here because,
since £ is a continuous variable and H is a continuous function for a given /£, those values are
easily avoided in any practical calculation, and their inclusion makes no significant difference
in the calculated value of the function. The series equation (6) converges in the finite z-
plane. For large x, the large n successive terms of each series approach every fourth term
in the series for e¢®. Consequently, it can be shown by comparison that all four series grow

exponentially.

III. Asymptotic Expansion

In the z — oo limit, equation (1) approaches the simpler fourth-order equation

d*H

dz?

- H =0 . (7)
Four independent solutions to this equation are
H(z) = e (8)

where p = 44, £ 1 is one of the four roots of p* = 1. The four roots correspond to an

outgoing wave, an incoming wave, exponential growth, and exponential decay, respectively.

To develop an asymptotic expansion for the solution to equation (1), first we assume a

form for the growing exponential solution, as =z — oo,
ul 1
n=0 z

where (M + 1) is an optimum number of terms used to represent H(z).

Substituting equation (9) in the differential equation (1) for H(z) yields the differential
equation for w(z),
d*w d*w (6 B f(ﬁ—l—l)) d*w +(4 26(5—{—1)) dw  {(£+1)

o TramE T 2|




Substituting the series in inverse powers of z from equation (9) in equation (10), and

equating terms with like powers of z, we get the recursion relation

Bo=1, Bi=——(— | Bzz—g(g?;;l) [12—¢e+1)] |
4nB, = [6n(n—1) = 6+1)]Buy — 2(n—2)[20(n—1) = £ +1)] B,_, (1)

—(n—2)(n—-3) [n(n—l) — E(é-}-l)]Bn_g for n>2

By computing the B, for integer values of ¢ using recursion relation (11), we find that
if /=4N —1 or 4N where N =1,2,3,..., then B, =0 for n > ¢ — 1. Consequently,
for these particular values of Z, the series in equation (11) terminates after a finite number
of terms. For these values of ¢, it yields an exact solution of equation (1) in the form of a
polynomial in 1/z times an exponential. This solution is valid for all . For other values
of ¢, the series does not terminate, and the expansion is only asymptotic to the solution. In
the computations described below, we find that truncating the asymptotic series after the
B, term, where n is the largest integer less than £, yields an accurate representation of the

solution for large z,i.e., z > (.

If p is one of the four roots of p* =1, and if H(z) is a solution of equation (1), then
H(pz) is also a solution. Consequently, four independent asymptotic solutions of equation
(1) are given by H(pz). We denote these four solutions by he1(z), hea(z), hes(z), and

hea(z). As an example, for £ =3,

R AN
hg,l(ib) = (1 -+ ;)6
3e
— 1 - = —iz
haa(2) ( :c) ‘
3
= (1~ 2}
haa() ( x) ¢
3\ -
haa(z) = (1 4 ;)e ° (12a)
and for £ =4,
5 B\ .
]’L4’1(.’L') = <]. + ? - ;) e
5 B\ .
h4,2(.’17) = (1 - '; - P)e



5 5
h4’3($) = <1 — ; -|- :U_2> e’”
5 5
haa(z) = (1 24 ;) — (12b)

Figure 1 shows the real and imaginary parts of the outgoing waves, hs1, hay, hz;, and

hgl.

’

Equations (12a) and (12b) indicate that all of the eight solutions diverge at 2 = 0. One
can construct an outgoing wave solution that does not become infinite at the origin, using

the solutions in (12a) and (12b), by taking the linear combinations

h3,5($) = h3,1 - ih3,4
h4,5(.’1,') = h4’1 + h4’4 . (120)

These are two outgoing waves for £ =3 and ¢ =4 that are finite at the origin. In fact, we

will show later that these are just two special cases of the general result that

hes = her + e /2 hea (12d)

1

is an outgoing wave, finite everywhere. In the large-z asymptotic limit, h,4 is exponentially

small, and consequently h;; and k.5 have the same asymptotic limit.

In figure 1, the real and imaginary parts of hes for ¢ = 3,4,7 and 8 are shown, along
with the corresponding hg; . Note that Re {h¢1} for £ =3 and 7, and I'm {he;} for £ =14
and 8 are not infinite at « = 0. This may be verified by multiplying the polynomials in
equations (12a) and (12b) by the series expansions of the exponentials, and substituting in

equation (12c).

