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ABSTRACT 

Wireless Integrated Network Sensors (WINS) provide a 
distributed monitoring approach for battlefield situational 
awareness, machine condition based maintenance, health 
care, transportation, and other applications.  The WINS 
architecture is based on compact, intelligent, networked 
low-power sensor nodes.  WINS operation relies on 
efficient system design and low power event classification 
with resulting applications.  Efficient system design with 
power constraints facilitate scalability for a distributed 
sensor network.  Low power design must accommodate 
signal processing and event classification from multiple-
type of sensed signals.  This paper presents a flexible, and 
scalable method of signal classification designed for 
WINS.  Signal Search Engine (SSE) with the time domain 
classification method relies on template matching using 
templates derived directly from field measurements.  An 
enhanced hybrid-SSE with the use of ‘wavelet’ method 
classification is also described.  Results obtained from the 
time domain signal classification scheme and the ‘wavelet’ 
method give error rates of less than 15% with minimal 
signal pre-processing. 

 

INTRODUCTION 

Wireless integrated network sensors (WINS) combine 
sensing, signal processing, decision capability, and 
wireless networking capability in a compact, low power 
system.[1,2,5]  Compact geometry and low cost allows 
WINS to be embedded and distributed at a small fraction 
of the cost of conventional wireline systems.  WINS 
defense applications include battlefield situational 
awareness for security and tactical advantage.  WINS also 
provide distributed condition based maintenance for 
vehicles and energy systems for enhancements in 
reliability, reductions in energy usage, and improvements 
in quality of service.  Many new applications are 

expanding in the consumer domain for decision support 
systems as well. 

WINS sensor distribution, enabled by the WINS low 
power architecture, provides improved event detection and 
classification capability.  Since WINS nodes are low cost 
elements, they may be distributed on a dense spatial scale.  
This ensures that separation between nodes and source 
signals are minimized.  Reducing distance between source 
and node results in both increase in source signal to noise 
ratio (SNR) and reduction in signal distortion during 
propagation of seismic or acoustic signals.  Closely spaced 
sensors further provide optimized low power wireless 
communication of data and decisions.  Multi-hopped 
wireless data communication add to optimized low power 
data transmission in addition to enhanced battery life and 
sensor node life-time. [6] 
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The wireless integrated network sensor (WINS) node 
architecture includes sensor, data converter, signal 
processing, and control functions.  Micropower RF 
communication provides bidirectional network access for 
low bit rate, short-range communication.  The micropower 
components operate continuously for event recognition, 
while the network interface operates at low duty cycle.  The 
prototype SSE is resident in the node processor.  Future 
implementations of the SSE can operate as an independent 
coprocessor. 

Figure 1 

The opportunities for WINS depend on the development of 
a scalable, low cost, sensor network architecture.  This 
requires that sensor information be conveyed to the user at 
low bit rate with low power transceivers.  Continuous 



sensor signal processing must be provided to enable 
constant monitoring of events in an environment.  Thus, 
for all of these applications, local processing of distributed 
measurement data is required with a low cost, scalable 
technology.  Hence, the signal search engine (SSE) is 
developed with the intentions of local on-board, low 
power, robust event classification. 

 

WINS ARCHITECTURE 

The WINS architecture includes a distributed sensor 
network that may provide a link between large-scale 
networks (for example, long range battlefield wireless 
networks or global Internet services) and local physical 
measurements.  The WINS architecture is based on WINS 
nodes (see Figure 1) carrying sensing, signal processing 
[3] and communication functions. 
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WINS nodes (shown as disks) are distributed at high density 
in an environment to be monitored.  Multihop 
communication permits low power operation of dense WINS 
sensor networks.  WINS node data is transferred over the 
asymmetric wireless link to an end user or to a conventional 
wireline or wireless (IP) network service through a WINS 
network Gateway.  The WINS Gateway manages the 
network and provides a network protocol translation.  SSE 
library and code information flows to the nodes, while 
derived events and data flow to the remote user. 

Figure 2. 

The WINS network architecture, shown in Figure 2, is 
based on messaging with minimal use of power or 
bandwidth resources.  The architecture includes sensing 
elements (nodes) and a network bridge that provides both 
local network monitoring and control, and functions as a 
protocol translator.  The architecture relies on methods 
that: 

• Acquire physical measurements at the nodes. 
• Classify events at the nodes (on-board). 
• Communicate short event codes (rather than 

unprocessed data). 
• Perform low power collaborative decision fusion. 
• Catalog, and warehouse decision and relevant 

information to be referred by decision-support 
systems. 

