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ABSTRACT

Helicon waves in a plasma confined by a cylinder are treated. The
undamped normal modes of the helicon (H) and Trivelpiece-Gould (TG)
waves have distinctly different wave patterns at high magnetic fields but at
low fields have similar patterns and therefore interact strongly. Damping of
these modes, their excitation by antennas, and the RF plasma absorption
efficiency are considered.  Nonuniform plasmas are treated by solving a
fourth order ordinary differential equation numerically.  A significant
difference between this and earlier codes which divide the plasma into
uniform shells is made clear. Excitation of the weakly damped H wave,
followed by conversion to the strongly damped TG wave which leads to
high helicon discharge efficiency, is examined for realistic density profiles.
A reason for the greater heating efficiency of the m = +1 versus the m = -1
mode for axially peaked profiles is provided.
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I.  INTRODUCTION

In Part I of this work1, which we rely on for the definition of common terms, the
undamped normal modes in a uniform, cylindrical plasma for

ω ω ω ωLH ce pe<< ≤ <<  (1)

are identified as helicon (H) and Trivelpiece-Gould (TG) waves, and their properties and
interactions were discussed. In Part II we discuss the excitation, by an external antenna, of
coupled H and TG waves in a radially nonuniform, collisional plasma.  Though the antenna
is finite in length, the plasma is infinitely long, and the entire system is bounded by a
concentric conducting cylinder.

In the uniform-density case, H waves penetrate to the center of the plasma but are
very weakly damped by collisions, and hence are an unlikely channel for the strong RF
absorption observed in helicon plasmas2.  In order to meet the boundary conditions, TG
waves must be present at the plasma surface.  The required TG field amplitudes are
usually small and hence are hard to measure, but their currents, which are proportional to
∇∇ × B, can be quite large because their transverse wave number is typically much larger
than for the H waves.   Large net currents then occur which are strongly damped by
collisions.  Usually, the energy deposition occurs primarily near the surface, since the TG
amplitudes decrease rapidly away from the antenna.  This mechanism of absorption via
mode coupling was pointed out by Shamrai et al3 but was treated only in uniform plasmas.
Further discussion of  the results of neglecting TG wave is provided at the end of Sec. III.

For a nonuniform plasma with a more realistic density profile, coupling between
the H and TG waves occurs throughout the plasma volume, resulting in more uniform
heating.  Inclusion of the density gradient terms results in a fourth order differential
equation for the wave fields which must be solved numerically.  Many previous authors
treated antenna coupling without considering the TG waves2,4, thereby missing their
critical contributions.   Other authors approximated the density variation with a series of
constant-density shells6,7.  In doing this, they used the exact constant-density solution in
each shell and required that the fields be continuous at the interfaces, thus neglecting the
charges and currents there.  In this work, we derive analytic expressions for the density-
gradient terms and find that these terms are essential to the mode-coupling mechanism
(our results reproduce those of previous authors8 when TG waves may be neglected).
These effects could have been included in the shell model if the proper boundary
conditions had been used.  In Sec. IV, we give numerical results illustrating the difference
between our result and that obtained by using, for the example the approach used in the
ANTENA code6,7 .  We also explore the moderate magnetic field in detail.  In Sec. V, a
summary of our main conclusions is presented.

In this paper, the problem is divided into two parts.  In Sec. II, the antenna
currents are related to the fields on the plasma surface; in Sec. III, these surface fields are
related to those in the interior by using the cold-plasma dielectric representation of the
plasma.  Finite-temperature effects in the direction parallel to the dc magnetic field B0,
such as Landau damping, can be included by using a kinetic form of the dielectric element
εzz

9; but since the equilibrium configuration is nonuniform in the radial direction, such
kinetic effects as finite Larmor radius cannot be readily included.  For relatively flat
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density profiles, this method of solution enables us to distinguish the H and TG waves and
thus to compare our results to those obtained by more approximate methods.  Solving the
plasma equations is by far the most time consuming part of the computation.  Once that is
done, we may rapidly explore a wide variety of antenna designs using the relationship of
the antenna currents to the plasma surface fields to optimize the coupling.

As an illustration of the method we shall explore in detail the following
representative case:
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(where n0  is the plasma density on the axis and a is the plasma radius) for a variety of
density profiles, antennas, and azimuthal mode numbers m.  The antenna wires are
assumed to lie on a cylinder of radius b, and a conducting wall of radius c surrounds the
system, as shown in Fig. 1; but, as we shall show, the major physical effects present in
most experiments can be adequately illustrated by taking b = a and c → ∞.  For fields B0

higher than about 800 G, the numerical computations become cumbersome, and for those
cases we have devised a more convenient method, which will be presented in a subsequent
publication.  Note that the plasma parameters are assumed given; the problem of discharge
equilibrium, in which the density profiles and thermal distributions are found self-
consistently, is not considered here.

II. ANTENNA COUPLING
The plasma and conducting cylinder surrounding it are assumed to be uniform in

the azimuthal (φ ) and axial (z) directions, where z is the direction of B0.  We can therefore
use Fourier transforms in these directions. We assume that the system is sufficiently long,
and the k spectrum sufficiently dense, to use a Fourier integral in the z direction.  Each
component of an arbitrary vector V is then given by

V r z dk V r m k e
j j

i m k z

m
( , , ) ( , , ) ( )φ

π
φ= +

= −∞

∞

−∞

∞

∑∫
1

2
                                 (3)

where

                               V r m k dz
d

V r z ej j

i m k z( , , ) ( , , ) ( )= ∫∫
−∞

∞
− +

φ
π

φ
π

φ

20

2

.                                  (4)

The underline denotes field quantities in real space.  The antenna current density has the
form J K( , , ) ( ) ( , )r z r b zφ δ φ= − and the fourier transform of K( , )φ z  is K( , )m k .  We

assume that  the electrostatic fields are shielded from the plasma so that 

∇⋅ = = −J 0,    and hence     K m k
m

bk
K m kz ( , ) ( , )φ                             (5)

Though the formalism is general, we confine our attention to m = 0, +1 and -1 waves
excited by  the simple loop antenna, the two antennas shown in Fig. 2, and a single turn
double helix.  For I0 amperes the transform for a loop is Kφ = I0 for m = 0, and zero
otherwise. For helices the transforms are zero for m even, and for m odd are
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Fractional helix:  K I
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Integral t-turn helix: K I
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where L is the antenna length and θ  is half the twist angle from one end to the other.  The
k dependence of |Kφ|

2, proportional to antenna power, is shown in Fig. 3 for an m = 1
Nagoya Type III (N3, θ = 0), a half-helical (HH, θ = π/2) and a one-turn helical (H1, t =
1) antenna.  Their lengths are 0.12 m, 0.20 m and 0.30 m, respectively, selected to
maximize |Kφ|

2 at k = 26 m-1 for each.  For these values the antenna spectra have a
forward-to-back peak power ratio of about 1:1, 10:1 and 34:1, respectively.

