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 In this paper, existing calculations of saturation ion currents Ii to Langmuir probes at 

potential Vp are digitized and parametrized so that Ii — Vp curves for given plasma density n, 

electron temperature Te, and space potential Vs can be reproduced in dimensional units rap-

idly on personal computers.  Secondly, an iteration technique is used to separate the ion and 

electron currents in their overlap region near the floating potential.  Probe measurements in 

an inductively coupled plasma (ICP) of the type used in semiconductor etching, were made in 

argon at various densities, pressures, RF powers, and probe radii Rp; and in one series n  was 

measured also by microwave interferometry.  Results show that the collisionless theories do 

not agree at large values of the parameter ξ   ≡ Rp/λD (λD = Debye length) and given values of 

n  bracketing the real value.  The discrepancy is thought to be due to charge-exchange colli-

sions in the presheath. 

 The main theories of ion collection are (a) the original orbital motion limited (OML) 

theory of Langmuir, the Allen-Boyd-Reynolds (ABR) theory [1], and the Bernstein-

Rabinowitz theory [2] as extended to Maxwellian ions by Laframboise [3] (BRL).  OML ac-

counts for ion angular momentum but neglects the formation of thin sheaths.  ABR includes 

sheaths but neglects orbiting.  BRL accounts for both, but computed Ii— Vp curves exist only 

for a few values of ξ  and are hard to reproduce.  Furthermore, the curves are in dimensionless 

units which depend on the values of n, Te, and Vs that one wants to determine.  These curves 

can be generated from the function  
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and the parameters ABCD  are functions of ξ .  These functions are then further parametrized 

by fitting them to the following forms: 
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where different coefficients abcdef   apply to each parameter ABCD, as given in Table 1.  

These coefficients can reproduce the Laframboise curves to within 5%. 

 To separate the ion and electron currents, first guess the values of n, Te, and Vs and 

compute the theoretical ion curve using Eqs. (1) and (2).  Then make a least-squares fit with 

the data by varying n  and Te.  Fig. 1 is an example of such an Ii2 — V plot. In general, the data 
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Table 1 

 
 a b c d f 

A 1.12 .00034 6.87 0.145 110 
B 0.50 0.008 1.50 0.180 0.80 
C 1.07 0.95 1.01 — — 
D 0.05 1.54 0.30 1.135 0.370 
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Fig. 1.  Saturation ion current measured in a 2-MHz ICP at 200W in 20 mTorr of A, with a probe 0.15 mm in 

diam and 1 cm long.  The lower curve is theoretical, computed from BRL for Ti = 0. 
 

will follow a linear Ii2 — V relation more closely than the BRL theory.  Using this value of n, 

one can then plot the electron current semilogarithmically, assuming a Maxwellian: 

1 / 2( / 2 ) exp[ ( ) / ]e
e p e p s eI neA KT m e V V KTπ= − ,     (3) 

where Vs
e is, unfortunately, different from the value of Vs used to fit the ions.  This straight 

line is shown in Fig. 2 together with the raw data and Ie with the theoretical ion current 

subtracted.  It is seen that the modified data follow a straighter line.  The values of Te and Vs
e 
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Fig. 2.  Semilog plot of Ie vs V  for the case of Fig. 1. 
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are then adjusted for the best fit.  Using the new value of Te, the ion curve can be recomputed 
and n readjusted.  If the modified Ie is then subtracted from the ion data, the following Ii—V 
curve results (Fig. 3): 
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Fig. 3,  Fit of Ii—V curve after iteration. 

The points at the right beyond Vs appear because different values for Vs had to be used to fit Ii 

and Ie.  This is an unresolved problem.  The theory for Ii near Vs is subject to uncertainty, and 

the value of Vs is sensitive to the curvature there.  This points out the danger in computing the 

electron energy distribution function from the I –  V  curve near the floating potential.   

 Since the ABR theory yields Ii — V curve closer in shape to the data, this theory was 

also double -parametrized in a similar manner, using the computations of ABR theory by 

Chen [4] for cylindrical probes.  The OML theory has the following simple form for Ti = 0: 
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The software for the ESPion probe of Hiden Analytical, Ltd. uses OML theory.  We have 

analyzed a large number of I – V  curves using these three theories.  Examples for four values 

of ξ  are shown in Fig. 4.  The resulting values of Te are insensitive to the theory used, but the 

n  values differ widely.  OML fits the shape of the curves best, but it should not be valid for ξ  

> 3 and requires an unreasonably high value of Vs.  The ABR theory gives too low a value of 

n , and the BRL theory shows more saturation than is observed.  

 The disagreement in densities found from different theories increases with ξ , as 

shown in Fig. 5, and reaches factors of 3 or more.  In Fig. 6, BRL and ABR densities are 

compared with microwave interferometry measurements for increasing RF power.  It is seen 

that ABR yields too low a density, as expected since orbiting is neglected and therefore too 

high an Ii is predicted.  BRL yields too high a density.  We believe that this is because 

orbiting to over-emphasized.  In partially ionized plasmas, incoming ions can lose their 
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angular momentum and be drawn in radially in their final trajectory.  Curiously, the 

geometric mean of the BRL and ABR densities seems to agree with the microwave results. 
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Fig. 4. Values of Te (points) and n (bars) obtained from different theories. 
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Fig. 5.  Ratio of n obtained from BRL (upper curve) and ABR (lower curve) theories, normalized to that from 

OML theory.  The points (∗) lying off the BRL curve result if the wrong value of Rp is used. 
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Fig. 6.  Comparison of BRL (Ο) and ABR (ÿ) densities with microwave measurements (◊).  The (∗) points are 

the geometric mean between the BRL and ABR densities. 

 Until a simple collisional theory is available for such plasmas, it is best to use small 

Rp at low n, so that OML can be used, and large Rp at high n , so that orbiting does not occur. 
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