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ABSTRACT 

 The penetration of RF energy into cylindrical devices is relevant to the 
production of uniform plasmas for etching and deposition processes in the 
production of  semiconductor circuits.  The so-called “anomalous skin effect” 
has been invoked to explain irregularities not predicted by classical electro-
magnetic theory.  These expectations are summarized for the collisionality re-
gimes of interest, and new results are given for non-kinetic effects caused by 
small DC magnetic fields and the ponderomotive force. 

 

I.  CLASSICAL vs. ANOMALOUS SKIN EFFECT 

 Inductively coupled plasmas (ICPs) are commonly used in plasma processing of 
semiconductor microchips, but the mechanism by which the applied radiofrequency (RF) en-
ergy is distributed to produce a uniform density is not well understood.  In simplest terms, the 
propagation of electromagnetic waves into a plasma follows the dispersion relation 

 2 2 2 2
pc k ω ω= − , (1) 

where ωp is the plasma frequency 2 1 / 2
0( / )ne mε .  Since ω << ωp is well satisfied in ICPs, 

the propagation constant k is imaginary, with the magnitude 

 /s pk cω≡ , (2) 

leading to the classical skin depth  

 /c pd c ω= . (3) 

However, this e-folding distance is usually so small that ionization should be concentrated 
near the antenna, creating a much more nonuniform plasma density n than is observed.  Fur-
thermore, the RF field has been seen to decay non-monotonically away from the antenna, 
first by Demirkhanov et al.1 and Joye and Schneider2, and more recently by Godyak and co-
workers3-6.   These observations spawned a theory of “anomalous skin effect” by Weibel7 and 
Sayasov8 based on the following kinetic effect.  When the collisionality is sufficiently low, 
electrons impinging on the wall sheath at a glancing angle can stay within the skin depth to 
be accelerated to hyperthermal energies by the RF electric field of the antenna.  These fast 
electrons can then scatter out of the skin region and transport an ionizing current to regions 
far from the wall, causing non-local power deposition3,9.  Theory and experiment on the 
“anomalous” skin effect, which refers only to anomalies related to kinetic effects, have been 
extensively reviewed by Kolobov and Economou10 and by Lieberman and Godyak11.  
 The experiments of Godyak et al.3-6,9 were performed with a spiral “stove-top” an-
tenna, which covers a circular area, including antenna elements near the axis of the cylindri-
cal chamber.  The presence of non-local power deposition is more evident in experiments 
with antennas wrapped around the circumference of a cylinder, far from the axis.  With a 
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curved skin layer, it is difficult to see how electrons can remain in the region of high electric 
field long enough to acquire high energy.  Furthermore, experiments in our laboratory12 show 
that the RF field can exhibit non-monotonic decay even at pressures so high that kinetic ef-
fects can be neglected.    For this reason, this paper is written to clarify what can be expected 
from classical, collisional theory and what non-kinetic anomalies can be generated by small 
magnetic fields and by nonlinearities.  Cylindrical geometry is emphasized to eliminate theo-
retical effects that can occur only in plane geometry, and realistic collision rates are consid-
ered. 

II.  CLASSICAL, COLLISIONAL SKIN DEPTH 

A.  Basic equations  

 Consider perturbations varying as exp(-iωt) in a uniform plasma with temperature 
KTe, stationary ions, and density n0 high enough that displacement current can be neglected.  
Maxwell’s equations then read: 

 0,iω µ∇ × = ∇ × =E B B j ,    (4) 

and the linearized electron fluid equation is 

 0 0 1 0ei mn n e KT n mnω ν− = − − −v E v∇ , (5) 

where n1 is the density perturbation and ν is the total electron collision frequency with ions 
(νei) and with neutrals (νen).  This yields the electron velocity 

 1

0( )
eie KT n

m i e nω ν
 −

= + +  
v E

∇
. (6) 

The plasma current is then 
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0 1
0

0

p ei KT n
en

i e n

ε ω

ω ν
 

= − = + +  
j v E

∇
. (7) 

For transverse waves with ∇⋅E = 0, the last term vanishes; but, in any case, it will vanish 
upon taking the curl of j, as long as n0 is uniform.  Thus we can write 

 
2

0, p
i

ε ω
σ σ

ν ω
= =

−
j E . (8) 

The curl of Ampere’s Law in Eq. (1) gives 

 2
0 0 0iµ µ σ ωµ σ∇ × ∇ × = ∇ × = ∇× = =−∇B j E B B , (9) 

yielding a vector Helmholtz equation for the wave magnetic field: 

 2
0 0iωµ σ∇ + =B B . (10) 

Henceforth, n will denote n0, and n1 will not be used. 