In addition to event decisions flowing towards remote 
users, reconfiguration data and code elements flow from 
the users to the nodes.  In particular, for the SSE, this 
information includes signal library elements and updated 
classification code modules, in addition to networking, 
routing, and decision fusion protocols.  Consequently, 
control functions that give more robustness and modularity 
into decision-fusion modules and networking protocols are 
transmitted by the user to individual nodes, and cluster 
heads. 

 

DISTRIBUTED SENSOR SIGNAL 
CLASSIFICATION 

Operations of sensors in field conditions reveal a number 
of challenges for signal event classification.  Specifically, 
variation in the node deployment environment and 
topology yields distortion and SNR variations of event 
signals.  In addition, variation in source motion yields a 
rich variation in signal characteristics.  Finally, many 
important events produce complex and short impulse 
signals that contribute to a variation of wideband signals 
that come from moving sources.  These characteristics 
have guided the development of an SSE that permits 
comparison of unknown event signals to a template library 
of stored event templates.  Time domain, and wavelet 
classification is utilized to accommodate analysis of short 
impulse signals and a variety of wideband signals 
measured from real world situations.   

Distributed sensor signal processing can exploit network 
communication to enhance the performance of local node 
signal processing.  In particular, the network can offer 
programmability in addition to having multi-hop 
transmission optimized for low-power wireless 
communication of data and decisions.  The benefit of this 
feature is explained here:  In the event that a node (or a 
collective group of nodes) is unable to identify an event 
among a library of templates, or if confidence measure 
attained from the decision are below a certain threshold it 
will be required that a selected set of time series data, 
associated with the event, be propagated through the 
network to a cluster head or remote user (for analysis by a 



more powerful processor / system).  Alternatively, in the 
case of sensors having storage space, time series segments 
are saved for later inclusion into the sensed signal database 
or for off-line classification.  To avoid the high-energy 
dissipation associated with such an error, remote 
reconfigurability must be applied.  A hybrid SSE further 
facilitates a choice between dual classifications in the form 
of a wavelet or other transform domain approach.  For 
corrective action, the network is exploited, to download 
new signal processing data to enable future detection of 
this event. 

Distributed signal processing systems must also have the 
attributes of 

• Protocol reconfigurability (allowing node and network 
operation to be optimized for varying conditions by 
remote control). 

• Scalability to enable increasing network scale without 
requirements for changing the existing network 
architecture. 

• Compatibility with low power operation. 
• Low power wireless communication for decision-

fusion and transmission to the end-user or decision 
support system. 

• A hybrid SSE to re-inforce or re-classify low 
confidence decisions. 

 
 

SIGNAL SEARCH ENGINE 

Time domain processing is applied to the event 
classification problem.  Additional wavelet methods have 
proved to be promising for event classification proving 
worthwhile for a hybrid - SSE.  The WINS frequency 
domain signal processing system has been described 
previously.[3]  Time domain signal processing based on 
state-spaces is particularly important for wideband sources 
while proving to be highly accurate.  A combination of 
acoustic, and seismic signal classification and eventual 
fusion of decisions have made it more favorable for multi-
type signal search engine (M-SSE). 

The basic SSE architecture is shown in Figure 3.  This 
module is extended with signal pre-processing and 
decision fusion architectures for on –board or collaborative 
decision-making at a cluster-head node.  The SSE 
compares unknown event records with stored library tree 
of signal templates using a low power correlator.  
Operation of the SSE begins with the selection of a set of 
signal library elements (templates).  These templates are 
short data packets (length of 10 – 100ms) selected directly 
from time domain samples of field records during signal 
classification training.  Signal classification is performed 

with sensed signals that are classified with assignments of 
associated confidence measures.  Local interim decisions 
and confidences are fused on board exploiting state-spaces.  
Decision fusion focuses on fusion methods that include 
maximum polling and weighted averaging.  A high value 
in confidence measure indicates the unknown signal 
probably comes from the same class as that of the 
representative library template. 

The SSE operation is optimized for signal classification 
through selection of: 1) selecting distinct features of 
correlator time series segment, 2) the correlator segment 
length, 3) the window stepping period for RMS averaging, 
4) filtering and sub-sampling of the correlator and data 
series.  The optimizations of these parameters are 
completed during training, prior to the initial configuring 
of the WINS node. 

The SSE offers the features discussed above for network 
signal processing. First, the SSE architecture is 
programmable.  It is immediately clear that the SSE signal 
library may be edited to add or subtract templates from the 
search space.  Reconfigurability can also be provided by 
allowing remote network control of search priority and 
depth. 
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A schematic view of the Signal Search Engine (SSE) 
architecture.  The SSE compares unknown event records 
with stored library signals using a low power correlator.  A 
hierarchy of signals may allow signals to be first classified, 
and then identified.  The hierarchical search lowers the 
number of computations required to arrive at classification.  
In addition, the benefits of energy expenditure as a function 
of improved classification accuracy may be estimated and 
used to manage node energy. 

