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       By suitably adding right- and left-hand circularly polarized helicon waves
in a cylinder, it is possible, in principle, to form linearly polarized modes, con-
trary to the notion that whistler waves must be circularly polarized.  The plane-
polarized component is accompanied by a left-hand circularly polarized com-
ponent which vanishes on axis but becomes important at large radii.  The field
lines of these two components and the energy deposition profile are computed
for an illustrative case.

I.  INTRODUCTION

Helicon wave sources are well known for producing high plasma densities suitable for
use in materials processing [1].  Though helicon waves are basically whistler waves, and
whistler waves traveling along a uniform magnetic field cannot be left-hand polarized, helicon
waves can have either circular polarization [2].  This is because bounded whistlers behave
differently from whistlers in an infinite plasma [3].  Since in most experiments a linearly po-
larized antenna is used—most often a Nagoya Type III antenna [4]—one might expect that
the mode that is excited would be a superposition of the right- and left-handed circularly po-
larized modes, forming a plane-polarized wave [5].  Recently, Kim et al. [6] reported detect-
ing such azimuthal standing waves in an experiment.  These have also been seen by Ellingboe
and Boswell [7], but in that experiment the standing waves were more prominent before the
onset of helicon waves than after.  The purpose of this paper is to show that plane-polarized
helicons are possible in theory.  For this purpose, we consider a uniform plasma without dissi-
pation, but the effects of damping and plasma profiles will be discussed.

II.  EQUATIONS

Consider an infinitely long plasma of uniform density n0 filling a conducting or insu-
lating cylinder of radius a in a uniform, coaxial magnetic field B0.  The well known solution
[2, 7] for the magnetic field B of helicon waves of angular frequency ω, azimuthal mode num-
ber m, and axial wave number k in this plasma is

B B B= +1 2                                                               (1)

where Bj satisfies

∇ × =B Bj j jβ ,        j = 1,2                                                   (2)

where
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Here ωc and ωp are the electron cyclotron and plasma frequencies, and we have adopted the
notation of a more recent paper [9].  For a uniform plasma, the components of B can be writ-
ten compactly in terms of Bessel functions:

B A k J T r k J T r er j j j m j j m j
i m kz t= + −− +

+ −( ) ( ) + ( ) ( )β β θ ω
1 1

( )

B iA k J T r k J T r ej j j m j j m j
i m kz t

θ
θ ωβ β= + − −− +
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    B iA T J T r ez j j j m j
i m kz t= − + −2 ( ) ( )θ ω ,        j = 1, 2 ,

where A is an arbitrary amplitude and the transverse wavenumber T is given by

T kj j
2 2 2= −β   .                                                           (6)

For the usual helicon wave, β  has the value β1 , the smaller of the two roots in Eq. (3).
The larger root, β2 , describes a cyclotron wave which is important only at low magnetic fields
B0.  For large B0, above about 500G, the cyclotron wave has such small radial wavelength that
it is likely to be damped out  within a short distance of the plasma surface.  For simplicity, we
consider, for the time being, the case B0 → ∞,  δ → 0, so that B2 can be neglected.  We
therefore take B = B1, β = β1, and T = T1,  suppressing the subscript 1.

To form a plane-polarized wave near the axis of the discharge, we can linearly super-
pose waves of positive and negative m.  Let these waves be denoted by B+ and B-, with am-
plitudes A+ and A-, respectively.  For given ωc, B0, n0, and k, we see from Eqs. (3) and (4) that
B+ and B- have the same values of β and T.  The combined waves will then have the form
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and similarly for Bθ and Bz.  Since the general case follows trivially, we can simplify the alge-
bra now by specifying m =  ±1.  Suppressing the factor exp i(kz - ωt), we now have for the
components of the total field
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3
Here we have used the relation J-m = (-1)mJm, and the arguments of the Bessel functions Jm are
understood to be Tr.   At r = 0, J2 vanishes and J0 = 1.  To form a plane-polarized field there
in, say, the x direction, we set

A A k k R+ − = − + ≡/ /β βb g b g .                                             (9)

Normalizing to A+(β + k) = 1, we see that Eq. (8) becomes
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The plane-polarized and circularly polarized components can be separated by adding and sub-
tracting a term (J0 + RJ2)exp(-iθ) in Br, and similarly in Bθ and Bz.   We then obtain

B J RJ J R R e

B J RJ iJ R R e

B TJ k i R e

r
i

i

z
i

= + + −

= − − + −

= + + −

− −

− −

− − −

( ) cos ( )

( ) sin ( )

( ) [ sin ( ) ]

0 2 2
1

0 2 2
1

1
1 1

2

2

2 2 1

θ

θ

β θ

θ

θ
θ

θ

                                (11)

Using the definitions in Eqs. (6) and (9) and reinserting the final exponential factor, we can
write the plane and circular components of Eq. (11) as follows:
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Circular:                     
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Here we have renormalized so that the plane-polarized component has unit amplitude on axis.