B. Plane geometry.   

 Anticipating an evanescent wave, we assume B to have the form B ∝ exp(-kx): 



 3

 
2

2
02 k i

x
ωµ σ∂ = = −

∂
B B B , (11) 

so that 

 2
0k iωµ σ= − . (12) 

Following Weibel7, we define 

      1tan , / ,
ν

ε δ ν ω
ω

−≡ ≡ so that   tanδ ε= . (13) 

so that k2 can be written 
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k e
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ν ω δ δ
−

 −
 = = =
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,  (14) 

Re(k) is then: 

 2 1 / 4
0 0Re( ) cos(½ )/ , (1 )ck d d dε δ= ≡ + ,        (15) 

The collisional skin depth ds is given by 

 01/Re( ) sec( /2)sd k d ε= = . (16) 

Expressing ε in terms of δ, one obtains 

 
1 / 22

2 1 / 2
2(1 )

1 (1 )
s cd d

δ

δ

 +
=  

+ +  
. (17) 

Note that ε is always between 0 and π/2 as ν/ω varies between 0 and ∞.   For large ν/ω, ε/2 is 
always near 45°, and the real and imaginary parts of δ are nearly equal, as is the case in many 
high-density plasma sources.  This skin depth applies to all components of B and depends on 
KTe only through the collision term. 

C.  Effect of collisions.    

 In the calculations the collision frequencies νei and νen as functions of Te were fitted 
to polynomials using Spitzer resistivity13 for νei and well-known momentum-transfer cross 
sections14, averaged over a Maxwellian, for νen.   In practical units, we have 

 3 / 2 11 3
0 11(MHz) ( ) (mTorr), (MHz) ( ) (10 cm )en n e ei e i eF T p n T F T nν ν −= ∝ = , (18) 

where p is the pressure in mTorr, Te the electron temperature in eV, and n11 the plasma den-
sity in units of 1011 cm-3.  The functions Fn and Fi for argon are shown in Fig. 1.  The fitting 
curves are the functions 

 
2 3 4

3 / 2

( ) .0022 0.164 0.590 0.114 .0067

( ) 3.48

n

i e

F x x x x x

F x T −

= + + − +

=
 (19) 

The boundary where ν / ω = 1 is shown in Fig. 2 for various densities, pressures, and RF fre-
quencies.  It is seen that electron-neutral collisions dominate in the 1011-12 cm-3 region, where 
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the curves are horizontal, and that at argon pressures of order 10 mTorr the skin depth is col-
lisionless at 13.56 MHz but collisional at 2 MHz. 

 The normal skin depth is increased by collisions, particularly at low frequencies, but 
it is still small compared with typical ICP radii (>15 cm).  This is shown in Fig. 3, where ds is 
plotted against density for various argon pressures.  Even at the low frequency of 2 MHz and 
a low density of 1011 cm-3, more than 10 mTorr is required for the RF field to penetrate far 
into the plasma.  Note also that the curves follow the density scaling of dc [Eq. (3)] up to n ≈ 
1012-13 cm-3, where ds encounters a lower limit due to electron-ion collisions.  The effect of 
collisions on ds is also evident in Fig. 4, where ds is plotted against p for various values of Te.  
Since dc does not depend on Te, the variation with Te is entirely due to collisional effects.  
These dependences have been shown previously by other workers15, but without explicit cal-
culation of the collision rates. 

D. Cylindrical geometry.    

 Consider an infinite cylinder of radius a with a uniform antenna surface current at r = 
a.  The RF field then varies only in the r direction, and Bz ẑ  and jθ θ̂  are the only components 
of B and j.  Eq. (10) then can be written 

 
2

2
2

1 0z z
z

B B k B
r rr

∂ ∂+ − =
∂∂

, (20) 

where k is given by Eq. (14): 

 / 2
0/ik e dε−=  (21) 

The relevant solution of Eq. (20) is a zero-order Bessel function of complex argument: 

 0 0( ) ( ) ( )B r AI kr AJ ikr= = , (22) 

where the subscript z has been suppressed.  When δ is small, k reduces to 1/dc or 1/d0, and 
I0(kr) represents the usual exponential decay modified by cylindrical geometry.  However, in 
many cases of interest δ is large, and ε/2 is nearly 45°, so that the real and imaginary parts of 
k are comparable.  We can then consider Bz as an evanescent wave with a phase shift (I0) or 
as a strongly damped propagating wave (J0).  The nature of the solution is best illustrated by 
the method of Joye and Schneider2, which makes use of the familiar diagram16 of the com-
plex function J0(z).  Consider B(r) to be a J0 function normalized to 1 on the axis.  Defining  

 0/rρ δ≡ , (23) 

we have 

 / 2 ( ) / 2
0 0 0 0( ) ( ) ( ) ( ) ( )i iB r J ikr J i e J e J x iyε π ερ ρ− −= = = ≡ + . (24) 

The argument of J0 has a magnitude r/δ0 and an angle α = (π  - ε)/2, which depends only on 
ν/ω.  This angle varies from π/2 at ε = 0 (ν = 0) to π/4 at ε = π/2 (ν → ∞).  The function J0(x 
+  iy) is shown in the modified Joye-Schneider diagram of Fig. 5, in which the solid lines are 
contours of constant |B|, and the dotted lines its phase φ, defined by  

