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ABSTRACT

A simple method for analyzing Langmuir probe curves is described
which yields the ion density in weakly collisional plasmas for which purely
collisionless theories give erroneous results.  The method is based on an ex-
trapolation to the floating potential of the saturation ion current raised to the
4/3 power.  This procedure is not supported by theory but apparently works
because effects neglected in the theory tend to cancel.

I.  INTRODUCTION AND METHODOLOGY

Langmuir probe measurement of the plasma density n in the weakly collisional ra-
diofrequency (rf) discharges used in semiconductor fabrication is difficult not only because
of contamination of the probe tips but also because it has been found1 that collisionless theo-
ries of ion collection are subject to large errors in these plasmas.  We have found experi-
mentally that saturation ion currents Ii to cylindrical probes in the 1010 to 1012 cm-3  density
range tend to follow an Ii ∝ Vp

3/4 law.  Extrapolating to the floating potential Vf, which is
easily measured, one can obtain an estimate of the ion (or electron) current at Vf.  Since Vf ≈
5KTe, the sheath is well established at this potential, and the expected Ii(Vf) can be calculated
without the uncertainties inherent in extrapolating to the space potential Vs (≡ 0) due to the
weak ion-accelerating fields there.  The Ii ∝ Vp

3/4 is reminiscent of the Child-Langmuir (CL)
law for plane electrodes.  If one assumes that the sheath thickness is given by the CL law
(neglecting the cylindrical curvature), the collection area expands as Vp

3/4, giving rise to the
observed shape of the I � V curve.  The ion current at the sheath edge is given by the Bohm
sheath criterion as

1/ 2
0 , ( / )i s s s eI nA c c KT Mα= ≡ , (1)

where As is the sheath area, and α0 is a constant equal to e−1/2 = 0.61 if Ti = 0 and ≈0.5 if Ti is
slightly elevated above room temperature2.  Hence, knowing Vf −Vs and Ii(Vf), one can com-
pute n using the value of KTe from the electron part of the I � V curve.  As we shall show in
detail, the CL formula should not be applicable in these circumstances, but this procedure
heuristically gives values of n in good agreement with independent measurements using mi-
crowave interferometry.  [Note that Ii is a particle current; the electrical current is eIi, the ions
being assumed singly charged.]

The procedure, then, is as follows.  A sample I � V curve is shown in Fig. 1.  First, the
space potential Vs is found from the minimum in the dI/dV curve, shown in Fig. 2.  In this
case, a clear minimum can be found by drawing a smooth curve through the data points.  In
RF discharges plasma noise and inadequate RF compensation often make this curve hashy,
sometimes with more than one minimum, as illustrated in Fig. 3 for a different I � V curve.
The experimenter has then to choose Vs judiciously.  Next, the ion part of the characteristic is
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raised to the 4/3 power and plotted against Vp, as shown in Fig. 4.  A straight line is fitted to
the part of the curve that is not affected by electron current.  Extrapolating to Vf, where I = Ii

− Ie = 0, gives an estimate of Ii(Vf).  Note that the extrapolation to Vf is much shorter than to
Vs, so that the estimate of Ii(Vf) should be more accurate than Ii(Vs).  The ion current is then
calculated from the straight line fit to Ii

4/3 and subtracted from the total current to give Ie.
This is plotted semi-logarithmically in Fig. 5.  Note that the ion correction to Ie has made the
curve follow a Maxwellian over a much larger range of V (= Vp).  Fitting a straight line to this
curve yields the electron temperature KTe in eV:

1/ 2exp( ), ( / 2 ) , ( ) /e p er p er e s eI A nv v KT m V V KTη π η= − ≡ ≡ − − , (2)

Ap being the probe area and n the plasma density in the body of the plasma.  The reciprocal of
the slope of the lnIe − Vp curve is then equal to KTe.  The value of Ie at Vp = Vs gives an esti-
mate of n, called Ne, which is based on Ie alone.  Since Ne depends exponentially on Vs, it is
subject to large errors arising from uncertainty in the determination of Vs.