For perturbations varying as exp[i(mφ + kz - ωt)] in a radially nonuniform plasma,
Maxwell’s equations can be written as

∇ × =

∇ × = − ⋅

E B

B E

i

i c r

ω

ω( / ) ( )2 εε
 (7)

With the two divergence constraints, these constitute four scalar equations which can be
reduced to a fourth-order ordinary differential equation (ODE) for any field component
(see Sec. III). For a nonsingular density profile there are four independent solutions, of
which two are singular at the origin.  There are therefore two independent sets of physical
basis functions, which we denote by lower case letters and the subscripts 1 and 2.  For a
constant density profile they are the H and TG modes described using Bessel functions in
Part I1. For arbitrary density profiles, these basis functions have to be found numerically.
As the density profile is gradually distorted to approach a more realistic shape, the
solutions gradually become transformed.  For each component Vi of any wave quantity
(e.g., E, B, or J) we have

V A Ai i i= −1 1 2 2v v, , ,                                                    (8)

with amplitudes A1 and -A2 to be determined.  For instance,

E A e A e B A b A br r r= − = −1 1 2 2 1 1 2 2, , , ,, φ φ φ , etc.                            (9)

In vacuum, the basis functions are Km(Tr) and Im(Tr), with T k k2 2
0
2= − , where k0 ≡ ω/c.

Since there are two vacuum regions (plasma-antenna and antenna-wall), with two basis
functions and two waves (TE and TM) in each, there are eight coefficients to be
determined there.  Together with A1 and A2 in the plasma, we have a total of 10 unknown
constants to describe the fields.  The tangential electric field is continuous at the three
boundaries, yielding six conditions.  The tangential magnetic field is continuous at the
plasma surface but undergoes a jump across the antenna shell.  There are therefore 10
boundary conditions to determine the 10 unknown constants.  These algebraic equations
are readily solved, and the result is conveniently expressed in the following form:
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Here the subscript n is 1 for the H-like wave and 2 for the TG-like wave, m is the
azimuthal mode number, bn,i , en,i and jn,i are the basis functions for the magnetic and
electric fields and the current, and the prime (′) stands for differentiation with respect to
the argument of the Bessel function.

We see from Eq. (10) that the solution is composed of three parts.  First, the fields
are proportional to the Fourier transform Kφ of the antenna current.  Second, they are
inversely proportional to the dispersion function D, which is independent of the antenna
properties.  In the absence of damping, the equation D = 0 gives precisely the dispersion
relation for coupled H and TG modes discussed in Part I.  Third, the numerator of Eq.
(10) gives the radial variation of the fields and consists of the basis functions multiplied by
the amplitudes Hi, which depend only on the values of the fields on the plasma surface and
on the geometric functions p, q, and ρ.  Once the basis functions have been computed for
a given density profile, the evaluation of Eq. (10) can be completed rapidly for any
antenna configuration.

For most cases of interest k0 << k and T, and consequently in Eq. (11) we may
neglect the displacement current (in square brackets), the second term in the expression
for Hn and the magnetic field term in the equation for Gn.  However, for a very small gap,
d = c - a, between the plasma and the wall, qm becomes very large, requiring the inclusion
of en,z in the equation for Gn, with the result that radial currents need not vanish at the
plasma surface, as they may be closed by displacement currents.  In the limit c → a we
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expand qm in powers of d and find that we may neglect the displacement current
contribution to Gn for kd much large than the ratio of the axial displacement current to the
radial current at the surface, i. e., for

kd
e

j
c

p

k

kw

n z

n r
>> → =

ωε ωω

ω
0

2
0
2

2
,

,
                                                (13)

where the arrow denotes the approximate value of the expression for a constant density
profile.  As defined in Part I, kw is the whistler wavenumber in an unbounded medium.
Equation (13) is satisfied for most cases of interest and will henceforward be assumed
valid.  Equations (10) and (11) may therefore be simplified considerably as follows

V r
j a r j a r

D a c k

bk

a k
p a b c k Ki

r i r i

m( )
( ) ( ) ( ) ( )

( , , ) | |
( , , , ), , , ,=

− 
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0
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µ φ ,               (14)

where
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n n r m n z

( ,b, , ) ( ) ,

( ) ,

| |
( , , , ) .

,

, ,

≡
=

= − +

(15)

Now the insulating-boundary condition, Jr(a) = 0, is automatically satisfied.  From Eq.
(14) the condition for anti-resonance (i.e., the production of a pure H or pure TG wave)
can be generalized to

j an r, ( ) = 0 . (16)

This is equivalent to the Shamrai et al3 result for constant density, bn,r(a) = 0, since for that
case µ0jn = βnbn, where βn is the total wave number (see Part I).

In Part I we found that, when a uniform, collisionless plasma is in contact with a
conducting boundary, the H and TG waves can satisfy the boundary conditions
independently, since the Ez condition is automatically satisfied. Shamrai et al3, have
pointed out that the H and TG modes are decoupled if d =c - a < dcrit.   We can now
generalize their result by first rewriting the dispersion function in the form

D i b j b j p a a c k b j b jr r r r m z r z r= − − + −( ) ( , , , )( ), , , , , , , ,1 2 2 1 1 2 2 1 .                        (17)

From Eq. (12), we find that for d << 1/k ≤ a, pm(a,a,c,k) has the following limit:

p a a c k m k a kdm ( , , , ) ( / ) ,→ − + <<1 12 2 2                                    (18)

allowing us to neglect the last two terms in Eq. (17).  If, furthermore

k k kw r r c>> = =min , /2 δ δ ω ω where , the transverse wavenumber of the TG wave

greatly exceeds that of the H wave.  Since jn depends on bn roughly as µ0j ≈ βb, the
second term in Eq. (17) is much smaller than the first term, and we obtain for d sufficiently
small

D ib jr r≅ − 1 2, , .                                                           (19)
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Consequently the dispersion relation factors and the H and TG waves are decoupled for
small gaps d.  For a constant density profile the condition on d can be estimated as

d

a

k

k

ka

m k aw

<<
+







2

2 2 2 2
,                                                   (20)

which reproduces the Shamrai et al3 criterion for decoupling the modes.  The right hand
side of Eq. (20) increases monotonically with k.  Substituting kmin for k, we find that for
the parameters of Eq. (2), for example, Eq. (20) requires that d/a << 0.1 for the modes to
decouple.