 ( ) | ( )|exp[ ( )]B r B r i rφ= . (25) 
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Since ¼π  < α < ½π , the accessible region is that to the left of the heavy line of slope 1, repre-
senting the case ν → ∞.  The region to the right can be reached only in underdense plasmas, 
where ω > ωp and the ω2 term in Eq. (1) has to be retained, changing the sign of k2.  
Measurements of B(r) should lie on a straight line, as shown by the hypothetical points in 
Fig. 5.  The slope of this line is uniquely determined by ν/ω, regardless of the collision 
mechanism.  Once ν/ω is known, experimental points should be found to extend from the 
origin to ρ =  a/δ0.  A line along the y axis represents evanescent waves decaying quasi-
exponentially from the boundary and described by I0(y) in the absence of collisions.  A line 
along the x axis represents undamped propagating waves given by J0(x); for example, micro-
waves injected symmetrically from the wall.  Damped waves would follow lines with an an-
gle α < 45°. 
 Figure 5 provides a convenient way to distinguish between normal and abnormal skin 
depths.   Radial profiles of wave amplitude can deviate from a straight line in the presence of 
experimental imperfections, such as nonuniform density profile; but excursions into the for-
bidden region usually indicate abnormality.  Henceforth, skin depths will be called “normal” 
when they follow classical linear electromagnetic theory without DC magnetic fields, and 
“abnormal” when they deviate from the predicted behavior because of nonlinear forces, stray 
magnetic fields, fast electrons, or other effects.  By convention, the term anomalous skin 
depth will refer to kinetic modifications; thus, anomalous is a sub-class of abnormal. 
 Examples of field penetration into cylindrical plasmas are given in Figs. 6-10.  Since 
δ varies from small to large, the integral representation, not the asymptotic expansion, of I0(z) 
was used in the computations: 

 cos cos
0

0 0

1 i
( i ) cos( cos ) sin( cos )x xI x y e y d e y d

π π
θ θθ θ θ θ

π π
± ±+ = +∫ ∫ .  

Fig. 6 shows radial profiles of |Bz| as n is varied from 1010 cm-3  to 1013 cm-3, so that dc varies 
by a factor of 30.  Only at the lowest density does ds / a approach unity for a = 15 cm.  More 
importantly, the field always decays monotonically from the wall, irrespective of any reflec-
tions from the other side of the chamber.  This fact can be gleaned from Fig. 5, where bound-
ing line for the normal region is tangent to the |J0| contour at the separatrix.  Enhanced pene-
tration due to collisions is shown in Fig. 7, where the field profile is shown as a function of 
the neutral argon pressure for the low frequency of 2 MHz.  Since collisions cause k to have a 
real part, the damped oscillation also propagates, with a phase variation shown in Fig. 8.  
Note that the phase velocity at first decreases with increasing pressure, and then increases as 
ν / ω surpasses unity.  In Fig. 9 the radial profiles of RF magnitude and phase are compared 
for cylindrical and plane plasmas.  There is little difference with the parameters chosen.  

 Though the time-averaged magnitude of Bz never reaches zero in a cylinder, its in-
stantaneous radial profile can have a zero-crossing when k has an imaginary part due to colli-
sions.  This is illustrated in Fig. 10, computed for a highly collisional case (δ = 8) in a small 
cylinder to emphasize this effect.  Also shown is the radial profile of jθ, which is the deriva-
tive of Bz.  Both sets of curves are normalized to 1 at t = 0 and r  = a.   

III.  DC MAGNETIC FIELDS 

 The effect of adding a small DC magnetic field parallel to the axis is subtle and al-
most counter-intuitive.  The disruption of the shielding electron current does not greatly in-
crease the skin depth as one would expect;  electron flow in the previously ignorable z direc-
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tion has to be taken into account.  In this section we describe the physical mechanisms re-
sponsible for this effect and give the two-dimensional treatment necessary to compute the 
skin depth correctly. 

 Shielding of the field Eθ applied by the antenna is caused by the induced azimuthal 
electron currents in the plasma. When a magnetic field 0 0ˆB=B z  parallel to the axis is ap-
plied, one would expect that these currents would be disrupted when the electron Larmor ra-
dii rL become smaller than the plasma radius a.  The skin depth would then increase until it 
reaches c/Ωp when the ions would do the shielding, where Ωp is the ion plasma frequency.  
However, the effect is complicated and requires more than a one-dimensional analysis.  Pre-
vious treatments of the magnetized case15 have simply added the B0 terms to the plasma di-
electric tensor or have concerned purely collisionless and normally unobservable effects such 
as resonances between the Larmor radius rL and the tube radius.  Though numerical stud-
ies17,18 have alluded to the effects of B0 described below, the operative physical mechanisms 
are not obvious.   