To find n from Ii(Vf), we assume a sheath thickness d given by the CL formula3

3 / 43 / 4 2 1/ 2
0

0

1 2 (2 ) 1.018 , ( / )
3 f D f D D ed KT neη λ η λ λ ε

α
= = ≡  ,              (3)

with ηf known once Vs and Te have been determined.  The sheath radius is the sum of d and
the probe radius Rp.  Using Eq. (3) in Eq. (1) for a probe length L then gives

0( ) ( ) / 2 ( )i i f p sn N CL I V R d L cπ α= = + . (4)

Note, however, that d depends on λD, which is proportional to n�1/2.   Eqs. (3) and (4) thus
constitute a quadratic equation for n1/2, whose gives the ion density as

2 1/ 2 2{[ ( 4 ) ]/ 2 }n B B AC A= − + + (5)

where
3 / 4 2 1/ 2

0 0, ( / ) , ( ) / 2p f e i f sA R B KT e C I V L cη ε π α= ≈ = . (6)

II.  COMPARISON WITH THEORY
Although it will be shown that this method yields values of n in agreement with mi-

crowave measurements, it is not easy to justify theoretically.  First, the CL formula used for d
is for plane sheaths, not cylindrical ones.  Second, the CL formula gives only a crude ap-
proximation to the sheath thickness because it neglects the Debye sheath, where the electron
density cannot be neglected.  Treatments which jump discontinuously from quasineutral
plasma to pure ion sheaths are referred to as step models4.  Sometimes, a constant ion density
is assumed is what is called a matrix sheath3.  The Bohm formula requires ions to enter the
sheath with the velocity cs, whereas the CL formula assumes zero velocity.  Hutchinson5 has
modified Eq. (3) to include an initial ion velocity cs.  If we take V = 0 in the plasma rather
than at the sheath edge as in Ref. 5, Hutchinson�s formula becomes

( ) ( )½½ ½ ½ ½1.018 [ ½] 2 [ ½] 2 Dd η η λ−= − − − + .                             (7)

Use of this formula did not improve the results.
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The exact solution for a combined Debye-CL sheath in plane geometry can be de-

rived from Poisson�s equation

2

2 0
( )e i

d V e n n
dx ε

= − . (8)

In a strictly 1-D problem, we must assume a sheath edge, since if the ion velocity vi were
zero at infinity, the density there would have to be infinite for the ion flux to be finite.  For
convenience we choose the sheath edge to be the plane where (a) eV = −½KTe relative to the
plasma potential, so that the Bohm criterion is satisfied there, (b) vi = cs, and (c) n = ns =
n0e−½. Shifting the origin of both x and V to this point, we now have, for Maxwellian elec-
trons,

/ , /eeV KT
e s s en n e n e eV KT

η
η−= = ≡ − . (9)

For the ions, energy conservation requires

( )½2 2 2½ ½ , 2 /i s i sMv Mc eV v c eV M= − = − . (10)

Continuity of ion flux then gives

( )
-1/2

-1/2
2

2, 1 1 2s
i i s s i s s s

i s

c eVn v n c n n n n
v Mc

η
 

= = = − = +  
 

(11)

Eq. (8) then becomes

( )
2 21/ 2

2 20
1 2 e

s
d V e KT dn e

edx dx
η ηη

ε
−− = − + = −  

(12)

Normalization to the Debye length λDs at the sheath edge yields

( ) ½'' 1 2 e ηη η − − = + −  
, (13)

where the (′) indicates derivative with respect to / Dsxξ λ≡ .  Following standard procedure,
we multiply by an integration factor η′ and integrate from η = 0 to η.  Setting η′ = 0 at ξ  = 0,
we obtain

½ ½' 2[(1 2 ) 2]e ηη η −= + + − . (14).

The next integration has to be done numerically, and the result is shown in Fig. 6 for two as-
sumed values of η′′(0).  The �sheath thickness� is indeterminate because it depends on the
assumed boundary condition at ξ = 0.  If η′ = 0 there, then η′′ or another derivative must be
given a finite value in order for the curve to rise above zero.  In practice, the boundary con-
dition on η′ and η′′ is determined by matching to the presheath.  The two curves of Fig. 6 are
plotted logarithmically in Fig. 7.  Once η becomes appreciable, the curve η(ξ) has a definite
shape, but its position relative to the sheath edge cannot be found without a presheath calcu-
lation.  Also shown in Fig. 7 is the CL sheath thickness according to Eq. (3) and the floating
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potential ηf = 4.68 of a plane probe6.  We see that it is possible to choose a boundary condi-
tion that makes the computed sheath thickness agree with dCL(Vf), but that the slopes of the
curves are different there.  The increase in Ii with Vp depends on the normalized probe radius

/p p DRξ λ≡ . (15)

Adding ξp to the right-hand curve of Fig. 7 results in Fig. 8.  Although the sheath radius at Vf
can agree with the CL prediction if the small gradients at the sheath edge happen to have the
right value, the slopes do not agree at larger probe biases.  Thus, it is difficult to see why the
measured ion saturation current increases as |Vp|3/4, as predicted by the inexact CL formula
but not by the exact calculation.

