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ABSTRACT

It is well known that the simple theory of helicon waves, in which the electron
mass me is neglected, is valid only if Ez also vanishes, a condition which is not
satisfied in experiment.  Exact solutions of cold plasma theory with finite me and Ez
predict the existence of additional highly damped Trivelpiece-Gould (TG) modes,
which can greatly modify the nature of helicon discharges.  However, most
experiments have been explained using only the simple theory for which the helicon
waves are undamped.  In that case, antenna-plasma-coupling calculations predict
infinite resonances.  To avoid this problem theorists have set Ez = 0 and included
finite me effects (the TE-H theory).  By comparing the TE-H theory with exact (i.e.,
closed form) solutions for uniform density, the role of TG modes has been clarified.
To do so for non-uniform density, a new algorithm is developed to treat the case of
high magnetic fields, when the wave equation becomes singular.  The results show
that, though the wave patterns are not greatly affected by TG modes except at low
magnetic fields or near the radial boundary, the kz-spectrum and radial profile of the
energy deposition are greatly modified.  In particular, the peaks in the TE-H-mode
spectrum, which lead to predictions of erroneously high antenna loading, are
suppressed and broadened by the TG modes which also predict high edge absorption.
Both the TE-H and exact theories give maximum antenna loading for ½me(ω / k)2 ≈
10 - 100 eV, in contrast to several hundred eV predicted by the simple theory.
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I.  INTRODUCTION
Plasma sources employing helicon wave excitation are of current interest because

they may provide the high density and uniformity needed for the fabrication of the next
generation of semiconductor circuits1,2.  It has been known for some time3 that finite electron
mass me, couples helicon to electron cyclotron Trivelpiece-Gould (TG) waves4,5,6 in uniform
plasma. Despite that fact, most early experiments were interpreted using a simple model of
helicon waves in which me, and hence δ = ω/ωc is neglected7,8,9,10,11.  More recently Shamrai,
et al12,13,14 have investigated antenna coupling to a uniform density plasma and explained
why, for most cases of interest, the wave magnetic fields, which are the easiest to measure,
are dominated by the helicon waves. They also showed that the major channel for plasma
heating is coupling to helicon waves, which are weakly damped throughout the body of the
plasma, and “mode conversion” from helicon to TG waves near the surface.  The TG waves
are strongly damped.  Kamenski and Borg15 treated antenna coupling to non-uniform plasma
theoretically, assuming that the axial electric field vanishes, and neglected TG waves. Arnush
and Chen16,17 have more recently calculated antenna coupling to a non-uniform plasma at low
to moderate static magnetic field ( B0 1~< kG ) and density ( n0

13 310~< −cm ), to first order in δ,
and found results in agreement with Shamrai et al for nearly uniform density profiles.  For
more centrally peaked profiles (e.g., for a parabola) they found that the large radial TG
currents near the surface are canceled by helicon currents and consequently the plasma center
is more intensely heated.  In contrast to the prior studies of cylindrically bounded plasmas,
Borg and Boswell18 considered wave excitation by an infinite line source in infinite uniform
collisionless plasma. They found that the TG mode does not lead to a significant increase in
antenna coupling, and that the resonance cone is not a location of spatially resonant power
flux.

In this paper the antenna coupling to cylindrically symmetric plasma is considered
using a collisional cold plasma dielectric.  The role of TG wave damping is explicitly
explored by comparing uniform density, exact solutions with solutions using a transverse
electric (TE) approximation that includes only helicon waves (TE-H), similar to that
investigated by Kamenski and Borg.  For non-uniform densities and low to moderate
magnetic fields ( 0 300GB <!  for a 5 cm radius plasma) the plasma field equations can be
solved numerically by standard methods.  At higher magnetic fields the equations are
singular (i.e., the coefficient of the highest order derivative tends to zero with increasing B0)
and an approximate solution is obtained and investigated. The main focus of this paper is a
discussion of the dependence on density and magnetic field of the power spectrum of waves
absorbed by the plasma, the radial distribution of the power absorbed, and the antenna
resistance.  These quantities are featured primarily because their understanding is key to
designing optimal helicon sources, and also because the presence of TG waves has a
relatively small effect on the spatial dependence of the observed magnetic wave fields
making it difficult to measure.