III.  Plasma Field Calculation
We now compute the basis vector b (e and j are readily derived from b using

Maxwell’s equations) for plasmas with arbitrary radial density variations.  In Part I we
inverted the dielectric tensor to obtain E as a function of J. Eliminating E and J from
Maxwell’s equations, we obtain

[ ]{ }k ic h d0
2B B z B z z B= ∇ × ∇ × + × ∇ × + × × ∇ ×α α α$ ( ) $ $ ( ) .                 (21)

In the Appendix, Eq. (21) is reduced to a fourth-order ODE for the general case.  Here we
derive the result for the much simpler case relevant to most laboratory helicon waves by
neglecting ion motions and displacement currents.  Following Part I,  we have

α ωω ω α α δ αh c p w c h dk k= = = − =/ / ,2
0
2 2 0,  ,                 (22)

where the α’s now vary with radius.   Using

∇ × × ∇ × = − ∇ ×$ ( ) ( )z B Bik ,                                        (23)

we obtain

δ δ∇ × ∇ × − ∇ × + = − × ∇ × + ∇ ×B B B r B B zk k u r iw r
2

0( ) $ ( ) ( ) $              (24)

where

δ
ω
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ν ν
ω

δ
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α
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en ei

c
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h
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n r

n r

1 10

0

0

, ,

( )

( )
.and =

                   (25)

Note that δ ∗  of Part I has been replaced by δ.  For constant density, u(r) vanishes, and
Eq.(24) reduces to Eq. (10) of Part I.  If the plasma is divided into constant-density shells,
the terms proportional to u(r) become delta-functions at the interfaces, representing
charges and currents accumulating there from charged-particle motions along the magnetic
field.  The resulting jumps in boundary values are neglected in codes such as the
ANTENA code6,7.  These effects can be evaluated simply by comparing the solution of Eq.
(24) to that obtained by neglecting its right-hand-side.  To solve Eq. (24), we first write
the r component and eliminate Bz  using ∇ ⋅⋅ ΒΒ = 0.  The result is
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where 
~
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Note that by solving Eq. (26) for Bφ and substituting it in Eq. (27) we get a fourth-order
ODE for Br.  The equations are invariant for k k m -m→ − → but not for .   It is therefore
sufficient to integrate the equations only for  positive k for each m.  The non-singular
solutions to Eqs. (26) and (27) are denoted b1 and b2, distinguished by their behavior near
the axis. The integration of the equations begins at the first radial step from the origin
where  two different sets of values and derivatives are used which correspond to the H and
TG solutions for a uniform plasma on the axis.  Two independent solutions are thereby
assured which would reduce to the usual H and TG solutions if a flat density profile were
chosen.

The power transferred to the plasma is

P d r
I

R iXplasma A A= ⋅ = +∗∫
1

2 2
3 0

2

E J
| |

( )  ,                                   (28)

where the integral is over the plasma volume, RA is the antenna plasma resistance, and XA

its reactance.  It differs from the Antenna Resistance9, proportional to half the volume
integral of E J∗ ⋅ Antenna , by the flux of wave power escaping from the cylinder at infinity and
is directly relevant to calculations of the plasma equilibrium.  For plasmas which satisfy the
conditions of Eq. (1) we express the electric field in terms of the current as in Eq. (I.13)
and integrate Eq. (28) to obtain the power distribution as a function of r or z, for one
ampere of antenna current.  Defining P r m r± ( , )∆  to be the power absorbed in an axially

infinite, cylindrical shell of radius r and thickness ∆r, from waves of mode m traveling in
the +z direction, and P z m zz( , )∆ to be the power absorbed in a plasma cross section of

thickness ∆z at the location z, we have:
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The antenna plasma resistance and the part due to each m-mode are:

R m R m R m R m rdrP r mA

a

( ) ( ) ( ) , ( ) ( , )= + =+ − ± ±∫2
0

.               (30)
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Similarly, the reactance is
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It is also useful, particularly for calculating the optimal antenna length, to define a spectral
antenna plasma resistance Pk(k,m,L) and factor it into the “specific” (i.e., independent of
antenna) power density Sk and antenna power density pA as follows:
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Rearranging Eq. (14) for Vi = Ji, for example, it is now possible to make some
general comments about the effects of neglecting TG waves by setting Ez = 0 and
including only the Hall terms2,4 D (i.e., me = 0) or the Hall and transverse field diagonal
terms5 S in the dielectric tensor (i.e., me finite but P → ∞).  This will facilitate the
comparison of our results with those of previous authors2,5,9.  The general expression is

J j
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where

Γm
r

a
F

j a
( )

( ),

= 2

2

. (34)

Repeating the derivation of Eq. (14) assuming Ez = 0, we obtain the same result but
without the terms proportional to Γm(a) and j1,r(a) in Eq. (33).  Thus, the transverse
electric assumption along with the anti-resonance condition, which in this case is the same
as  the insulating boundary condition, results in the same field shapes as those predicted
here but with amplitudes modified by the additional term in the spatially constant
denominator.  At high magnetic field, δ approaches zero, Eq. (24) becomes singular, and
Eqs. (26) and (27) become redundant.  In this limit the surviving set of solutions describe
the helicon waves.   The TG solutions are recovered by expanding B in a power series in
me,

B A=










=

∞

∑exp i
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n e
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in Eqs. (23) and (24), and equating the coefficients of each power of me to zero.  For

exp Im
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the first order result is
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where we represent an arbitrary vector V by {Vr, Vφ, Vz}.  For the plasma described by Eq.
(2) the exponent in Eq. (36) is of order 1, the approximation is not valid, and the H and
TG waves are coupled, requiring the calculations of the next section for description.  At
higher magnetic fields and densities (e.g., B0 = 1kG and n0 ~ 1013 cm-3) Eq. (36) is well
satisfied.  Using Eq. (37) in Eqs. (33) and (34), we can make three main observations: 1)
the term Γm(a) has an imaginary part which is large compared to that of  F1, thereby
spoiling the narrow resonances of the of the H wave; 2) the amplitude of the TG wave
decays inward from the plasma edge with a skin depth of the order of ωδr/(kν);  and 3) the
TG currents on the surface ( jφ and jz) are larger than the radial current (jr) by factor of
order δ.  Since the H current components are all of the same order and the radial
component cancels that of the TG wave at the surface, the surface components of the
current are dominated by the TG waves near the surface.  In calculating the antenna
plasma resistance the currents are squared and integrated.  The integral of the exponential
function is proportional to δ, and hence the transverse TG currents dominate the total
absorption by a net factor of 1/δ on the surface.  This result was obtained by Shamrai et al3

in their analysis of the exact solutions for constant density.  For axially peaked plasma
density profiles the reduced surface density shifts the balance of heating to the helicon
waves near the axis as we will see in the sequence of radial heating profiles in Fig. 14.