Since the use of the CL formula is not justified because the sheath is not plane by cy-
lindrical, we next solve the sheath equation for cylinders.  In this case, the calculation can be
carried out to infinity, and the arbitrary conditions at a sheath edge are not needed.  However,
in a simple treatment, collisions are ignored as well as the orbiting of ions around the probe
due to their angular momentum.  Poisson�s equation is now

( ) /
0 0

0

1 , eeV KT
e i e

V er n n n n e n e
r r r

η
ε

−∂ ∂  = − = = ∂ ∂ 
, (16)

where n → n0 and V → 0 as r →∞.  The ion velocity is

( )½ ½2 / (2 )i sv eV M cη= − = , (17)

and flux conservation gives

½/ (2 )
2 2
i i i

i
s

I v In
r rc

η
π π

−= = , (18)

where Ii is the inward ion flux per unit probe length.  Normalizing to ρ ≡ r/λD, we now have
for Eq. (16)

( )

( )

-1/2

0

-1/2
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2
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η
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−

−

 ∂ ∂
= − ∂ ∂ 

= −
(19)

The coefficient of the ion term is a dimensionless ion current defined by

3 / 2
0

1
2

i

D s

IJ
cn λπ

≡ . (20)

In terms of J, Poisson�s equation is simply

-½J e ηηρ η ρ
ρ ρ

− ∂ ∂
= − ∂ ∂ 

. (21)

This is the cylindrical equivalent of the Allen-Boyd-Reynolds (ABR) equation for spherical
probes7.  Solutions of Eq. (20) for various values of J were first done in 1964 on an IBM
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mainframe8.  Recent computations by Chen and Arnush6 on a personal computer are in
agreement with the earlier results, which have been fitted with analytic functions9 for easy
application.  In the limit ρ → ∞, Eq. (21) has the asymptotic form η ≈ J2 / ρ2.  Starting with
this solution, one can integrate Eq. (21) inwards to obtain the potential profile η(ρ).  Exam-
ples for two values of J are shown in Fig. 9.  These are universal curves which apply to all
probe radii Rp, characterized by the important parameter ξp ≡ Rp / λD [Eq. (15)].  

The part of the curve for ρ < ξp is irrelevant, and the part for ρ > ξp is unchanged by
the probe, since all incoming ions are absorbed by the probe, and therefore ni and ne are not
affected by the presence of a probe.  This is not true if the ions have angular momentum and
can orbit the probe; in that case the more complicated theory of Bernstein and Rabinowitz
(BR)10 must be used.  For a given value of ξp, such as the one shown in Fig. 9, the probe po-
tential for given J is the value of η(ξp) on the curve for that J.   Thus, in our example, η ≈ 20
for J = 10 and ≈1200 for J = 50.  An Ii − Vp characteristic for given ξp is generated by varying
J and cross-plotting.  Note that ξp itself depends on the unknown value of n0, and the
determination of n from J generally requires iteration.  Jξp, however, is  independent of n0,
and this quantitiy is often plotted instead of J.  In this cylindrical case, no artificial sheath
edge is introduced, and hence there is no confusion between λD and λDs: λD is always
evaluated using the density n0 at infinity.

For the present application, we need to find Ii(Vf).  We start by fixing the value of J.
The floating condition is Ii = Ie, where Ie per unit length is given by

02 exp( )e p er fI R n vπ η= − , (22)

and Ii is given by Eq. (20).  Solving for ηf, we find that n0 cancels, and we have

1/ 2
ln

4
p

f
M

J m
ξ

η
π

   =  
   

. (23)

However, η(ξp) must also satisfy the solution η(ρ) of Eq. (21) for the given value of J and ρ
= ξp.  Fig. 10 shows both η(ρ) and ηf(ξp) for J = 10 on the same plot.  The intersection gives
ηf and ξp for that value of J.  By varying J, one can generate the functions ηf(ξp) and J(ηf) for
given ξp, the dimensionless versions of Vf(Rp) and Ii(Vf) for given Rp.  Also shown in Fig. 10
is the position of the classical sheath edge, as usually defined at η = ½.  Contrary to the plane
case, however, the ion density there is not n0exp(−½) because ni ≠ ne at that point.  The exact
cylindrical solution does not require the arbitrary assumption that quasineutrality holds up to
the sheath edge.