II. GENERAL FORMULATION

A. Boundary Conditions

Consider a cylindrical plasma of radius a, which is uniform axially and non-uniform
radially, and which is enclosed in a conducting cylinder of radius c, with an intervening thin
shell antenna of radius b, such that a < b < c.  There are two linearly independent sets of
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solutions that are finite on the axis. These plasma “basis functions”, are distinguished by their
behavior near the axis and denoted by lower case symbols (e, b and j for E, B and J) and the
subscripts 1 and 2 (for a uniform plasma 1 denotes the helicon and 2 the TG wave).  Take the
Fourier transform of each component Vi, of any wave quantity to be
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Variables are underlined to distinguish configuration-space from k-space functions.  In Eq.
(2.1) and the following we use zk k≡ .  There are ten unknown basis function coefficients (2
vacuum regions × 2 polarizations × 2 behaviors at 0 and infinity + 2 plasma basis function
sets).  Using the usual ten boundary conditions ( tan 0=E  at r = c, is continuous at r = b and r
= a; tanB  continuous at r = a but undergoes a jump at r = b) and the fact that in the vacuum
spaces we have
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where 2 2
0 0T k k= −  is the transverse wave number in the vacuum and k0 = ω/c, Arnush and

Chen17 have shown that Vi(r) can expressed as
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The m and k functionality is understood.   Kφ is derived from the antenna current density of
the form J K( , , ) ( ) ( , )r z r b zφ δ φ= −  (the surface current is assumed to be closed so that
( / ) 0zm b K kKφ + = ) and
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where
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Equations (2.4), (2.5) and the forthcoming text are somewhat simplified from Arnush and
Chen17 by the use of ,   and r r r rb ib b ib e ieφ φ= = =! ! ! .  Note that the term ,n re!  in the expression
for Gn was inadvertently omitted in the original published version of this equation.

B. Wave Equations
Using the Krook-modified dielectric tensor ΚΚΚΚ = εεεε/ε0, including electron-ion and

electron-neutral collisions and the notation of Stix19: ,xx yy Sε ε= =  ,zz Pε =  and

yx xy iDε ε= − = , the equations for the wave fields are
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(2.6)

The first four of Eqs. (2.6) form a closed set and can be solved numerically by standard
methods except at large magnetic fields.   If the density is uniform the basis function fields
are the familiar Bessel function solutions given by
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III. SPECIFIC SOLUTIONS
A. Transverse Electric Helicon Solution (TE-H)

If we assume that 0zE ≡  in the plasma, then only the TE mode exists in the cavity.
Including the single, helicon, plasma mode there are five basis functions and hence five
unknown coefficients.  Three of the general boundary conditions are automatically satisfied
so that there are seven boundary conditions, and the system of equations for the coefficients
is over determined.  We derive the TE-H analog of Eq. (2.3) without the use of the boundary
conditions on Bφ.  The consequences of this action are discussed in section C.  The results
are:
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A TE-H resonance as a function of k therefore occurs for F(0) = 0, in contrast to the simple
theory condition7 br(a) = 0.

If we set 0zE ≡  in Eqs. (2.6) The second equation becomes algebraic and the set is
over determined.  However, we note that in the limit me → 0 , P ∝  me

-1 and Ez ∝  me.
Consequently, the product, and hence the equation is indeterminate.  We therefore eliminate
the equation from the set and obtain the following:
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(3.2)

In Eq. (3.2) we have used

( )( )2 2 2 2
0 02

3 2 2
0

.
k R k k k L

T
k k S

− −
=

−
 (3.3)

For a uniform plasma the solution to Eqs. (3.2) is 3( ) ( )z mb r J T r= .  T3 can be obtained from
Eq. (2.7) by taking the limit P → ∞  and self consistently neglecting T4.  Note that this
solution differs from the 0em →  limit since in that case S = 0, D is real, and hence T3 is real.
Consequently, the resonances of Eq. (3.1) are infinite.  The inclusion of these first order
terms provides dissipation which limits and broadens the resonance.  In addition, T3 is a good
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approximation to the helicon root of Eq. (2.7), except at long wavelengths well above the cut
off for helicon wave propagation.  For non-uniform plasma, the closed set of the first two
equations of (3.2) are solved as in the general case.

B. Helicon Trivelpiece Gould Solution (H-TG)
If the density is uniform the closed form Bessel solutions are used.  If the density is

non-uniform, and B0 is not too large (typically B0 < 300 G) the solutions of (2.7) are used in
the first radial step from the axis and Eq. (2.6) is integrated outward to the plasma surface.  If
B0 is sufficiently large the equation set (2.6) becomes numerically difficult to solve and we
resort to solving it using a series in me.