For a constant density the transverse electric helicon field solutions are also Bessel
functions.  We have calculated the antenna plasma resistance in that approximation for
several antenna configurations, varying B0 about 1kG and n0 about 1013 cm-3.  In each case
the transverse electric wavenumber spectral resonances were significantly sharper and
higher than that for the exact solution but the skirts of the resonances were lower.  As a
result we discerned no clear pattern of relative size of the antenna plasma resistances for
the two approaches.

IV.  Calculations
We explore antenna coupling for the plasma parameters of Eq. (2) using a

parameterization of the density profile used earlier8.

n s t r n
r

w

s t

( , , ) = − 















0 1 .                                              (38)

To avoid numerical difficulties when n(a) = 0, w is chosen so that n(s,t,a) = 0.01n0.  Exact
Bessel function solutions are used for a constant-density profile. Some other profiles used
are shown in Fig. 4a.  The (s,t) = (2,10) profile is similar to a gaussian.  In Part I we
learned that for a given constant density there is a range of axial wave numbers for which
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helicon waves can propagate.  Figure 4b shows how the range of locally propagating k
values would shrink as the density decreases with radius for a parabolic profile.  For a
fixed k, helicon waves can propagate for

r k r r kmin max( ) ( )< < (39)

where the limiting radii are solutions of k k r rwmin ( ) ( )= 2 δ  and k k r rwmax ( ) / ( )= −1 δ .

The TG waves propagate for r > rmin(k).  The waves are strongly coupled near rmin(k).

The fields depend on the antenna location through the multiplicative function pm.
To simplify the results without losing the major physical effects, we now set b = a, so that
the antenna is at the plasma boundary.  The function pm(a,a,c,k) is shown in Fig. 5 for a
typical range of parameters.  For the cases considered, the major spectral contributions
occur for 2 > ka > 0.8.  As long as c/a > 1.5, we see from Fig. 5 that we may take c/a →
∞ with little qualitative difference in the results.  The examples which follow were
therefore computed with b = a and c → ∞.

The results in the following figures are labeled with the notation XX(s,t,m), where
s and t specify the density profile, m the azimuthal mode number, and XX is L for a single
loop or N3, HH or H1 for the three antennas of Fig. 3.

A.  Effect of the density gradient term u(r)
The importance of the density-gradient terms in Eq. (24) is illustrated in Figs. 6

and 7, which compare the solutions with and without u(r) for a near uniform profile
HH(10,1,1) and for a parabolic profile HH(2,1,1).  There are also clear differences in the
spectral amplitudes of the A1 (H) and A2 (TG) basis functions (not shown).  The u(r) = 0
amplitudes are larger and show a greater preference for the shorter wavelength (larger k)
mode.  Differences in the radial power deposition profiles are particularly pronounced,
with the u(r) = 0 solution predicting greatly increased heating of the surface.  For (s,t) =
(10,1) the exact and u(r) = 0 antenna plasma resistances are 1.3 Ω and 4.6 Ω,
respectively.  For (2,1) they are 2.2 Ω and 8.5 Ω respectively, compared with
experimental values of the order of 2 Ω.

B.  Variation with density profile
Figures 8a through 8d  show the variation of spectral amplitudes through a

succession of progressively more peaked density profiles corresponding to those shown in
Fig. 4a.  Note that the H and TG basis functions are normalized to common values on the
axis.  The TG functions will often increase exponentially to the plasma surface.  Since the
H and TG radial currents balance at the surface, the TG amplitude A2 must be
correspondingly small.  The |A2| traces in these figures should therefore be interpreted with
respect to shape and relative magnitude from figure to figure but not compared to the |A1|
traces without further calculation.  In the constant density profile case we see two peaks
(for k > 0), at k ~ 23 /m and k ~ 32 /m, that are broadened to overlap by collisions and
coupling between the waves which modify the resonant denominator. As the density
becomes more peaked the amplitude of the shorter wavelength resonance increases
significantly with respect to the longer one. We might anticipate this from Fig. 4b since, as
k increases, integration of the equation for the helicon basis function employs a larger
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evanescent distance between rmax and the surface.  Consequently, j1,r(a)/j2,r(a) is reduced
and hence, by Eq. (14),  |A1(k)| is increased.  The magnitude of the helicon basis function
is reduced near the surface leading to good penetration.  This effect is a variation of the
anti-resonance phenomenon.  For all profiles the H wave amplitude exceeds the TG wave
amplitude by about an order of magnitude.  The TG currents are still important, however,
since they are approximately proportional to k⊥  times the magnetic field, and over much
of the spectrum k⊥  is much larger for the TG than the H wave.

In Fig. 9 the magnitudes of the azimuthal magnetic fields of H and TG waves, as
well as their phased sums, are shown as a function of radius for the  various density
profiles shown in Fig. 5a.  They were computed for k = 32 /m, where we expect the H and
TG waves to be well separated.  The TG wave magnitudes are uniformly smaller than the
H wave, and the TG wave decays inward from the surface for the more uniform density
profiles but penetrates to the axis for the more centrally peaked profiles.  To lowest
approximation the fields are well represented by the H wave alone, which supports our
identification of the two independent solutions (distinguished by their behavior on the axis)
as H and TG waves.  Oscillations of the TG waves are not directly apparent because the
magnitude is plotted, but they can be seen in the perturbation of the total field.  In Fig. 10
the azimuthal field magnitudes are shown for k = 23 /m where we expect, from Fig. 4b and
the constant density k - β diagram discussion of Part I, that the H and TG waves are
strongly coupled near the axis.  Indeed, for the more uniform profiles the two solutions
retain the H and TG structure; but for the more centrally peaked profiles, strong coupling
is apparent.  In Figs. 11 and 12 we see that the magnitudes of the H and TG azimuthal
currents,  computed at the two spectral peaks, are comparable for all profiles.  Near the
surface they tend to oppose each other and leave a significantly reduced net field.  Since
E ∝ εε−1

•J, the net electric field will also be sensitive to the presence of the TG wave.