We can, however, define an effective collection radius (�sheath� radius) Rs, such that
if the Bohm criterion were satisfied there, the correct ion current would flow to the probe.
The cylindrical equivalent of Eq. (1) is

0 02i s sI R n cπ α= . (24)

Ii can also be expressed in terms of J by Eq. (20).  Equating these two expressions, one can
solve for Rs, obtaining

0( / ) 2 /s p pR R Jα ξ= . (25)
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If we now define

02 / ( / )p s pJ R Rα ξ α≡ = , (26)

Eq. (24) takes its usual form with α replacing α0:

02i p sI R n cπ α= . (27)

Thus, α can be considered a cylindrically modified value of the Bohm coefficient α0, and the
ratio α /α0 is a measure of the expansion of the collection area beyond the probe area when
the probe is at the floating potential.  The position of Rs is shown in Fig. 10; it is not at η  =
½.  Computed values of ηf, α, and α /α0 as functions of ξp are shown in Fig. 11.  Note that ηf

approaches the plane-geometry value of 5.18 and α /α0 → 1 as ξp → ∞.  From Eqs. (20) and
(26) we can solve for n0, obtaining

0
( )

( )
2

i f
i

p s

I V
n N ABR

R cπ α
= = , (28)

which can evaluated from the extrapolated Ii(Vf) per unit length once Rp and KTe are known.
The value of α(ξp) can be found from the following analytic fit to the curve in Fig. 11:

( )0.0960.607 2432 / exp 7.01 pα ξ≈ + . (29)

Since ξp depends on n0, however, solution of Eq. (28) requires iteration.

III.  COMPARISON WITH EXPERIMENT
 The procedure for finding Vs and KTe from the I � V curve, as well as the density Ne
from the electron saturation current, was described following Eq. (2).  The density Ni(CL)
can then be computed from Eq. (4) using Ii(Vf).  For comparison, the density according to
ABR theory can be found from Eq. (28).  All of these steps have been automated on an Ex-
cel spreadsheet to give Vs, KTe, Ne, Ni(CL), and Ni(ABR) from a 1000-point I � V curve in
<< 1 sec.  Here we present data taken in a 2-MHz argon inductively coupled plasma with an
RF-compensated Langmuir probe .015 cm in diam and 1 cm long at various pressures and RF
powers.  The probe densities are compared with those from microwave interferometry.  De-
tails of the experiment are described elsewhere11.  The data in Fig. 12 span a range of ξp from
≈ 1 to 4.5.  The floating-potential-CL method gives n values agreeing with those from mi-
crowaves to within about 20%, while the ABR method gives consistently lower n.  The elec-
tron densities Ne behave sporadically, as one would expect from their sensitivity to the cho-
sen value of Vs.

In these analyses, Ii was extrapolated to Vf by fitting a straight line to the Ii
p vs. Vp

plot, where p = 4/3.  A fit can also be made for other values of p.  In particular, Langmuir�s
orbital-motion-limited theory2 predicts p= 2, and solutions8 of the ABR equation show p ≥ 2.
Indeed, as shown in the example of Fig. 13, at low densities Ii

2 fits better to a straight line
than does Ii

4/3, suggesting that some ion orbiting is taking place.  Nonetheless, fitting with p =
4/3 gives more reasonable values of n.  In this example, p = 4/3 yields n11 = 0.734 while p =
2 gives n11 = 0.475, compared with a microwave density of 0.872, where n11 is in units of
1011 cm-3.  The sensitivity of Ni(CL) and Ni(ABR) to p is shown in Fig. 14 for the 2 mTorr,
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900W point of Fig. 12.  We see that p = 4/3 gives yields better agreement between Ni(CL)
and the microwave measurement than does p = 2 or ½.  This is generally true of the cases we
have examined, though p = 4/3 has no theoretical justification.