 As a baseline, we first consider the one-dimensional case of a cylinder in which ∇r = 
∇θ = 0.  Since the infinitely long antenna has no current in the z direction, there will be no 
induced field in the z direction: Ez = 0.  The linear electron equation now reads 

 0/ ( )m t e mν∂ ∂ = − + × −v E v B v . (26) 

Assuming E ∝ exp(-iωt) and solving for v, we have 

 2 2 2 2
ˆ ˆ( / ) ( / )

,
ˆ ˆˆ ˆ1 / 1 /

r c c r
r

c c

ie E i E ie E i E
v v

m m
θ θ

θ
ω ω ω ω

ω ωω ω ω ω

− +
= − = −

− −
, (27) 

where 

 2 ½
0 0 0ˆ/ , , ( / ) , /c peB m i ne m k cω ω ω ν ω ε ω≡ ≡ + ≡ = . (28) 

The relevant components of the current j = −nev can then be written 

 
2 2

0 0
2 2 2 2,

ˆ ˆ ˆ ˆ(1 / ) (1 / )
p r p

r
c c

i E i E
j j θ

θ
ε ω ε ω

ω ω ω ω ω ω
= =

− −
. (29) 

Using this in Maxwell’s equations 

 0 0, ( )i iω µ ωε∇ × = ∇× = −E B B j E , (30) 

we obtain 

 2 2
0 0 0.k µ∇ + + ∇× =B B j  (31) 

By symmetry, B can have only one component Bz , and j and E have only θ components.  
Hence, 

 
1ˆ ( )rj
r r θ

∂
∇ × =

∂
j z , (32) 

 
2 2

0 2 2 2 2 2 2
( )

( )
ˆˆ ˆ ˆ(1 / ) 1 /

p pz z
z

c c

i B

c c

ω ω ω
µ

ωω ω ω ω ω

∇ ×
∇× = = −

− −

E
j . (33) 
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Equation (31) then becomes 

 2 2 2
0 2 2

ˆ/
0

ˆ1 /
z z s z

c
B k B k B

ω ω

ω ω
∇ + − =

−
. (34) 

The k0
2 term can safely be neglected, and we have Bessel’s equation (20) with the solution 

 0I ( )zB A Tr= , (35) 

where 

 

1 / 22 2

2
/

(1 ) 1
(1 )

c
sT k i

i

ω ω
δ

δ

−  
= + −   +   

, (36) 

with δ  as in Eq. (13).   Defining 

 /cγ ω ω≡ , (37) 

we can write T as T = |T|exp(iψ).  Without assuming either δ or γ to be large or small, we find 

 

1 / 42 1 / 2 2 2 2 2 2 2 2

2 2
1

2 2

| | (1 ) (1 ) (1 )

1 (1 )
tan ,

2 1

sT k δ δ γ δ δ γ

δ δ γ
ψ

δ γ

−

−

 = + + − + + +
 

 + +
= −  

+ −  

 (38) 

which reduces to Eq. (14) when γ  = 0.   An example of this solution is shown in Figs. 11 and 
12 for a case in which δ = 0.23 and γ = 1 at B0 = 5G.  Note that the increase in skin depth is 
not monotonic below this field because of the effect of collisions.  This effect is even more 
evident in the phase velocities seen in Fig. 12.   

 Although this simple treatment for Er = Ez = 0 gives reasonable results, the results are 
spurious.  This physical situation cannot occur in a cylinder for the following reason.  The 
magnetic field bends the orbits of the orbits of the electrons driven by the Eθ field, causing 
them to move in the r direction.  In cylindrical geometry, this necessarily causes a buildup of 
negative charge in the interior, leading to a radial field Er.  Thus, the problem requires treat-
ing more than one component of both B and E.   The solution is a linear superposition of two 
modes, variously called the TE and TM modes in electromagnetic theory, ordinary and ex-
traordinary waves in plasma theory, and helicon (H) and Trivelpiece-Gould (TG) modes in 
helicon theory.  The theoretical framework for the general case has already been given in the 
context of helicon waves19 and can easily be extended to the B0 = 0 case of ICPs.  The gov-
erning equation for the wave magnetic field B is19: 

 2 0z sk kγ∇×∇× − ∇× + =B B B . (39) 

The general solution is B = B1 + B2, where Bj satisfies ∇2Bj +β j
2 Bj = 0, and β j are the roots 

of the quadratic 

 
1/22 2

1,2 2
1

2 4
z z

s
s

k k
ik

k
γ γ

β
 

= −  
 

∓ , (40) 
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and we have assumed perturbations of the form B(r)exp[i(mθ + kzz – ωt).  For clarity we take 
γ to be real here, as defined by Eq. (37); but collisions will be included in the computations 
by replacing ω by ω + iν.  When γ = 0 (B0 = 0),  both roots yield the classical skin depth 1/ks.  
However, contrary to the TE results of Fig. 11, the magnetic field has no effect on the skin 
depth if kz = 0.  The physical reason for this is shown in Fig. 13.  At the RF phase in which 
the antenna current is in the +θ direction, as shown, the induced field Eθ is in the –θ direc-
tion, driving the electrons in the +θ direction.  The Lorentz force –ev × B0 is then in the –r 
direction, creating a negative charge accumulation because of the smaller volume at smaller 
r.  The resulting electrostatic field E2 is in the –r direction, causing an electron drift E2 × B0 
in the original +θ direction.  The field E2 builds up until the force –eE2r on the electrons can-
cels the Lorentz force due to B0.  The original shielding current jθ is then restored, and B0 no 
longer affects it.  If kz does not vanish, however, the charge accumulation can be dissipated 
by electron flow along B0, and jθ will indeed be decreased, permitting deeper penetration of 
the RF field. 