C.  Differences between m = +1 and m = -1 modes
Poor excitation of negative m modes has been observed experimentally10,11.

Kamenski and Borg5, using a transverse electric analysis of a high magnetic field and high
density plasma including only helicon waves, have suggested that this is due to the
narrowness of realistic plasma profiles and difficulty of wave penetration.  They perform a
WKB analysis and attribute the effect, at least in part, to the narrowness of the
transparency region. This argument does not necessarily apply in our lower magnetic field
case since the TG waves have a wider transparency region.  Variation of antenna plasma
resistance with profile is shown in Fig. 13 for a 20 cm HH antenna and m = +1 and m = -1
waves.  There is not much variation for the m = +1 waves.  The m = -1 plasma resistance
is comparable to or larger than the m = +1 case for near uniform profiles but the plasma
resistance drops significantly as the profile becomes more centrally peaked.  Fig. 14(a)
shows the absorption profiles as a function of radius for two nearly uniform density
profiles for m = 1 and m = -1 waves. In the constant density case the energy deposition
rises rapidly with increasing radius to a maximum at the surface.  For the more realistic
profiles, the density gradient term u(r) and the expanded evanescent region causes a
reduction of surface current and a downturn in the absorption just below the surface.  The
indicated antenna plasma resistances are roughly comparable.   Fig. 14(b) shows the
absorption profiles for two more centrally peaked density  profiles.  As the density
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becomes more peaked, the absorption becomes larger on axis for the m = 1 wave, giving
an almost uniform deposition profile, while it decreases on axis for the m = -1 waves.  To
gain insight into the reasons for this, we show in Fig. 14c spectral antenna plasma
resistances for m = (+/-)1 for a near uniform density profile and the m = 1 resistance for a
sharply peaked density profile.  The m = -1 sharply peaked density resistance is too small
to be seen on the same graph.  For the near uniform profile , the m = +1 mode has a large
peak at k = 36 m-1 corresponding to the lowest radial mode, and a small peak at k = 21 m-1

corresponding to the second radial mode. The m = -1 mode has large peaks at
k = −22 m-1  and k = -18 m-1 and no significant peak at larger k.  This is not unexpected
since the m = -1 mode has a narrower profile than the m = +1 mode8, and therefor a
larger k⊥ .  According to the basic whistler dispersion relation (Part I, Eq. (23)), the
corresponding value of k (i.e., k||) is therefor smaller.  As discussed in Sec. IV B for m =
+1 waves, when the density profile becomes more peaked the large k peak is increased and
there is better penetration of the large k helicon fields.  Since the TG field decays inward
from the surface a larger net current obtains on axis and more uniform heating results.
For the small k m = -1 peak and a more peaked density profile the fields are reduced
without benefit of this anti-resonance phenomena.  In addition, as the density becomes
more peaked for m = -1 the peaks shift to smaller k (as occurs in the constant density for
reduced density or radius) which less than the local kmin for much of the radius.

D. Variation with antennas and wave polarization
Figures 15(a) - (d) show the magnitude of the H and TG amplitudes for a parabolic

density profile and a 20 cm HH antenna with m = +1, for a 12 cm N3 and an L antenna.
These lengths were chosen to give spectral peaks at the same value of k (Fig. 3).  The
HH(2,1,-1) system has a much broader, lower helicon amplitude than the HH(2,1,+1)
case.  The N3 antenna spectrum is similar to that of the HH antenna but with reduced
amplitude.  The symmetric L antenna m = 0 spectrum displays a very narrow long-
wavelength resonance with an amplitude comparable to the peak of the HH(2,1,+1)
resonance.  The antenna plasma resistance RA and the contribution to it from +z and -z
propagating waves are given in Table I.  Note that the N3 and L antennas generate equal
amplitude waves propagating in the forward and back directions.  The corresponding
absorption profiles are shown in Fig. 16. The HH(2,1,+1) antenna has the strongest
coupling but the L antenna plasma resistance is only 30% smaller.  However, the HH
antenna delivers almost three times the power of the L antenna to waves propagating in
the +z direction. In contrast to the other three arrangements, the L antenna delivers a
much larger fraction of its power to the center of the discharge. If power going into the -z
direction is not desired while taking advantage of the L antenna axial heating a solid or
magnetic blocker may be used12.

E. Variation with z
Although investigation of the fields in k-space is useful in developing physical

models, it is necessary to invert their Fourier transforms to relate them to configuration
space where measurements are made.  The real part and phase of Bz as a function of z at r
= 1 cm are shown for the conditions HH(2,1,+1) in Fig. 17a (note that the antenna is
20cm long and centered at the origin).  The real part of Bz has the appearance of a
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sinusoidal wave propagating away from the antenna with a greater amplitude in the +z
direction.  Despite the broad spectrum with two sets of overlapping peaks in each
direction shown in Fig. 15(a), the phase variations outside the antenna are close to linear,
with measured +z and -z wavelengths of about 24 cm and 21 cm, or k ~ +26/m and -30/m,
respectively.  The real part of Bz for HH(2,1,-1), shown in Fig. 17(b), appears to be a
damped wave propagating in the +z direction, and a very long wavelength wave in the -z
direction.  This is confirmed in the phase plot, which has a poorly defined but suggestive
variation in the +z direction and a linear phase variation in the -z direction corresponding
to λ ~ 40 cm, or k ~ 16 /m.  The linearity of the phase plot for -z is surprising in view of
the width of the spectrum shown in Fig. 15(b). Only the very long wavelength relative
peaks in the H and TG spectra contribute coherently to the Bz field in real space.  The
power absorbed per axial length as a function of z for HH(2,1,1) is shown in Fig. 18.  The
axial absorption is largest under the antenna, but only about 20% of the total power is
absorbed there.

F. Radial wave profiles
The radial variation of  the total magnetic field and its H and TG components at z

= 20 cm is shown in Fig. 19.  Except  near the surface, the total field follows the H field
quite closely.  The corresponding graphs of the currents are shown for the same location

in Fig. 20.  The total Jr and Jφ are also dominated by the H wave contribution except near
the surface.  These results suggest a reason for the good agreement between  experiments
and theories which take only H waves into account.  The axial component of the current
shows the largest deviations, suggesting an experimental test of the contribution of TG
waves.