If we integrate Eq. (2.6) starting near the axis, each basis function will be a linear
combination of TG-like and helicon-like waves.  At large magnetic fields the TG radial wave
number can be approximated by 2 2

2 /T k P S≅ − .  If 2Im 1T a "  both solutions are dominated
by the TG-like functions, then Eq. (2.3) requires the calculation of small difference of large
numbers.  To avoid the difficulties inherent in that process note that any two linearly
independent solutions of Eqs. (2.6) may be used in Eq. (2.3).  We therefore choose the
solutions to Eqs. (3.2) for the first, helicon-like basis functions.  The second, TG-like
solution is obtained by an expansion in me.  For me of order ε, S and P are of order ε and 1ε −

respectively in the limit 0ε → .  We expand the field components in the following series
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If we require a non-zero solution and calculate to order ε0 we obtain
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(3.5)

C. Relationship of the solutions
Neglecting terms of order (k0/T0)2, as well as the displacement current terms (in

square brackets) in Eqs. (2.4), Eq. (2.3) becomes
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Which is valid provided that the outer cylinder-plasma gap, c-a, is not too small17.
Resonance occurs as a function of k if the denominator of Eq. (3.6) vanishes.  Anti-
resonances occur if either one of the basis function radial currents vanishes20.  Thus, if for a

(3.5a)

(3.5b)

(3.5c)

(3.5d)
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given k, 1, ( ) 0rj a =  (equivalent to the simple helicon boundary condition for uniform
plasma), only helicon waves are present and we recover Eq. (3.1).  However, except for rare
coincidences, the amplitude of the helicon wave is reduced since (0)

1F  will not be near zero at
that k.  For high magnetic fields ( / 1ceδ ω ω= << ), Im{ 2T } ( 1 2 and T T are the helicon and TG
radial wave numbers) is very large and the second term in the numerator of Eq. (3.6) is
negligible compared to the first except near the surface.  Similarly, since 0 , ,i r i i rj Tbµ ≅  (the
relationship is exact for a uniform density) the magnitude of the ratio of the second to first
term in the denominator is of the order of 1 2/ 1T T << .  Thus, neglecting the second terms in
the ratio, Eq. (3.1) is recovered from Eq. (3.6) in the helicon approximation.  However, in
calculating the configuration space fields from these equations by taking the Fourier
transform, the results are dominated by resonances due to the vanishing of the real part
of (0)

1F .  The imaginary part of this quantity, related to the imaginary part of 1T , is very small
since the helicon wave is undamped to lowest order in em .  On the other hand, the imaginary
part of (0)

2F  is significant since the TG wave is heavily damped.  Thus, to meet the boundary
conditions, both helicon and TG waves must be induced at the plasma surface.  The TG
waves reduce and broaden the resonance and significantly modify the power coupling.

Consider now the consequences of ignoring the boundary conditions on the magnetic
field in deriving Eq. (3.1). Using ABφ∆  as the value of Bφ just outside the antenna, minus that
just inside, the jump condition across the antenna is satisfied if the following quantity
vanishes:

2
0

0 02
0

A
z

kB K K
Tφ φµ µ∆ − = (3.7)

Since, for most cases of interest, 2
0( / )k T  is very small, the jump condition is satisfied in the

sense that the correction is much smaller than any of the individual terms in the equation.
Defining the difference in Bφ at the plasma boundary as PBφ∆ in a similar fashion, we obtain

02
0

( )P
r

kB i j a
Tφ µ∆ = − . (3.8)

The simple theory was derived for uniform plasma where jr is proportional to br.  The simple
boundary condition therefore is equivalent to setting PBφ∆ , and hence the radial current, equal

to zero.  In the general theory we set 0PBφ∆ = and an axial current carried by the TG waves
balances the radial current near the surface.  In the TE-H theory, since the radial current is
not necessarily equal to zero it must be balanced by an ad hoc axial surface current given
through Ampere’s law by 0 ( )P

z zB K aµ∆ = .