Each of the convergent series solutions in equation (6) can be decomposed into a linear
combination of four functions, each of which approaches one of the four asymptotic solutions
eP” in the ¢ — oo limit. Similarly, each of these four functions can be expressed as a linear
combination of the four convergent series. If, for example, we wish to calculate the field of a
wave that is outgoing in the z — oo limit, we need to find this linear combination in order
to continue the asymptotic solution backward to z = 0. To do this, first we need to obtain
the asymptotic behavior of the four convergent series of equation (9) for large z. In the
next two sections, the linear combinations will be calculated by first finding a double-integral

representation of Hy(z), and then finding its asymptotic limit.
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IV. Integral Representation of H,(x)

We start with the two series for the ordinary and modified Bessel functions of order ¢

(Abramowitz and Stegun 1964), and define a new function, ®(¢,z), by

®(l,2) = 3 (2/2)7 [Je(2) + L(2)]

RS (z/2)™
- ,f;o )T +L+1) 7 (13)

where the (z/2)*" terms in the J, and I, series with n odd have canceled. We will use
two integral transforms of ®(¢,z) that will transform the sum in equation (13) into the sum

in equation (6).

First, we use a known integral representation of the Beta function (Abramowitz and

Stegun 1964):

P(p+5)T(a+})
I(p+q+1) ’

1
/0 P21 — )12t = B(p +3 5 g+t %) =

1

which is valid for p > — % , ¢ > — 5, and the duplication formula for the gamma function,

N@2p) = =222 T(p)T(p+ &)
to obtain
T(2p+1)7T (g + 1)

Fp+1)T(p+q+1)
Next, we define an integral transform of ®(¢,z) by

/1 P2 (1 — ) V2 dL = gl /207
0

1
U(a, b, y) = /Oq>(2a, yt!/4) (1 — )P /2712

1 .

o (y/2)" / =1/2 (1— t)b—l/? di
0

= (2n)! T(2n +2a + 1)

1/2 1) (3/2/8)%
= 7 (e+3) X W T(2n +2a+ 1) T(n+b+1) (15)

n=0
for b> — 1. The last equality in equation (15) was obtained using equation (14), with p = n
and ¢ = b to evaluate the integral. In equation (15) we have eliminated the unwanted (2n)!
that was present in the denominator of equation (13), and introduced the n! and T'(n+b5+1)

needed in the denominator of equation (6).



Finally, we define an integral transform of ¥(a,b,y) by

1
Qa,b,c,z) = / /s (a7b, $31/4) (1— 8)c—a—1/2 $%1/2 g

0

1
o ( 2/8) / n+a-1/2 (1 _ S)c—a—1/2 ds
w2 (b+ ) 2 v
= n!I'(2n+2a+ 1)T'(n + b+ 1)

o 1 N & (z/4)*
= 2 wr(b+5)1“(c—a+§>£n!p(n+a+1)r(n+b+l)F(n+c+l) 16)

for a>—32,b>—1, c—a>—1. The last equality in equation (16) was obtained using
equation (14), with p=n+a and g = ¢— a. In equation (16) we have eliminated the
I'(2n 4+ 2a 4 1) that was present in the denominator of equation (15), and obtained the final

two gamma functions, I'(n4+a+1) and I'(n+c¢+1), needed in the denominator of equation
(6)-

For convenience, we define H , which is the sum in equation (6) without the factors that

are independent of n:

: S (z/4)*

H(a,b,c,w) = nz:% n!F(n+a+1)F(n+b+1)F(n+c+1)

(17)

Combining equations (15) and (16), we have the double-integral representation for H ,

A~ —2a 1
H{a,b,c,z) = (f/‘l) 1 / $/2-1/2 (1— s)c—a—l/Z
27rF(b+ 5)I‘(c—a+§) 0
(/ $me/2=1/2 (] _ pyp=1/2 [Jh (x31/4t1/4) + I, ($81/4't1/4)] dt) ds (18)
for a>—-1 b>-L c—a>-1,