G.  Optimal antenna length
The plasma resistance as a function of HH antenna length for m = +1 waves and

three different plasma density profiles is shown in Fig. 21a.  The optimum antenna length
Lopt, the value of k, kopt , for which pA(k,m,L) is a maximum, and the optimal plasma
resistance Ropt is given in Table II for each profile (s,t) with density half width a½:  The
values of kopt are quite large compared to the average local kmax.  Indeed, for the more
uniform profile (10,1) it is almost as large as the local kmax ≅ 42/m for propagation on axis.
The optimal coupling is weaker for the more centrally peaked profile (2,10) because of
lower density on the surface where the currents are invariably large.  Sk for a parabolic
density profile is shown in Fig. 21b, along with the pA for an HH antenna of optimal length
Lopt = .164 cm, and for one of length Lm1 = .287 m corresponding to the first minimum of
RA(1,L).  Note the maximum of Sk at kp ≅ 33/m  which coincides with the zero of pA for
Lm1 = 3π/kp, as well as the broad maximum of pA for L = Lopt which overlaps significantly
with the large values of Sk at long wavelengths.  The power absorption profile PA(r,m) for
these two antenna lengths is shown in Fig. 21c where the significant relative reduction of
heating is apparent.  The antenna plasma resistance is shown as a function of  L for the
N3, HH and H1 antennas are shown in Fig. 21d.  The respective peak resistances are 1.08
Ω, 2.57 Ω and 6.11 Ω, showing the advantage of concentrating the antenna spectral
power at the peak of the Sk.
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V.  SUMMARY AND CONCLUSIONS

A general expression relating the antenna current to the plasma surface fields is
derived and greatly simplified by neglecting displacement currents.  A fourth-order ODE is
derived for coupled H and TG waves in a radially nonuniform plasma.  Linearly
independent solutions with short and long radial wavelengths on the axis are obtained.
Results are presented for a variety of density profiles for no=1012 cm-3 and Bo = 100 G.

For a constant density the computations reproduce the usual H and TG Bessel function
solutions. They maintain their long and short wavelength character for moderate changes
in the density profile and hence may be interpreted as the extensions of H and TG waves in
those cases.  It is shown that layered solution methods which neglect some density
gradient terms lead to an exaggeration of the antenna plasma resistance due to excess
energy absorbed in a thin layer near the surface.  A study of antenna types and wave
polarization show major differences in the m = +1 spectrum, enhanced energy absorption
near but not at the surface, and helical antenna performance that improves with the
number of turns.  A study of density profiles varying from constant to near-gaussian shows
a steady progression of increasing and narrowing of the short axial wavelength peak and
reduction of the long wavelength peak.  The absorption radial profile for the square
density shape differs significantly from the more realistic ones.  As the density profile
becomes more peaked on axis, antenna plasma resistance for m = +1 waves varies little,
but decreases significantly for m = -1 waves because there is no short wavelength
resonance in the latter case.  In configuration space, for a parabolic density profile,  the
wave magnetic field and current density shapes  are close to that of the H field, except
near the surface. However, the TG currents are comparable to the H currents, and hence
their inclusion is critical to accurately calculating the absorption.  A general discussion of
the effects of TG waves at high magnetic field for a radially nonuniform plasma showed
that they dominate the power absorption, in agreement with the exact result for high
density.
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APPENDIX:  ODE including ions and displacement currents

To derive the general fourth order ODE we start with Eq. (14), commute the curl
with the α’s, divide by αH and define the following coefficients which have the indicated
limits for negligible displacement current and ionic effects
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We then obtain in place of Eq. (17)
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Using ∇ • =B 0  in the r-component of Eq. (A2) yields
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Substituting first B z  and then Br
/ /  in the φ-component of Eq. (A2) results in

( )
~
B B B

~
B

~
B

( )
B ( )B

/ / /

/

/

/

∆
∆

∆
∆ ∆

∆
∆

∆
∆

∆ ∆

∆
∆

∆
∆

− = − + + + −














 −

+
−

+ − + + − −


















− + +






+
−

+ + +
−

η

η

φ

φ

φ

D

w

r r

w

D r r

K m

r
u

r
m

m
m

m

r

k K
r

u
r

m
m m

r
u

m

r

m m

r

m

r

m

2

0 2
2

2

2

2
0 2

2

2

2

0

2

1
2

1 1
1

1
∆ ∆

r r2

~
B

~
B ./

φ φ+






               (A4)

Although it is generally most convenient numerically to solve Eqs. (A3) and (A4) as
coupled equations, they can be reduced to a single fourth order equation for one of the
field components.  Taking the first and second derivative of each equation yields six linear
equations from which, for example, the five quantities Br and its derivatives may be
eliminated by substitution to yield a single fourth order equation for 

~
Bφ .



17

REFERENCES

1. F.F. Chen and D. Arnush, “Generalized theory of helicon waves I: Normal modes”,
Phys. Plasmas (to be published)

2. R.W. Boswell, Plasma Phys. Control. Fusion 26, 1147 (1984).

3. K.P. Shamrai, V. P. Pavlenko and V. B. Taranov, Plasma Phys. Control. Fusion 39,
505 (1997)

4. F.F. Chen,  Plasma Phys. Control. Fusion 33, 339 (1991).

5. I.V. Kamenski and G.G. Borg,  Phys. Plasmas 3, 4396 (1996).

6. National Information Center Service Document No. DE85004960 (B.D. McVey,
“ICRF antenna coupling theory for a cylindrically stratified plasma”, MIT Plasma
Fusion Center Report PFC/RR-84-12, 1984).

7. Y. Mouzouris and J.E. Scharer,  IEEE Trans. Plasma Sci. 24, 152 (1996).

8. F.F. Chen, M.J. Hsieh, and M. Light,  Plasma Sources Sci. Technol. 3, 49 (1994).

9. J. D. Jackson, Classical Electrodynamics, Second Edition (John Wiley & Sons, New
York 1975)

10. S. Shinohara, Y. Miyauchi, and Y. Kawai, Jpn. J. Appl. Phys. 35, 731 (1996)

11. D. D. Blackwell and F. F. Chen, Plasma Sources Sci. Technol. (to be published)

12. G. Chevalier and F. F. Chen, J. Vac. Soc. Technol. A 11, 1165 (1993)



18

TABLES

Table I.  Variation of Antenna Resistance with Configutation__________

Configuration R+ (Ω) R- (Ω) RA (Ω)

HH(2,1,1) 1.97 0.20 2.17

HH(2,1,-1) 0.01 0.20 0.21

N3(2,1,1) 0.48 0.48 0.96

L(2,1,0) 0.73 0.73 1.47

Table II. Antenna Optimization

(s,t) a½ (m) Lopt (m) kopt (m
-1) Ropt (W)

(10,1) .0374 .140 38 2.51

(2,1) .0284 .164 32 2.57

(2,10) .0170 .190 28 1.73
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FIGURE CAPTIONS

1.  The modeled configuration.

2.  Two of the antennas investigated.

3.  Power spectrum (arbitrary units) for the m = 1 component of  three antennas.  Positive
k corresponds to the direction of B0.