 For m = 0, the radial profiles of Br, Bθ, and Bz  in a uniform plasma are given by19 

 1 0, ( ), ( )r zB B J Tr B J Trθ ∝ ∝ , (41) 

where 

 2 2 1 /2( )zT kβ= − . (42) 

Examples of Bz profiles are shown in Figs. 14-16, with collisions taken into account as in 
Sec. IIB.  In addition, ion collisions and displacement current have also been included by ex-
act evaluation of the coefficients in Eq. (39) from the plasma dielectric tensor20.  Figure 14 
shows that for kz = 0 the magnetic field has little effect on the skin depth up to the order of 
1kG, the only effect coming from the collisional part of the small added terms.  Figure 15 
shows that the effect of kz is to reduce the skin depth when B0 = 0.  We next show the effect 
of kz at a finite DC field of 100 G.  There are now two modes, the TG mode, corresponding 
to the + sign in Eq. (40), and the H mode, corresponding to the – sign.  Figure 16 shows that 
the effect of kz on the TG mode is not monotonic, but in any case is not large.  On the other 
hand, Fig. 17 shows that the H mode becomes a propagating mode and reaches deeply into 
the plasma when kz > kmin, where 

 min 2 /sk k γ≡ . (43) 

As can be seen from Eq. (40), both roots become real for kz > kmin, but the TG mode is heav-
ily damped by collisions.  It is clear that the kz-spectrum of the oscillations is critical in de-
termining the skin depth, and the two modes must be added together with the proper ampli-
tude ratio as determined by the boundary conditions. 

 The exact solution can be computed using the HELIC code developed by Arnush21 
for helicon waves.  Examples of such computations are shown in Fig. 18 for magnetic fields 
of 1 G to 1000 G for an antenna consisting of a single loop at z = 0.  These curves are the re-
sult of summing over the H and TG modes with the proper phases and amplitudes, and sum-
ming over the k-spectrum of the oscillations excited by the antenna.  The cylinder is infinite 
with no endplates, and the density is assumed to be uniform.  These conditions are assumed 
in order to compare with the previous results, although the code is equipped to handle the 
more general case.  It is seen in Fig. 18 that B0 indeed increases the skin depth, but not as 
much as one might have expected.  Though the |Bz| profiles are similar, the phase velocities 
vary greatly as B0 is changed.  This is because the k-spectrum, shown in Fig. 19 on a log-log 
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scale, depends sensitively on B0.  The effect of changing the k-spectrum is illustrated in Figs. 
20 and 21,  which show the same calculations as in Figs. 18 and 19, but for an m = 1 half-
wavelength helical antenna 20 cm long.  Since in this case the Bz component is not the domi-
nant one in the midplane of the antenna, the magnitude of the total B is plotted here.  The ef-
fect of wave propagation is evident in the non-exponential wave profiles, which do not even 
increase monotonically with B0.  In summary, the addition of a small DC field to skin depth 
calculations is non-trivial and requires an understanding of the underlying physical mecha-
nisms. 

IV.  NONLINEAR EFFECTS  

 When the RF magnetic field B is large enough to affect the electrons’ motion, nonlin-
ear terms in the equation of motion have to be retained. In the frame moving with an elec-
tron, its equation of motion is 

 ( )
d

m e m
dt

ν= − + × −
v

E v B v , (44) 

where E and B are evaluated at the instantaneous position of the electron.  In the equivalent 
fluid formulation, E and B are evaluated in the laboratory frame, and the convective deriva-
tive has to be added so that d/dt = ∂/∂t + v ⋅∇v.  Since v ⋅∇v and v ×  B partially cancel each 
other, it is insufficient to consider the nonlinear Lorentz force v ×  B alone, as some authors 
have done22.  Furthermore, since v and B are phase-related so as to make the electrons oscil-
late with a figure-8 motion, B cannot be averaged and treated as an effective DC magnetic 
field23.  These nonlinear effects are best treated as a nonlinear force FNL, called the pondero-
motive force in laser-plasma interactions, which causes a drift of the figure-8 orbits when 
there is a gradient in the field strength.  Kinetic effects in collisionless plasmas can also be 
nonlinear24, but these are irrelevant to high-density plasmas.  The ponderomotive force can 
cause nonlinear effects that have already been seen, such as displacement of the plasma away 
from the wall25, generation of a second harmonic field at 2ω26, and changes in the electron 
energy distribution27.   Here we derive other ponderomotive force effects not considered be-
fore. 