IV.  DISCUSSION
The FP-CL method for cylindrical probes neglects three major effects: 1) electron

density and cylindrical curvature in the calculation of sheath thickness; 2) orbiting of ions
around the probe; and 3) loss of ions moving in the z direction, parallel to the probe axis.  We
have treated (1) with the ABR analysis, finding that it yields values of n that are too low.
The reason is probably that some ions have enough angular momentum to orbit the probe and
miss it.  Taking full account of this effect with the BR theory10, however, yields n values that
are too high.  We have previously suggested1 that a few collisions in the presheath can
greatly decrease the amount of orbiting, and that the geometric mean between n(ABR) and
n(BR) gives a good approximation in this case of partial orbiting.  The FP-CL method appar-
ently succeeds because of a fortuitous cancellation of effects (1) and (2).

This one-dimensional treatment fails to account for the finite length of the probe.
When ξp is small, incoming ions are crowded together and form a large positive space charge
near the probe surface.  As shown in Fig. 15, this space charge creates an electric field Ez,
driving the ions out past the end of the probe.  The ni(r) and ne(r) profiles calculated with the
ABR theory for J = 10 are shown in Fig. 16.  At the radius of a floating probe, there is an ap-
preciable excess ion charge.  For large Vp this value of J corresponds to a very small probe,
and the ion charge can be extremely large unless the ions can escape axially.  Also shown in
Fig. 16 are the radius where η = ½ and the effective sheath radius Rs.  It is clear that quasi-
neutrality does not hold down to η = ½ in the cylindrical case.

We can make a rough estimate of the endloss as follows.  Let <η> be an average po-
tential in the sheath.  The radial ion velocity is given by Eq. (17):

2r sv c η= < > . (30)

With Rs defined as in Eq. (24), ion continuity gives, for r ≈ Rp,

0 0i r p s sn v R n c Rα= . (31)

Using Eq. (26), we have for the average ion density in the sheath

0 0 0
1/ 2 1/ 2(2 ) (2 )

s
i

p

n R nn
R

α α
η η

< >≈ =
< > < >

. (32)

Since η now varies along z, its z-average is perhaps ½<η>, so that the ions escaping axially
will have an average velocity

1/ 2
z sv c η< >≈ < > . (33)

Thus, the loss flux to both ends is given by
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2 2 2 2

02 ( ) 2 ( )loss s p i z s p sI R R n v R R n cπ π α= − < >< > − . (34)

Note that <η> has canceled out, so that it does not have to be evaluated precisely.  The total
radial flux from ABR theory is given by Eq. (27):

02i p sI R L n cπ α= , (35)

where Ii now includes the probe length.  With the help of Eq. (26), we can now write

2 2 2 20
2 20 0

2 ( ) 1 11 1
2 2 2

s p s p ploss s

i p s p

R R n c R RI R
I R L n c L LR

π α α
π α α

   −
 = = − = −      

. (36)

From  Fig. 11, we see that for ξp = 1 (the worst case), (α /α0)2 is of order 20.  For the probe
dimensions used here, Rp / L = .0075.  The endloss correction of Eq. (36) then amounts to
≈11%.  However, it could be larger with thicker probes.

In conclusion, we have found a rapid method for analyzing probe characteristics
which gives more accurate ion density measurements in RF plasmas than any existing probe
theory.  The method is entirely heuristic and is not supported by a detailed treatment of the
sheath.  It apparently works because of the self-cancellation of neglected effects.
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FIGURE CAPTIONS

Fig. 1.  Typical I � V characteric taken with a probe 0.15 mm in diameter and 1 cm long.
Fig. 2.  First derivative of the I � V curve.  The points have been smoothed over the

digitization noise, and the line is a further smoothing of the data.
Fig. 3.  Example of a case where the �knee� of the I � V curve is ill-defined.
Fig. 4.  Ion current Ii

4/3 vs. V, and a least-squares fitted straight line.  The electron current has
not been subtracted from the Ii data.  The intersection of the line with the vertical line at
floating potential Vf yields the value of Ii(Vf) used in the analysis.

Fig. 5.  Semi-logarithmic plot of electron current Ie vs. V and the least-squares fitted line.
The solid points are the raw data without correction for the ion contribution.

Fig. 6.  Calculated potential in a plane sheath with different assumed boundary conditions at
the sheath edge ξ  = 0, where V ≡ 0.

Fig. 7.  The two curves of Fig. 6 on a log-log scale, compared with the normalized Child-
Langmuir sheath thickness.  The dashed line is the floating potential of a plane probe.

Fig. 8.  Normalized sheath radii for various values of Rp/λD as calculated (points) and as
estimated with the CL formula (lines).  The right-hand curve of Fig. 7 was used.  The
dashed line is the floating potential.