IV. ANALYSIS
A. Measures of Power Coupling
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We define the Specific Plasma Power Spectral function, ( )PS k ′  as the power
absorbed by the plasma for an antenna with ( )K k kφ δ ′= −

{ }* 31( ) Re .
2P plasmaS k d r′ = •∫E J (4.1)

Since ( )PS k ′  is an even function, for one ampere the Plasma Power Spectral function Pp(k),
and Plasma Resistance Rp, is
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(4.2)

There has been considerable speculation in the literature about helicon waves accelerating
electrons with the velocity ω/k by the Landau damping mechanism.  It is therefore useful to
express Pp(k) as a function of the energy of the electrons u = ½me(ω/k)2 using a variable
transformation, as follows:
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=    
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Similar to Pp(k), the Antenna Power Spectral function PA(k), and Antenna Loading
Resistance RA, can be defined as

{ }* 3

0 0 0

0 0

0

1( ) Re
2

( ) Im ( )
2

2 ( ) .

A antenna

z z
A m m

r a

A A

P k d r

c k a kB m Ep k p b
T K ka cT K

R P k dk

φ φ

µ ρ
=

∞

= − •

  = + 
  

=

∫

∫

E J

!
(4.4)

Note that for most cases of interest the second term in the expression for PA(k) is negligible
and hence PA is proportional to the surface axial magnetic wave field.  As we shall see, at
high magnetic fields the spectrum is dominated by 1 or a few resonances and the antenna
resistance may be estimated from the sum of the residues at the resonances.  If no power
escapes axially (due to either end reflections or total absorption in a very long cylinder) then

( ) ( )   and   .A P A PP k P k R R= = (4.5)

(4.4a)

(4.4b)

(4.3a)

(4.3b)

(4.2a)

(4.2b)

(4.2c)
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Indeed, the degree to which these equalities are met is a good measure of accuracy of basis
functions either numerically integrated or approximated.  It is also instructive to consider
Pr(r), the power absorbed in a differentially thin radial shell the length of the cylinder

( ) { }{ }2 2 20

0

( ) Im 2 Re ,
2

2 ( )

r r z r

a

P r

P r S E E P E D E E dk

R P r rdr

φ φ
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∗
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= + + +

=

∫

∫

! !

(4.6)

To illustrate the results of this formulation the following parameters were selected for
argon, using a collision frequency calculated from the electron-ion analytic form and the
electron-neutral cross-section21 convolved with a Maxwellian electron distribution:

0 e 0a=5cm, b=5.5cm, c=15cm, f 13.56MHz, T =3eV and P =3mTorr= . (4.7)

A half-turn helicon antenna is used, and results are quoted for the m=1 azimuthal Fourier
component.  Bessel functions of a complex argument, ( )mJ z , are calculated using a power
series for 11z <  and an asymptotic series22 for 11z ≥ .  For a radially non-uniform density,

for each k, Eq. (2.6) is integrated if { }Re ( ,0) 23kΨ <  ( ) 10(i.e., exp ( ,0) 10 )kΨ < , and Eqs.

(3.2) and  (3.5) are used if { }Re ( ,0) 23kΨ ≥ .  It is necessary to select a sufficient number of
radial integration points N, to adequately sample the rapid radial oscillations of the TG
waves.  It was found that the fractional error in the calculated resistance ( ) /A p AR R R−
decreased at the approximate rate 1/N1.75.  For all calculations N was chosen large enough to
produce an error less than 1%.  The cylinder is assumed to be sufficiently long to sample the
narrowest spectral resonance.  The calculation is performed using a C-based PC computer
program, with a graphical interface, called HELIC.  It implements the analysis described
herein for a wide range of parameterized density profiles and calculates the various power
functions and resistances, as well as the electric and magnetic fields and the current as a
function of z for fixed r, and a function of r for fixed z.  Simple plots of these functions are
also provided.  The code is currently being beta tested for later release.

B. Uniform Density

Consider first uniform densities for which closed form solutions are available.  The
power spectral functions and radial absorption profiles for the TE-H and H-TG solutions are
shown in Fig. 1 for a plasma density n0 = 1011 cm-3 and B0 = 25 G.  Even at this low density
and magnetic field the TE-H solution absorption profile is more sharply peaked than the
analytic one.  The respective antenna resistances are 5.67 Ω and 1.39 Ω, a ratio of about 4.
Apparently the TE-H approximation yields a larger loading resistance because of the
spuriously high peaks in the k-spectrum.  Both solutions predict peak absorption on axis with
the TE-H displaying a larger peak relative to the surface.  Figure 2 shows the results for n0 =
1012 cm-3 and B0 = 100 G.  Both solutions have two dominant resonant modes at
approximately the same wave number.  The TE-H solution displays an additional, lower
power, long wavelength mode.  The TE-H and H-TG antenna resistances are 2.97 Ω and 1.20
Ω, a reduced ratio of about 2.5.  The TE-H peaks have increased and narrowed, but the
integrated power has not increased correspondingly.  The TE-H absorption still peaks on