 Following Schmidt28, we solve Eq. (44) order by order.   In lowest order, let the local 
RF field be 

(1) coss tω=E E ,     (45) 

where Es denotes the spatial part.  Neglecting the nonlinear terms in this order and integrat-
ing twice, we obtain    

  

(1)

(1) 2 1 (1)

(1) 2 1
2

/ cos

(1 ) (sin cos ) ( / )

(1 ) (cos sin ) ,

s

s

s

md dt e t m
e

t t d dt
m
e

t t
m

ω ν

δ ω δ ω
ω

δ ω δ ω
ω

−

−

= − −

= − + + =

= + −

v E v

v E dr

dr E

                (46) 

where δ = ν/ω and dr(1) is the excursion of the electron.  Faraday’s Law gives 
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(1)

/ cos

1
sin .

s

s

d dt t

t

ω

ω
ω

− = ∇ × = ∇ ×

= − ∇×

B E E

B E
                                    (47) 

These equations are in the frame of the moving electron.  Hence, in second order, E must be 
evaluated at the position r0 + dr(1).  The second order terms in the equation of motion are 
then 

(2)
(1) (1) (1) (1) (2)[( ) ]

d
m e m v

dt
ν= − ⋅∇ + × −

v
r E v B .                                 (48) 

Substituting the first-order terms from Eqs. (46) and (47), we obtain 

 

(2) 2
(2)

2 2 2

2 2

1
1

(cos sin cos ) (sin sin cos ) ( ) .s s s s

d e
dt m

t t t t t t

ν
ω δ

ω δ ω ω ω δ ω ω

+ = − ×
+

 − ⋅∇ + + × ∇× 

v
v

? ? ? ?
 (49) 

Using trigonometric identities and the vector identity 

2½ ( )s s s s s× ∇ × = ∇ − ⋅∇E E E E E ,       (50) 

we combine the two vector terms to obtain 

 
(2) 2

(2)
2 2 2

1
[ (1 cos2 sin2 ) (cos2 sin2 )]

1
d e

t t t t
dt m

ν ω δ ω ω δ ω
ω δ

+ = − − + + −
+

v
v G H , (51) 

 where 
 2¼ ,s s s≡ ∇ ≡ ⋅ ∇G E H E E .       (52) 

The so-called ponderomotive force per unit volume is found by multiplying the right-hand 
side by mn and using the definition of ωp: 

 
2 2

0
2 2

1
(1 cos2 sin2 ) (cos2 sin2 )

21
p s

NL s s
E

t t t t
ω ε

ω δ ω ω δ ω
ω δ

 〈 〉
= − ∇ − + + ⋅ ∇ − 

+  
F E E .(53) 

The DC term is the usual ponderomotive force29, modified by collisions.  The cos2ωt terms 
have been investigated extensively by Godyak et al.26,30.   In a plane wave with intensity 
varying in the direction of propagation, (Es ⋅∇)Es would vanish, since Es and ∇ are perpen-
dicular to each other.  In our geometry of a symmetric cylinder, Es is in the θ direction and 
the only gradient is in the r direction, but (Es ⋅∇)Es does not vanish because the unit vector ?̂  
varies with θ.  We then have ˆEθ=E ? , and 2ˆ( ) /s s sE r⋅∇ = −E E r , a nonlinear centrifugal 
force at the second harmonic.  If we neglect this term, FNL takes the simple form 

2
2 1 2

2
(1 ) (1 cos2 sin2 )

2
p o

NL s t t
ω ε

δ ω δ ω
ω

−  = − + ∇ − +  
F E .  (54) 
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This expression agrees with that given by Piejak and Godyak31, who predicted that the sec-
ond harmonic would dominate when δ  >> 1.  Indeed, squaring the 2ω terms and averaging 
over time, we find the 2ω component to be given by 

( )
2 2

1 / 21 / 22 2 2 2
2 2 2 2 1/2

1 1
(2 ) ½ 1 ½

(1 ) (1 )2 2
p po o

NL s s
ω ωε ε

ω δ
ω δ ω δ

   
= ∇ + = ∇   

+ +      
F E E .    (55) 

The ratio of <F2ω> to |FDC| is (1+δ2)1/2/√2, which increases with δ.  Both FDC and F2ω de-
crease with δ, but FDC decreases faster. 

The DC force causes v(2) to increase secularly.  We can solve Eq. (51) for v(2) by as-
suming v(2) to be of the form    
 (2)

1 2 3sin2 cos2t t tω ω= + +v v v v , (56) 

and solving for v1, v2, and v3 by matching the time dependences.  After some algebra, we ob-
tain 

2 2
(2) 2 1

2 2 2 2
1 2 1 3

(1 ) ( )sin2 ( )cos2
4 4

e
t t t

m

δ δ
δ ω ω

ω ωω δ δ
−  −

= − + + − − − 
+ +  

v G G ? G ? ,    (57) 

In cylindrical symmetry, G – H simplifies to 

 2 2 4 2 4
s s sˆ ˆ¼ / ( ) / 4E E r r E r′− = ∇ + =G H r r , (58) 

where the prime indicates ∂/∂r. 