Fig. 9.  Potential profiles in a cylindrical sheath for two values of normalized probe current J.
The dashed line is the J = 50 curve reduced by 10.  The line ξ p marks the probe radius.

Fig 10.  The functions η(ξ) and ηf(ξp) for J = 10 in argon.  The �classical sheath edge� is the
radius at η = 0.5, where the ions have velocity cs.  The �effective sheath radius� is that at
which the assumed probe current would be collected if the Bohm criterion were satisfied
there (which it is not).

Fig. 11.  Computed values of ηf = −eVf / KTe, α, and α /α0 for a cylindrical probe in argon
and purely radial ion orbits.  The curve through the α points is the analytic fit of Eq. (29).

Fig. 12.  Probe densities computed with the CL formula (F), the ABR theory (♦), and
electron saturation current (∆), compared with microwave densities (−−−−) at various
pressures.

Fig. 13.  Ion current at 1 mTorr, 450W plotted as Ii
p vs. Vp with p = 4/3 (upper curve) and p =

2 lower curve.  The straight-line fits are also shown.
Fig. 14.  Dependence of calculated density on the exponet p in Ii

p − Vp.  Values of n
computed with the CL formula and the ABR theory are compared with that measured
with microwaves (MW).  The star marks the value p = 4/3.

Fig. 15.  Schematic of ion space charge around probe tip, causing ions to stream axially.
Fig. 16.  ABR solution for the ion ( ) and electron (− − − −) densities in the sheath for

the case J = 10.  The radius of a floating probe is shown by the line labeled Rp.  Similarly,
R1/2 is the radius where η = ½, and Rs is the effective sheath radius for this case.  For
probes at higher ηp, the line Rp will move to the left for fixed J.
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floating potential Vf yields the value of Ii(Vf) used in the analysis.
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Fig. 5.  Semi-logarithmic plot of electron current Ie vs. V and the least-squares fitted line.
The solid points are the raw data without correction for the ion contribution.
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Fig. 6.  Calculated potential in a plane sheath with different assumed boundary conditions at
the sheath edge ξ  = 0, where V ≡ 0.
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Fig. 7.  The two curves of Fig. 6 on a log-log scale, compared with the normalized Child-
Langmuir sheath thickness.  The dashed line is the floating potential of a plane probe.
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Fig. 8.  Normalized sheath radii for various values of Rp/λD as calculated (points) and as
estimated with the CL formula (lines).  The right-hand curve of Fig. 7 was used.  The dashed
line is the floating potential.
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Fig. 9.  Potential profiles in a cylindrical sheath for two values of normalized probe current J.
The dashed line is the J = 50 curve reduced by 10.  The line ξ p marks the probe radius.
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Fig 10.  The functions η(ξ) and ηf(ξp) for J = 10 in argon.  The �classical sheath edge� is the
radius at η = 0.5, where the ions have velocity cs.  The �effective sheath radius� is that at
which the assumed probe current would be collected if the Bohm criterion were satisfied
there (which it is not).



16

0

1

2

3

4

5

6

0.1 1 10 100 1000
ξp

α / α0

ηf

α

Fig. 11.  Computed values of ηf = −eVf / KTe, α, and α /α0 for a cylindrical probe in argon
and purely radial ion orbits.  The curve through the α points is the analytic fit of Eq. (29).
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Fig. 12.  Probe densities computed with the CL formula (.), the ABR theory (♦), and
electron saturation current (∆), compared with microwave densities (−−−−) at various
pressures.
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Fig. 13.  Ion current at 1 mTorr, 450W plotted as Ii
p vs. Vp with p = 4/3 (upper curve) and p =

2 lower curve.  The straight-line fits are also shown.
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Fig. 14.  Dependence of calculated density on the exponent p in Ii
p ∝ Vp.  Values of n

computed with the CL formula and the ABR theory are compared with that measured with
microwaves (MW).  The star marks the value p = 4/3.
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Fig. 15.  Schematic of ion space charge around probe tip, causing ions to stream axially.
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Fig. 16.  ABR solution for the ion ( ) and electron (− − − −) densities in the sheath for
the case J = 10.  The radius of a floating probe is shown by the line labeled Rp.  Similarly,
R1/2 is the radius where η = ½, and Rs is the effective sheath radius for this case.  For probes
at higher ηp, the line Rp will move to the left for fixed J.
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