4.   (a) Three of the density profiles investigated.  (b) Radial range in which helicon waves
propagate in a local approximation at each k for n0 = 1012.

5.  The value of  pm(a,a,c,k) as a function of ka for various values of c/a.

6. Exact DE result compared with the layered result neglecting the density gradient, u(r),
for the m = 1 mode excited in a plasma with a nearly square density profile by a half
wavelength helical antenna: (a) Helicon amplitude |A1| ; (b) Power deposition profile
P(r,1).

7. The same as Fig. 6 but for a parabolic density profile.

8. Amplitude of the helicon and TG waves for density profiles which are (a) square; (b)
nearly uniform; ( c) parabolic; and (d) peaked.

9. Comparison  of the total | Bφ | = | A1 B1φ - A2B2φ | (——)  to the H contribution
|A1B1φ| (— —), and the TG contribution  |A2 B2φ | (------) for k = 32/m, m = 1, and the
profiles of Fig.8.

10. The same as Fig. 9 but for k = 23/m.

11. The same as Fig. 9 but for |Jφ | , | A1J1φ | and  |A2J2φ |.

12. The same as Fig. 11 but for k = 23/m.

13. The dependence of antenna plasma resistance on density profile (s,t) and wave
polarization for m = +1 shown for progressively more peaked density profiles.

14. The dependence of power absorption P(r,1) on density profile for (a) two near
uniform profiles, (b) two axially peaked profiles, and (c)  spectral antenna plasma
resistance for HH(10,1,+1) (------), HH(10,1,-1) (——) and HH(2,1,+1).

15. The amplitudes of helicon and TG waves for a parabolic density profile for different
antennas and wave polarizations.

16. Dependence of power absorption P(r,m) on antenna configuration and wave
polarization for a parabolic density profile.

17. Real part  (——) and phase (-------) of Bz at r = 1 cm as a function of z for the (a) m =
+1 and (b) m = -1 modes in a parabolic density profile.

18. Power absorbed as a function of axial distance for HH (2,1,1).

19. Comparison of the magnetic field components and the contributions from the H and
TG waves at z = 20 cm for HH(2,1,1) for (a) Br, (b) Bφ and (c) Bz

20.  The same as Fig. 19 but for the current density.
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21.  (a) Plasma resistance as a function of antenna length for an HH antenna and plasmas
with various density profiles (s,t), (b) specific power density Sk and antenna power
spectrum for the optimal Lopt = .164 m, and first minimal Lm1 = .287 m, antenna lengths
of (a), and (c) power deposition profile for antenna lengths of (b).  Variation of
antenna plasma resistance with antenna length for three antennas (d).



21

Plasma

Chamber

Current Sheet

a
b

c

Fig. 1

Nagoya Type 3 (N3)

Half Helical (HH)

Fig. 2

0

2

4

6

-50 -25 0 25 50
k (m-1)

|K
φφ|

2  (
ar

b
)

N3, L = 0.12 m
HH, L = 0.20 m
H1, L = 0.30 m

Fig. 3

0.0E+00

2.0E+11

4.0E+11

6.0E+11

8.0E+11

1.0E+12

1.2E+12

0 0.01 0.02 0.03 0.04
r (m)

n(
s,

t,r
) 

(c
m

-3
)

  n(10,1,r)
  n(2,1,r)
  n(2,10,r)

Fig. 4a

0

10

20

30

40

50

0 0.01 0.02 0.03 0.04
r (m)

k 
(m

-1
)

kmax

kmin

Fig. 4b

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5
ka 

p 0
(a

,a
,c

,k
)

1.25

1.50

2.00

   ∞

c/a
m  = 0

Fig 5a



22

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5
ka

p 1
(a

,a
,c

,k
)

m  = 1

Fig 5b

HH(10,1,1)

0

1

2

3

4

5

-50 -25 0 25 50
k (m-1)

|A
1|

Exact DE
Layered

Fig. 6a

HH(10,1,1)

10

100

1000

10000

100000

1000000

0 0.01 0.02 0.03 0.04
r (m)

P
(r

,1
) 

(Ω
/m

2 )

Fig.6b

HH(2,1,1)

0

10

20

30

-50 -25 0 25 50
k (m-1)

|A
1| Exact DE

Layered

Fig. 7a

Fig. 7b

HH(∞,1,1)

0

1

2

3

4

-50 -25 0 25 50
k (m-1)

|A
1|

, |
A

2|

 |A1|
 |A2|

Fig. 8a



23

HH(10,1,1)

0

1

2

3

4

-50 -25 0 25 50
k (m-1)

|A
1|

, |
A

2|

Fig. 8b

HH(2,1,1)

0

2.5

5

7.5

10

-50 -25 0 25 50
k (m-1)

|A
1|

, |
A

2|

Fig. 8c

HH(2,10,1)

0

5

10

15

-50 -25 0 25 50
k (m-1)

|A
1|

, |
A

2|

Fig. 8d

HH(∞,1,1)

0E+00

1E-06

2E-06

3E-06

4E-06

0 0.01 0.02 0.03 0.04
r (m)

|B
φ|

 (
T

 m
)

Fig. 9a

HH(10,1,1)

0E+00

1E-06

2E-06

3E-06

0 0.01 0.02 0.03 0.04
r (m)

|B
φ|

 (
T

 m
)

Fig. 9b

HH(2,1,1)

0.0E+00

2.5E-06

5.0E-06

7.5E-06

1.0E-05

0 0.01 0.02 0.03 0.04
r (m)

|B
φ|

 (
T

 m
)

Fig. 9c



24

HH(2,10,1)

0.0E+00

4.0E-06

8.0E-06

1.2E-05

1.6E-05

0 0.01 0.02 0.03 0.04
r (m)

|B
φ|

 (
T

 m
)

Fig. 9d

HH(∞ ,1,1)

0E+00

1E-06

2E-06

3E-06

0 0.01 0.02 0.03 0.04
r (m)

|B
φ|

 (
T

 m
)

Fig. 10a

HH(10,1,1)

0E+00

1E-06

2E-06

3E-06

0 0.01 0.02 0.03 0.04
r (m)

|B
φ|

 (
T

 m
)