27 27 2

V. Asymptotic Behavior of Equation (6) for | X | — o0

Using the integral representation of equation (18) and the known large-argument asymptotic

behavior of the Bessel functions (Abramowitz and Stegun 1964),
J2a (:1:31/4 t1/4) ~ (ﬂ.x/g)—lh o—1/8 4=1/8 o ($51/4 s1/4 _ (a n i) W)

I, (wsl/4 751/4) ~ (2ﬂ_$)—1/2 s~ 1/84-1/8 exp (x31/4 t1/4)

8



for real arguments of Jy, and Is,, we can evaluate the asymptotic behavior of equation
(18) in the # — oo limit. The contribution to the integral from the I,, term grows
exponentially, whereas the contribution from J;, decreases with increasing z because of
the rapid oscillation of Jy,. Consequently, Ja, will not contribute to the leading term in
the asymptotic expansion and can be ignored. We have, therefore,
-3/2 ,,—1/2 ~2a
Habe,2) ~ r(?Z)Jr i)xr Ec(f/:l 3
2 2

1
</0 e B L <x31/4 t1/4) dt) ds . (19)

Furthermore, in the £ — oo limit, the major contribution to the double integral in equation

1
/ Sa/2—1/2(1 _ 8)0—@—1/2
0

(18) or (19) comes from the immediate vicinity of s =1, ¢ = 1. To obtain the leading term
in the asymptotic expansion, we can replace s*/27%/8 and $~%/2-5/8 by 1. (To find higher
order terms, we could expand about s =1 and ¢ = 1, but for our purposes we only need

this first term.)

Making a change of variables, s = u*, ¢t = v* we can make the additional simplifications,

(1—t)2 5 [4(1—v)] as v — 1
Introducing these change of variables and limiting forms in equation (19), we have

N —3/2 92a+2b+2c+1/2 ;. —2a—1/2 1 1
H(a,b,c,x) ~ d [ a=were ([ -0t e o) du
¢] 4]

T(b+ 1) T(c—a+})
(20)
To obtain the asymptotic limit of equation (20), we first evaluate the asymptotic limit of

the following integral in the f — oo limit:
1 6
/ (1—6)*ede = ptel / w*e™dw — BT (a+1) (21)
0 0

where 1—¢ = w/f, and the integral representation of the gamma function is used to obtain

the limit. Using equation (21) twice in succession in equation (20), as z — oo,
1 1 ,
/ (1 _ u)c—a—1/2 (/ (1 _ ’0) -1/2 eFw dv) du
0 0
1
— T (b + %) z=b-1/2 / (1 —w)s™o7 /2 eu gy
0

9



— T (b-{- %) r (c— a+ %) gtmhmelem (22)

Substituting equation (22) in equation (20),

H(a, b, c, LE) ~ 7‘.—-3/2 22a+26+2c+1/2 :C—a—b—c—3/2 e . (23)

In the derivation of equation (18), it was required that a > -3, b> -1 and c—a >
— 1. By making the correspondence between a, b, and ¢ in equation (17), and s; — s
in equations (3) and (6), we find that the inequalities can be satisfied for j = 1,2, and
3. But for the s; = s4 =2 — (¢ with £ > %, no selection of a, b, and c¢ satisfies the
inequalities, the integral representation for H diverges, and the derivation of equation (18)
in this case is not valid. However, by analytic continuation (Morse and Feshbach 1953) the
asymptotic result of equations (22) and (23) must be valid, even in this case. This must be
true because equation (20) is an analytic function of a, b, or ¢, which we have shown agrees

over a range of a, b, or ¢ with the leading term in the asymptotic expansion of Hy(z), but

1s itself analytic over all a, b, c.

Inserting the factors in equation (6) that were omitted from equation (17), and using the

result

a+b+c = s—% ,

obtained from equation (3), we have the asymptotic result as = — oo

H(s,z) = Cs¢€°

Cy = (271')_3/2223“11‘(14_ 8____2__3) I‘(1+ S_1> I‘(1+ i) [‘(1+ s+t-2

VI. Connecting the x = 0 and x = co Expansions

We now can find the four linear combinations of the four solutions to equation (6) around
z =0 that approach e (outgoing wave), e~* (incoming wave), e® (growing exponential),
and e™* (decaying exponential) as z — +oco. By exploiting the symmetry properties of
H (s, ) in equation (6), we may generalize the result of the previous section to deduce the
asymptotic behavior as ¢ — —oo, and £ioco from the behavior as z — +o0o. Equation