 In the absence of a DC magnetic field, the only waves other than this electromagnetic 
wave which can propagate in a plasma are the electron plasma wave and the ion acoustic 
wave.  The former has a frequency near ωp and cannot be directly excited by the RF.  An ion 
wave, however, can possibly be excited, either directly by the ponderomotive force or 
through the stimulated Brillouin scattering instability, leading to propagation of RF energy 
beyond the skin depth.  In second order, there are no effects at the frequency ω which could 
lead to excitation of ion waves.  To find such an effect, we have to go to third order.  For 
simplicity, we neglect both δ and H in this calculation.  In that case, Eq. (57) simplifies to 

 ( )
2

(2) 2
2 3

1
2 sin2

8 s
e

E t t
m

ω ω
ω

= ∇ −v . (59) 

The third-order equation of motion is 

 
(3)

(1) (2) (2) (1) (1) (2) (2) (1)( ) ( )
d e

dt m
 = − ⋅∇ + ⋅ ∇ + × + × 

v
dr E dr E v B v B , (60) 

where  
 (2) (1) (1)( )= ⋅∇E dr E  (61) 

and  

 
(2)

(2)d
dt

= −∇×
B

E . (62) 

Both E(2) and B(2) vanish with the neglect of Es ⋅ ∇Es.  Integrating Eq. (59), we find 
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2

(2) 2 2
2 3

1 1
cos2

8 2s
e

E t t
m

ω ω
ωω

 = ∇ + 
 

dr . (63) 

Inserting this into Eq. (60) and multiplying by mn, we obtain for the third-order ponderomo-
tive force 

{ }
2

2 2
3 2 2 2 2 22

1
(2 ½) cos 4 sin (½ )cos3

16
e

en t t t t t
m

ω ω ω ω ω
ω

   = − + + − + −    
F H G H G H ,(64) 

where 

 ( )2 2
2 2, ( )s s s sE E≡ ∇ ⋅∇ ≡ ∇ × ∇×G E H E . (65) 

In cylindrical symmetry, use of Eq. (50) yields H2 = −G2, and G2 can be written 

 ( )2 2 2
2 ( ) 2( )s s s s s sE E E′ ′ ′≡ ∇ ⋅∇ = =G E E E . (66) 

F3 then becomes 

( )
2

2 2 2
3 2

3
(2 ½)cos 4 sin cos3

8 2s s
en e

E t t t t t
m

ω ω ω ω ω
ω

   ′= − − + +      
F E .          (67) 

For ωt >> 1, the dominant term in F3 is 

 
2

2 2
3 2¼ coss

s
eE

ne t t
m

ω ω
ω

′ 
= −  

 
F E . (68) 

This is in the same direction as the force applied by E(1) and therefore cannot lead to any new 
effects. 

V.  Conclusions 

 Classical skin depths were calculated with arbitrarily large collisionality in cylindrical 
geometry.  It was found that non-monotonic radial profiles of |Bz|, as are sometimes ob-
served, are not possible in this context.  Addition of a DC magnetic field affects the skin 
depth in a way which is sensitive to the kz spectrum excited by the antenna.  The skin depth is 
greatly increased only when B0 is large enough for helicon waves to propagate.  The nonlin-
ear ponderomotive force was calculated with arbitrary collisionality.  The normal DC pon-
deromotive force was recovered, as well as the well-known second harmonic force.  Colli-
sions were found to weaken the second harmonic.  The third-order ponderomotive force was 
calculated for the collisionless case.  A secularly increasing force at the fundamental fre-
quency was found, but this is in the θ direction, not the r direction, and is in the same direc-
tion as that of the applied RF field.  Non-monotonic behavior of |Bz|(r) cannot be explained 
by collisions, by geometry, by DC magnetic fields, or by nonlinear effects induced by the 
wave’s magnetic field. 
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FIGURE CAPTIONS 

 
Fig. 1.  Curves used to fit electron-ion and electron-neutral collision frequencies as functions 

of electron temperature. 
Fig. 2.  Dividing line between high and low collisionality for various RF frequencies. 
Fig. 3.  Classical skin depth vs. density at various neutral pressures. 
Fig. 4.  Effect of argon pressure on skin depth at various electron temperatures. 
Fig. 5. Contours of constant amplitude of the function J0(x + iy) (solid lines) and of its phase 

(in degrees, dotted lines).  The points are hypothetical measurements of the radial 
profile of wave amplitude, normalized to unity at r = 0.  The angle α depends only on  
ν / ω, and has been drawn here for ν / ω = 1.The diagonal line is the boundary for 
“normal” skin depth measurements in a collisional plasma. 

Fig. 6.  Field penetration into a cylindrical plasma of various densities. 
Fig. 7. Field penetration into a cylindrical plasma at various pressures. 
Fig. 8.  Variation of phase velocity with pressure.  Note that the variation is not monotonic. 
Fig. 9.  Effect of cylindrical geometry on field profiles. 
Fig. 10.  Instantaneous radial profiles of Bz (left) and Jθ (right) in a case with large ν / ω and 

ds / a.  The curves are flipped during the second half-cycle.  The shaded line is the 
envelope of the magnitude of Bz. 

Fig. 11.  Effect of an applied DC magnetic field on penetration of a 13.56-MHz RF field into 
a 15-cm radius cylindrical plasma in the TE approximation.  Electron collisions are 
computed for Te = 3 eV, n = 5 × 1011 cm-3, and p = 5 mTorr of argon; ion collisions 
are neglected. 