III.  COMPUTATIONS

Before the field shapes can be computed, the possible values of k  and, hence, of β
[Eq.(3)] and T [Eq.(6)]  have to be determined.  For a conducting cylinder, the boundary
conditions are Eθ = 0 and Ez = 0.  The latter is automatically satisfied if the conductivity is in-
finite, and then it follows from ∇ × E = iωB that Br = 0 at r = a.  From Eq. (10) we see that
the condition J0 + RJ2 = 0 leads to eigenvalues of k corresponding to different radial mades
with m = +1.  The condition  J0 + R-1J2 = 0 leads to different values of k for the m = -1 mode.
Thus Br cannot vanish at all θ for the same k unless |R| = 1, k = 0.  It is not possible to adjust
the amplitude ratio R to satisfy the boundary condition for the combined wave because R has
already been fixed by the condition of plane polarization on axis.  For an insulating cylinder,



4
the boundary condition in the helicon limit (δ → 0) is jr(a) = 0; and since ∇ × B =
µ0j, we again require Br(a) = 0, which is impossible.  The problem is not resolved if we allow
finite δ and the existence of the cyclotron wave B2.  In that case, Ez no longer vanishes, even
in the absence of dissipation, and the additional condition  Ez(a) = 0 again leads to different
eigenvalues of k for the m = +1 and m = -1 modes.  These values would give rise to a beat
pattern as the combined wave propagates along B0.  Fortunately, a recent study [9] has shown
that, at high magnetic fields, the eigenvalues of k for an insulating boundary are so closely
spaced that the spectrum of possible k’s is almost continuous.  This is because the amplitude
of the external wave in vacuum can adjust itself to satisfy the boundary condition.  Therefore,
we may pick an eigenvalue of k for the m = +1 mode, say, and assume that an m = -1 mode
with nearly the same value of k will exist.  The difference will be so small that the beat pattern
will not be detectable within the length of the apparatus.  These considerations apply only to
the ideal case.  When damping and plasma nonuniformity are considered, the k spectra will be
broadened anyway.

For illustrative purposes we have chosen the following parameters: B0 = 800 G, n0 =
1013 cm-3, a = 5 cm, f = 13.56 MHz.  The boundary condition Br

+(a) = 0 then leads to k =
0.336 cm-1 (18.7 cm wavelength) for the m = +1 component.  The condition Br

-(a) = 0 would
give k = 0.226 (27.8 cm wavelength) for the m = -1 component.  The beat wavelength for
these two modes would be 57 cm.  However, we would expect that the antenna’s k-spectrum
would dictate k-values which are much closer together than these, and that the dominant k-
value would be that of the dominant m = +1 mode.  The following graphs were therefore
computed for k = 0.336 cm-1.

Fig. 1 is the B-field pattern in a transverse plane for the plane-polarized component,
given by Eq. (12).  This pattern is stationary in the laboratory frame.  Fig. 2 shows the instan-
taneous B-field pattern for the circularly polarized component, given by Eq. (13).  This pattern
is left-hand polarized and rotates counterclockwise as viewed along B0.  This can be seen from
the exponential factor in Eq. (13).  On the other hand, at any given position (r,θ), the field
lines rotate clockwise as a function of time.  This can be seen by forming the linear combina-
tions BR = (Br - iBθ)/√2 and BL = (Br + iBθ)/√2, which represent the right- and left-hand po-
larized components of the vector B.  From  Eq. (13) we see that BL = 0.

Eqs. (12) and (13) show that the plane-polarized component has maximum amplitude
on axis whereas the circularly polarized component vanishes there.  As r increases, the circular
component becomes more important and it dominates at the edge.  This is shown in Fig. 3,
where the time-averaged field <|B|> is plotted against radius.  The plane-polarized component
has an average amplitude that depends on angle, while that of the rotating component, of
course, does not.