(4.6a)

(4.6b)
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axis, but has a flat plateau starting about midway to the surface.  The H-TG profile peaks on
the surface and decreases exponentially radially inward, indicating the dominance of the TG
waves in absorption for these parameters.  Approximately 75% of the power are deposited in
a 1 cm thick surface layer.  The pattern is continued for n0 = 1013 cm-3 and B0 = 1000 G,
shown in Fig. 3, where the TE-H and H-TG resistances are 3.21 and 1.81 Ω.  In that case the
width of the TE-H spectral resonances are of the order of 0.2 m-1.  In an ideal cavity, where
the axial cavity modes are separated by π/L (L is the cavity length), the cavity would have to
be 15 m long to insure that the TE-H modes are excited.  Thus, a major result of the
broadening of the resonances by the TG modification of the denominators in Eqs. (2.3) and
(3.6) is to permit excitation of the helicon modes in cavities of acceptable length. For plasma
stability 0/ 0R n∂ ∂ ≤  at constant B0 is required23.  The peak of R(n0,B0) for B0 = 1000 G
occurs for n0 = 4 ×1012 cm-3. The H-TG power absorption as a function of accelerated
electron energy is shown in Fig. 4 for n0 = 4, 6, 8, 10 ×1012 cm-3.  The curves all diminish
rapidly for u > 100 eV even for the cases where long wavelength secondary peaks are
present, due the factor u-3/2 in Eq. (4.3).  The corresponding result for the TE-H solution
shows large peaks with widths less than about 1 eV.  Thus, the H-TG theory predicts that the
waves are preferentially absorbed in a broad range of energies from about the ionization
threshold up to about 100 eV, depending on the density.  This contrasts with the TE-H theory
that suggests the presence of electron beams with narrow energy spreads.  Calculation of the
radial dependence of the wave magnetic field 20 cm from the antenna, B(r,0.2), for n0 = 1012

cm-3 and B0 = 100 G yielded only small deviations between the H-TG and TE-H solutions.
They were located in the 1-cm surface layer.  The effect of the broadening on the variation of
Bz(0,z) for the same parameters is shown in Fig. 5.  The magnitude of Bz calculated using the
TG-H approximation clearly displays a beat phenomenon between the modes and a gradual
decay, as seen in experiments24.  The calculated beating is less pronounced, and the decay is
more rapid with the H-TG formulation, due to interference between the wide range of k’s in
the broadened spectrum shown in Fig. 2.  However, as seen in Fig. 5b, the phase is
surprisingly little affected.  Since there are many effects not included which can affect the
rate of spatial decay, it would be difficult to use the measurement of Bz(0,z) to distinguish
between the H-TG and TE-H result.

Contour plots of the antenna resistances for the two approaches in the range 1012 < n0
< 1013 cm-3 and 100 <  B0 < 2000 G are shown in Fig. 6.  The contours of constant R in the
TE-H approximation are straight lines (i.e., 0 0B n∝ ).  The ridge of maximum R (≈5.9Ω) is
given approximately by B0(G) = 250 ×10-12 n0(cm-3). The local peak resistance of the H-TG
contour plot near n0 = 2.3 ×1012 cm-3 and B0 = 550 G is approximately 3.5 Ohm.  The
resistance varies slowly along the ridge, dropping to 2.8 Ohm at the saddle point n0 = 6.5 ×
1012 cm-3 and B0 = 1500 G, and rising to 3.6 Ohm at n0 = 6 ×  1012 cm-3 and B0 = 2000 G.
The ratio of resistance calculated using the TE-H and H-TG treatments is in the general range
1.5 to 2.  The ridge in the H-TG contour plot follows approximately a straight line for B0 <
1000 G.  The line intersects n0 = 8 ×  1012 cm-3 at 1500 G.  The spectra for B0 = 1500 G and
n0 = 5, 6.5 and 8 ×  1012 cm-3 are shown in Fig. 7.  The resistances vary slowly (2.7, 2.8 and
2.7 Ohm respectively) although there is significant variation in the spectral shapes.