Fig. 10b

HH(2,1,1)

0E+00

1E-06

2E-06

3E-06

4E-06

0 0.01 0.02 0.03 0.04
r (m)

|B
φ|

 (
T

 m
)

Fig. 10c

HH(2,10,1)

0E+00

1E-06

2E-06

3E-06

4E-06

5E-06

6E-06

0 0.01 0.02 0.03 0.04
r (m)

|B
φ|

 (
T

 m
)

Fig. 10d

HH(∞,1,1)

0

200

400

600

800

0 0.01 0.02 0.03 0.04
r (m)

|J
φ|

 (
A

/m
)

Fig. 11a



25

HH(10,1,1)

0

150

300

450

600

0 0.01 0.02 0.03 0.04
r (m)

|J
φ|

 (
A

/m
)

Fig. 11b

HH(2,1,1)

0

150

300

450

600

0 0.01 0.02 0.03 0.04
r (m)

|J
φ|

 (
A

/m
)

Fig. 11c

HH(2,10,1)

0

300

600

900

1200

0 0.01 0.02 0.03 0.04
r (m)

|J
φ|

 (
A

/m
)

Fig. 11d

HH(∞,1,1)

0

100

200

300

0 0.01 0.02 0.03 0.04
r (m)

|J
φ|

 (
A

/m
)

H
TG
Total

Fig. 12a

HH(10,1,1)

0

100

200

300

400

0 0.01 0.02 0.03 0.04
r (m)

|J
φ|

 (
A

/m
)

Fig. 12b

HH(2,1,1)

0

150

300

450

600

750

0 0.01 0.02 0.03 0.04
r (m)

|J
φ|

 (
A

/m
)

Fig. 12c



26

HH(2,10,1)

0

200

400

600

800

0 0.01 0.02 0.03 0.04
r (m)

|J
φ|

 (
A

/m
)

Fig. 12d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(∞
,1

)

(1
0,

1)

(8
,1

)

(6
,1

)

(4
,1

)

(2
,1

)

(1
0,

2)

R
A
(m

) 
(O

hm
)

m = +1
m =  -1

Fig.13

RA(∞∞,1,1)  = 1.72 ΩΩ
RA(∞∞,1,-1) = 1.91 ΩΩ
RA(10,1,1)  = 1.31 ΩΩ
RA(10,1,-1) = 2.57 ΩΩ

100

1000

10000

0 0.01 0.02 0.03 0.04
r (m)

P
r (

O
h

m
/m

2 )

HH(∞∞,1,1)

HH(∞∞,1,-1)

HH(1010,1,1)

HH(1010,1,-1)

Fig. 14a

10

100

1000

10000

0 0.01 0.02 0.03 0.04
r (m)

P
r (

O
h

m
/m

2 )

HH(2,1,1)

HH(2,1,-1)

HH(2,10,1)

HH(2,10,-1)

RA(2,1,1)    = 2.17 ΩΩ
RA(2,1,-1)   = 0.21 ΩΩ
RA(2,10,1)  = 1.71 ΩΩ
RA(2,10,-1) = 0.08 ΩΩ

Fig. 14b

0

0.1

0.2

0.3

0.4

-50 -25 0 25 50
k (m)

P
k 

(k
,m

) 
( ΩΩ

 m
)

Fig. 14c

HH(2,1,1)

0

3

6

9

-50 -25 0 25 50
k (m-1)

|A
1|

, |
A

2| |A1|
|A2|

Fig. 15a



27

HH(2,1,-1)

0.0

0.5

1.0

1.5

2.0

-50 -25 0 25 50
k (m-1)

|A
1|

, |
A

2|

Fig. 15b

N3(2,1,1)

0.0

1.0

2.0

3.0

4.0

-50 -25 0 25 50
k (m-1)

|A
1|

, |
A

2|

Fig. 15c

L(2,1,0)

0

3

6

9

-50 -25 0 25 50
k (m-1)

|A
1|

, |
A

2|

Fig. 15d

0

1500

3000

4500

6000

0 0.01 0.02 0.03 0.04
r (m)

P
(r

,m
) 

(Ω
/m

2 )

N3(2,1,1)

HH(2,1,-1)

L(2,1,0)

HH(2,1,1)

Fig. 16

-6E-06

-3E-06

0E+00

3E-06

6E-06

-0.5 -0.25 0 0.25 0.5
z (m)

B
z 

(T
)

-4

-2

0

2

4

P
hase (rad)

Fig. 17a

-3E-06

-2E-06

0E+00

2E-06

3E-06

-0.5 -0.25 0 0.25 0.5
z (m)

B
z 

(T
)

-4

-2

0

2

4

P
hase (rad)

Fig. 17b



28

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
z (m)

P
z(

z,
1)

 (
Ω

/m
)

Fig. 18

HH(2,1,1)

-8E-06

-6E-06

-4E-06

-2E-06

0E+00

2E-06

0 0.01 0.02 0.03 0.04
r (m)

B
r (

T
)

H
TG
Total

Fig. 19a

-4E-06

0E+00

4E-06

8E-06

0 0.01 0.02 0.03 0.04
r (m)

B
φφ 

(T
)

Fig. 19b

-2.0E-05

-1.5E-05

-1.0E-05

-5.0E-06

0.0E+00

5.0E-06

0 0.01 0.02 0.03 0.04
r (m)

B
z(

T
)

Fig. 19c

HH(2,1,1)

-600

-400

-200

0

200

0 0.01 0.02 0.03 0.04
r (m)

J r
 (

A
/m

2 )

H
TG
Total

Fig. 20a

-2000

0

2000

4000

6000

0 0.01 0.02 0.03 0.04
r (m)

J φφ
(A

/m
2 )

Fig. 20b



29

-800

-400

0

400

800

0 0.01 0.02 0.03 0.04
r (m)

J z
 (

A
/m

2 )

Fig. 20c

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5
L (m)

R
A
(1

) 
(W

)

(10,1)
(2,1)
(2,10)

Fig. 21a

HH(2,1,1)

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50
k (m)

S
k 

(Ω
/m

),
|K

φ|
2  (

ar
b)

 

L = .164 m
L = .287 m

Sk

Fig. 21b

HH(2,1,1)

0

2

4

6

8

0 0.01 0.02 0.03 0.04
r (m)

P
(r

,m
) 

(k
Ω

/m
2 )

L = .164 m
L = .287 m

Fig. 21c

0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5
L (m)

R
A
(1

) 
( ΩΩ

)

N3
HH
H1

Fig. 21d