From Faraday’s Law one easily finds that the electric and magnetic field lines are per-
pendicular to each other in a transverse plane.  The electric field pattern corresponding to Fig.
1 is shown in Fig. 4.  The ionization produced by this m = ±1 mode may be azimuthally
asymmetric because the average energy deposition by the plane-polarized component will de-
pend on θ, while, of course, that of the circular component will not.  To compute this, we
note that the energy loss W is proportional to ηjz

2, where η is an effective resistivity [8], and jz

is essentially (β/µ0)Bz, as shown earlier.  Hence, W is proportional to Bz
2.  We are interested in

the asymmetric part of this, which is given by Eq. (12) for the plane-polarized component.
We see that W is maximum at θ = π/2 and Tr = 1.841, where J1(Tr) has its first maximum.
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The contours of W/Wmax = 0.9 and 0.5 are shown in Fig. 4, superposed on the E-field pattern.
If the E-field is excited by a Nagoya Type III antenna, we would expect the straight legs of
that antenna to be at θ  = ±π/2.  The asymmetric part of the energy deposition would, there-
fore, be aligned with the parallel legs of the antenna.  This contradicts the orientation reported
by Kim et al. [6], which is at 90° to this.  If that observation is confirmed, it would be difficult
to explain by any theory.

Kim et al. [6] have pointed out that quadrupolar antennas could excite m = ±2  pat-
terns, and indeed have reported seeing them.  The theoretical patterns for plane-polarized m
=±2 modes can be found from the general equations (5) and (7).  The result is
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Circular:                     
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The magnetic and electric field patterns of Eq. (14) are shown in Figs. 5 and 6.

IV.  CONCLUSION

We have shown that a plane-polarized helicon wave is in principle possible in a mag-
netized cylinder uniformly filled with plasma.  This wave must be accompanied by a left-hand
circularly polarized wave, which is of comparable magnitude at large radii but is small relative
to the plane-polarized component near the axis.  To satisfy conducting boundary conditions,
the right- and left-hand rotating components of the plane-polarized wave will have different
axial wavelengths, giving rise to a beating phenomenon.  An insulating boundary, however,
will permit both components to have nearly identical wavelengths.  These conclusions hold
even if the helicon waves are significantly coupled to electron cyclotron waves, as would oc-
cur at weak magnetic fields.  A small amount of damping would broaden the k-spectra enough
to allow both components to have the same wavelength.  Plane-polarized waves can also exist
in a nonuniform plasma, although the field patterns would not then be expressible in terms of
Bessel functions but must be computed using another formulation [10].

If  plane-polarized helicons are generated by a straight antenna of m = 1 symmetry,
such as a Nagoya Type III antenna, one would expect the asymmetric part of the energy
deposition to be aligned with the parallel legs of the antenna.  In practice, it may be difficult to
excite the m = +1 and m = -1 components with comparable amplitudes because antenna cou-
pling computations [11] show that the m = +1 mode is much more strongly excited than the m
= -1 mode if the density profile is peaked on axis.  Furthermore, it has been found that the m =
-1 mode is damped faster than the m = +1 mode as it propagates along B0 [12].  In view of
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these practical considerations, it is surprising that plane-polarized modes, though theoretically
possible, have been seen [6].
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FIGURE CAPTIONS

1.  Pattern of magnetic field lines for the plane-polarized component of a helicon wave com-
prising superposed m = +1 and m = -1 azimuthal modes.  Assumed parameters:  800 G,
1013 cm-3, 13.56 MHz, 5 cm radius.  This pattern is fixed with respect to the antenna.

2.  Same as Fig. 1, but for the circularly polarized component.  This pattern rotates in the
clockwise direction if B0 is out of the plane of the page.   The Bz component of the field is
not shown, and the line spacing is not indicative of the field strength.

3.  Relative time-averaged amplitudes of the plane and circularly polarized components.

4.  Electric field pattern corresponding to the mode shown in Fig. 1.  The broad lines are
contours of constant energy deposition (at 90% and 50% of maximum) for the plane-
polarized component.

5.  Magnetic field pattern for a plane-polarized m = 2 wave.

6.  Electric field pattern for a plane-polarized m = 2 wave.
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