C. Non-uniform Density

It is of interest to explore the effect of the radial density profile on the power
absorption.  Linear (1-r/w) and parabolic (1-(r/w)2) profiles, where w is adjusted to keep the
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ratio of central to surface density equal 10, were calculated and the results compared to a
uniform profile.  In the three cases shown in Fig. 8, B0 is 1000 G and n0 = 1013 cm-3 on axis.
As the density profile becomes more centrally peaked, the resonances shift to smaller wave
number and become narrower, but remain much broader than those predicted by the TE-H
approximation.  The antenna resistance for the uniform, parabolic, and triangular profiles
equal 1.81, 3.17 and 3.36 Ohm respectively.  Much greater power dissipation on axis occurs
for the centrally peaked profiles.  This result is consistent with the experimental observations
that density profiles for high power, high-density discharges are centrally peaked25 and
approximately triangular for the highest density cases.  The high dissipation on axis sustains
the high density there, and the high dissipation near the surface sustains the high power loss
to the walls.  Calculations were performed using the same profiles but with the central
densities increased by a factor of 2 and 3 for the parabolic and triangular shapes so that total
amount of plasma was approximately the same for the three cases.  The results were similar
to those shown in Fig. 8, except that the antenna resistance only increased to about 2.5 Ohm
for the centrally peaked cases.  The diminished enhancement is due to the fact that, at
constant magnetic field, the resistance decreases with density in this parameter range.

V. SUMMARY AND CONCLUSIONS

The H-TG solution of the uniform-density, collisional plasma model of antenna
coupling was compared to a well-defined, transverse-electric, pure helicon model.  For
moderate to large static magnetic fields ( 0 100B >! ) differences between the configuration-
space wave magnetic fields predicted by the two solutions were found to be small and/or
difficult to measure.  Differences in the spectrum and the radial profile of the power
absorption, as well as the topography of the antenna resistance R(n0,B0), critical to optimal
plasma source design, were found to be significant.  The predicted TE-H resistance is
typically somewhat less than twice the resistance predicted by the H-TG method.  The
reduced resistance in the H-TG calculation occurs partly because the presence of TG waves
changes the predicted electric fields and currents, but more importantly because they modify
the charge and current balance at the plasma surface and consequently the height and width
of the plasma resonance.  At large magnetic fields the predicted TE-H resonance is extremely
narrow, requiring a very long cavity to insure overlap between the resonance and the axial
cavity modes at equilibrium, as well as in the temporal approach to equilibrium.  Landau
damping for the H-TG solution is predicted to occur in a broad range of energies from about
10 eV to about 100 eV, in contrast to the TE-H solution that predicts the presence of
narrowly energetic beams.  For a uniform density and large magnetic field, both models
predict a small axial peak in the power absorption profile, with the H-TG solution predicting
an additional sharp increase in the absorption in a thin surface layer.  For more realistic,
centrally peaked, density profiles the H-TG solution predicts a thickening of the surface layer
as well as a much more pronounced peak in the heating on the axis.
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Fig.1.  H-TG vs. TE-H power absorption spectrum (a), and radial profile (b), for a uniform
density n0 = 1011 cm-3 and magnetic field B0 = 25 G
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Fig.2.  H-TG vs. TE-H power absorption spectrum (a), and radial profile (b), for a uniform
density n0 = 1012 cm-3 and magnetic field B0 = 100 G.
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Fig.3.  H-TG vs. TE-H power absorption spectrum (a), and radial profile (b), for a uniform
density n0 = 1013 cm-3 and magnetic field B0 = 1000 G.
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Fig. 4  H-TG power absorption spectrum as a function of accelerated electron energy u =
½me(ω/k)2 for n0 = 4, 6, 8, 10 × 1012 cm-3.
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Fig.5. H-TG vs. TE-H amplitude (a), and phase (b) of the axial wave magnetic field on axis
as a function of z, Bz(0,z), for a uniform density n0 = 1012 cm-3 and magnetic field B0 = 100 G.
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Fig.6.  Contours of constant H-TG (a), and TE-H (b) antenna resistance (Ohm), as a function
of density and magnetic field.
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Fig.7. H-TG power absorption spectrum at Bo=1500G and uniform densities n0 = 5, 6.5 and
8×1012 cm-3.
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Fig.8. H-TG power absorption spectrum (a) and radial profile (b) for uniform, parabolic and
triangular density profiles.  The magnetic field is 1000 G and the density is 1013 cm-3 on the
axis for each case.
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