Fig. 12.  Relative phase of the RF signal for the case of Fig. 11. 
Fig. 13.  Physical mechanism of RF penetration across a DC magnetic field. 
Fig. 14.  Computed field magnitude profiles for kz = 0 at various magnetic fields B0.  

Conditions are: f = 13.56MHz, Te = 3eV, p = 5mT, n = 5 × 1011 cm-3, a = 15cm. 
Fig. 15. Computed field magnitude profiles for B0 = 0 and various values of kz .  Conditions 

are the same as in Fig. 14. 
Fig. 16. Computed field magnitude profiles of the TG mode for B0 = 100 G and various 

values of kz .  Conditions are the same as in Fig. 14.  The variation is not monotonic; 
the curves appear in the same order as in the legend. 

Fig. 17. Computed field magnitude profiles of the helicon mode for B0 = 100 G and various 
values of kz .  Conditions are the same as in Fig. 14. 

Fig. 18.  Exact calculations of field profiles at various magnetic fields using the HELIC code.  
Conditions are as in Fig. 14. 

Fig. 19.  The spectrum P(kz) of power deposited per unit k corresponding to the curves on 
Fig. 17.  Logarithmic scales are used because the coupling efficiency is two orders of 
magnitude lower at low B0 fields corresponding to ICP operation.  The peaks at high 
fields correspond to eigenmodes of the coupled helicon-TG waves. 

Fig. 20.  Same as Fig. 18 except that the antenna is a half-wavelength helix with m = 1 sym-
metry, and the total |B| is plotted rather than |Bz |. 

Fig. 21.  The spectrum of waves in the plasma producing the field profiles of Fig. 20 at 
various magnetic fields. 
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Fig. 1.  Curves used to fit electron-ion and electron-neutral collision frequencies as functions 

of electron temperature. 
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Fig. 2.  Dividing line between high and low collisionality for various RF frequencies. 
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Fig. 3.  Classical skin depth vs. density at various neutral pressures. 
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Fig. 4.  Effect of argon pressure on skin depth at various electron temperatures. 
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Fig. 5. Contours of constant amplitude of the function J0(x + iy) (solid lines) and of its phase 
(in degrees, dotted lines).  The points are hypothetical measurements of the radial profile of 
wave amplitude, normalized to unity at r = 0.  The angle α depends only on  ν / ω, and has 

been drawn here for ν / ω = 1.The diagonal line is the boundary for “normal” skin depth 
measurements in a collisional plasma. 
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Fig. 6.  Field penetration into a cylindrical plasma of various densities. 
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Fig. 7. Field penetration into a cylindrical plasma at various pressures. 
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Fig. 8.  Variation of phase velocity with pressure.  Note that the variation is not monotonic. 
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Fig. 9.  Effect of cylindrical geometry on field profiles. 
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Fig. 10.  Instantaneous radial profiles of Bz (left) and Jθ (right) in a case with large ν / ω and 
ds / a.  The curves are flipped during the second half-cycle.  The shaded line is the envelope 

of the magnitude of Bz. 
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Fig. 11.  Effect of an applied DC magnetic field on penetration of a 13.56-MHz RF field into 
a 15-cm radius cylindrical plasma in the TE approximation.  Electron collisions are computed 
for Te = 3 eV, n = 5 × 1011 cm-3, and p = 5 mTorr of argon; ion collisions are neglected. 
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Fig. 12.  Relative phase of the RF signal for the case of Fig. 11. 
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Fig. 13.  Physical mechanism of RF penetration across a DC magnetic field. 
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  Fig. 14.  Computed field magnitude profiles for kz = 0 at various magnetic fields B0.  
Conditions are: f = 13.56MHz, Te = 3eV, p = 5mT, n = 5 × 1011 cm-3, a = 15cm. 
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Fig. 15. Computed field magnitude profiles for B0 = 0 and various values of kz .  Conditions 

are the same as in Fig. 14. 
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Fig. 16. Computed field magnitude profiles of the TG mode for B0 = 100 G and various 
values of kz .  Conditions are the same as in Fig. 14.  The variation is not monotonic; the 

curves appear in the same order as in the legend. 
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Fig. 17. Computed field magnitude profiles of the helicon mode for B0 = 100 G and various 

values of kz .  Conditions are the same as in Fig. 14. 
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Fig. 18.  Exact calculations of field profiles at various magnetic fields using the HELIC code.  

The antenna is a simple loop, and plasma conditions are the same as in Fig. 14. 
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Fig. 19.  The spectrum P(kz) of power deposited per unit k corresponding to the curves on 
Fig. 17.  Logarithmic scales are used because the coupling efficiency is two orders of 
magnitude lower at low B0 fields corresponding to ICP operation.  The peaks at high fields 
correspond to eigenmodes of the coupled helicon-TG waves. 
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Fig. 20.  Same as Fig. 18 except that the antenna is a half-wavelength helix with m = 1 

symmetry, and the total |B| is plotted rather than |Bz |.  
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Fig. 21.  The spectrum of waves in the plasma producing the field profiles of Fig. 20 at 

various magnetic fields. 
 