(6) may be written as

H(s,z) = z° F, (:}:4) . (25)

10



Since Fj is a function of z*, we see that

limg B (+%) = lim F(af) = lm £ () = JoCod o)
where C; is given by equation (24). Substituting equation (26) in equation (25),
lim H(s,z) = lim z°{z|™°C, el = €™, el
llzrkn H(s,z) = liir; |z |70 ekl = eFims/20 el

in which we have defined the phase of z in the range —n < (phase of z) < w. Using the
results in equation (27), we can write down the linear combination of the four asymptotic
solutions for |z | — oo that give the asymptotically correct H(s,z) along the positive and
negative real and imaginary axes:

'1|1II1 H(S IE) — Cs [e—-iws/2 eiz + eiﬂ's/2 e—ia: 4 &% + eirs e-—z] ) (28)
Denoting the analytic continuation of the four |z| — oo solutions e*®® and e*® in
equation (28) by hei(z), heg(z), hes(z), and hga(z), respectively, and deleting the

subscript /¢ for convenience, it follows that
H(s,z) = Cy[e7™ P hy(z) + €™/ hy(a) + ha(e) + €™ ha(z)| (29)

where, again, s can take on the four values, s; =¢+3, s =1, s3=0, and s4 =2 — £.
Equation (29) is a system of four equations that can be inverted to obtain hq, ks, hs, and

h4, which are each a linear combination of the four functions H (s;,z), j=1,2,3,4, and

which approach e, e e”, and e %, respectively, as z — oo.

Writing equation (29) in matrix form, we have

H({+3,2)/Cos gemimt/2 _jeimt/z 1 _eint hi(z)
H(l,z)/C —1 ? 1 -1 ha(z
aa/e | 0N I
H(2 _ f,» x) / 02_2 _eiwf/z _e—m/z 1 e—éﬂ'é h4(:c)
This matrix may be inverted and, after lengthy algebra, the result is
4
hi Z Aij H (sj,z) [ Cs; (31)

11



where

D =38 (cosn( + sin® %e + cos® %?) , (32)
and _ _
A B B i1A*
A* —B* B* —A
[4;5] = (33)
C B B C*
_E -B B -F |
where
A = 1—sin7r€—cos7r€—2sin%é—i(1—sin7r€+cos7r€+2cos%£)
B = 2(cos7r£+sin7r—e+cos7r—€
2 2 (34)
E = —2(1-sin 4 cos -
= - — sin 5 + cos 5
C = ——E(coswﬁ—isinwf)

The elements of the first row of the matrix (33), Aj;, i.e., the coefficients for computing
the outgoing wave, were found by applying the Gaussian elimination method to equations
(30). The other three rows were obtained from the first row by exploiting the symmetry
properties of H (s;, &), equation (27).

Writing out the expression for €* from equation (31), we have

lim hi(z) = €° = lim {i Ay H (5, x)/csj} . (35)

r— 00 r—00 .
J=1

Replacing ¢ by —z in equation (35), and using equation (27), we obtain

. 4 1
e = lim { > Ay H(sj, —2)/Cs, ¢ - —
4 - 1
= Jlim > Ay H(s;,2)/C - 5 (36)
7=1
so that we have ’
Agj = Ay €™ (37a)
In a similar manner,replacing by F ¢z in equation (35),
As; = Ayjeimeil? (37b)
A4j = Alj 6i7rsj/2 (37C)

12



Note that if £ > 2, hi(z), he(z), hs(z), and hy(z) all approach infinity as ¢ — 0,
because they each contain H (s4,) in their respective linear combinations of H (sy,z),
H (s3,2), H(s3,z), and H (s4,2). In particular, hi(z) ~€e® as 2 — oo, and hy(z) ~

constant x x2~¢

as ¢ — 0. We can construct a linear combination of hi(z) and he(z)
that is bounded at = 0. And since hy4(z) ~ e™* as = — oo, this combination is still
asymptotically an outgoing wave as z — oco. Denoting the outgoing wave that is bounded

at z =0 by hs(x), using equation (37c) with s; = 2—£, we have, after some manipulation,

hs(z) = hi(z) — ha(z) - Ara/Ass = hi(z) + ha(z) e™?

= B.l(1+z') G,

cos — — 17 + 2sin —
o 2

Hy(t+3, z) +( 7l ) 7r€) Hy(1,z)
2

M) H(0z) l : (38)

1 74
s 2 ° 2 Cp

where B is given in equation (34). Note that thereis no Hy(2—/, z) term in equation (38).

The solid curves in figure 2 display the real part of the outgoing wave hy;(z) for £ = 8.5,
computed from the linear combination of the four series Hy(s;, ) given in equations (31)-
(34). (This value of ¢ corresponds, according to I, equation (19), to a cone angle of 0, =
Jin/ (E + %) = .43 radians = 24°.) The computation was done on a 486 microcomputer
in double precision (16 digit accuracy) using a Microsoft Fortran 77 program. The gamma
functions were computed using the approximation derived by Lanczos (Press et al. 1994).
It is seen in figure 2a that the series computation breaks down for z < 32. The breakdown
occurs because we are computing a linear combination of the four functions H,(s;, ),
each of which is proportional to e = €** ~ 10', to obtain a quantity hy; (z) which is
~ 1. The dashed curve is computed from the asymptotic expansion, using the recursion
relation (11). It coincides with the linear combination of the Hy (s;,z) series over the range
25 5 x5 32 and extends the solution to arbitrarily large z. It breaks down, however,
for z < 2.5.

Figure 3 shows the result of the same computation for the function hgs s (z), which is
finite at = =0, obtained using equation (38), rather than for hgsi(z), which is infinite at
r = 0. At small z the computation using the linear combination of the H, (s;, z) series is
accurate, at large = the computation using the asymptotic expansions is accurate, and for

a very large intermediate range 2.5 < x < 32, they are both accurate representations of

13
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the solution. We have illustrated the computations in figures 2 and 3 for £ = 8.5 in order to
compare the computation using equations (31-34) and (38) for £ = 8.5 with the computation
using equations (9) and (11), shown previously in figure 1d, for the comparable value £ = §.
The results shown in figures 2 and 3 have the same general form as the results for hg,(z)
and hgs(z) in figure 1d, as one would expect. Below, we will show the dependence on ¢

over a wide range.

It should be noted that, although we have an exact solution in the form of a finite poly-
nomial times an exponential for special values of £ =3,4,7,8,11,12,..., the computation of
hes () from these solutions at small = presents computational difficulties. The finite value
of these functions hgs (z) at & = 0 is the result of a delicate cancellation of large terms in
the polynomial-exponential product solutions hg; and hy4. Consequently, the linear com-
bination of the four infinite series Hy (s;, ) is the method of choice for computing k5 ()

for large ¢ and small z.

For the most general problem that can be approximated by a sequence of contiguous
segments of truncated cones, as described in I, all four solutions Hy (s;, z), j=1,2,3,4, are
needed to satisfy boundary conditions between adjacent conical segments (or, equivalently,
all four solutions hy;(x)). We have not shown the results of numerical computations of
the functions H, (s;, ) because they are not very informative. The oscillations that we
have seen in the solutions as a function of z, although obviously present since they emerge
after performing the appropriate linear combinations, are totally obscured in the individual

H (s;, «) functions by the exponential growth present in each function.

In figure 4, the real and imaginary parts of the outgoing wave that is finite at = = 0,
he)s (z) are shown for 0 < £ < 28 and 0 < z < 30. The computations were done using
the linear combination (38) of the four series H, (s;, z) for 0 < z < 20 and the asymptotic
expansion for 20 < z < 30. We see that for £ = 0, the function settles down to its
asymptotic form e very quickly. (The solution for ¢ = 0, is just hgs(z) = € +e7%.)
For increasing £, it also approaches e'®, but only after oscillation-free intervals of & which
increase in length as £ increases (much like the behavior of the Bessel function J, (z), for
example, except that-in the present case the oscillation is undamped). There is a 7/2 phase
difference between the oscillation of the real and imaginary parts. In figure 5a and b, the real
and imaginary parts of gs5 (z) = d? hes (z) / da? are shown. According to I, equation (18),

ges () is required for calculating the radial component (along the axis of the cone) of the
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magnetic field, and together with h,5 (z) for calculating the two components (transverse to

the axis) of the electric field.
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