Figure 3 

The SSE is also compatible with scalable network 
architecture.  Here signal library templates may be 
propagated throughout the network.  In the circumstance 
that an event may not be identified (even with the hybrid 



SSE), and only intervention by a remote operation is 
successful, then a new signal library element is supplied to 
all nodes in the network. 

Finally, the SSE offers low power operation through a 
hierarchical search method.  The hierarchical search may 
allow signals to be first classified, and then identified.  
Here, an unknown signal is initially tested against a limited 
family of correlators with the intention of detecting the 
class of origin of the signal (for example, from the class of 
wheeled or tracked vehicles.)  The classification of the 
signal class may itself be a valuable result.  However, as 
called for by the node protocols, a more intensive search 
may be executed on the family members (child nodes) in 
the derived class tree structure.  The hierarchical search 
minimizes the number of computations required to arrive 
at a more precise classification.  In addition, the benefits of 
energy expenditure as a function of improved 
classification accuracy may be estimated and used to 
manage node energy. 

The correlation operation defined here may be compared 
with conventional filtering.  The correlator forms an anti-
causal FIR filter.  Coefficients of this filter are, in turn, 
derived directly from actual field data.  Low power 
operation for the SSE should be expected due to 
demonstrated operation of micropower digital filters. [3, 7, 
8] 

 

SIGNAL SEARCH ENGINE IMPLEMENTATION 

A prototype SSE has been implemented in software (code 
implemented in C++) operating on a general-purpose 
processor (Pentium PC).  Additional features for state-
space based classification are built for a proto-type 
operation of the SSE on the same platform.  This software 
test bed has been applied to a library of acoustic and 
seismic records obtained from field data acquisition testing 
of WINS acoustic and seismic sensors for tracked and 
wheeled vehicles. 

The SSE was subjected to a typical test including unknown 
signals obtained during field measurements on a tracked 
vehicle and a wheeled vehicle.  The correlator itself is a 
record taken from one of the vehicle data sets that is not 
used in the test signal set.  Results of the SSE show 
robustness to phase noise content giving validity for a 
generalized template tree for array-sensor data.  Efforts are 
concentrated on obtaining an optimized tree with 
associated probabilities attached to each leaf node.  Results 
from SSE show correct classification for low SNR signals 
showing SCIA algorithm robustness to noise.  The SSE 

results are dependent, as expected, on the selection of the 
proper template (equivalently, matched filter coefficients).  
Detected signals are eventually calculated for confidence 
measures after which decisions are fused on board and 
transmitted for further collaborative decision-fusion at a 
cluster head.  Decision fusion is obtained through state 
dependent modules from each type / class of sensed signal 
waveform.  Investigations reveal that fusion methods are 
dependent on the node architecture and are implemented 
on a case-by-case basis for individual node topologies and 
sensing criteria. 
 

SSE EVALUATION 

Acoustic signals from the Army Research Lab (ARL) 
ACIDS database for a selection of tracked and wheeled 
vehicles were used to "train" and test the SSE.  (Signal 
content used for training the SSE was removed from the  

 

SSE acoustic signal classification results are shown for 
desert terrain.  SSE operation on signals during the vehicle 
approach period is depicted here with signals and 
templates in the horizontal and vertical axis respectively.  
Windowed RMS correlation values are plotted in a surface 
with darker grey scales corresponding to higher values. 
This case shows near ideal performance with a SSE RMS 
correlator signal matrix that is nearly diagonal.  Only one 
vehicle signal shows an error.  The error rate obtained is a 
low 5.6%. 

Figure 4. 

signal sets used for evaluation.)  Then, a matrix method 
was formed where the matrix element values correspond to 
the RMS values of the template-signal inner products.  The 



SSE matrix may now be examined to determine and 
predict SSE performance. 

Figures 4 show examples of these results.  In this figure, 
the RMS amplitude of the correlator-signal inner product 
is shown for inner products between all signals and 
templates.  The set of these inner product RMS amplitudes 
forms a matrix with the matrix element scalar value being 
the RMS signal amplitude.  Ideal SSE operation occurs 
where the RMS value of the inner product between a 
signal and a template are maximal for the case where the 
template correctly identifies the signal.  Thus, ideal 
operation yields a matrix where the diagonal elements are 
greater than any off-diagonal element in the same row or 
column as any diagonal element. 

The SSE has demonstrated the ability to identify the 
differences between signals generated by a source for the 
approach, departure, and closest approach signal segments.   
In the event that proper templates are available in the SSE 
library, this sensitivity to the evolution of an event signal 
may be exploited for enhancing source classification 
accuracy. 

A result from a similar dataset using the wavelet method is 
given in Figure 5.  Here classification is performed on the 
signals using the class representor method (CRM).  
Recorded source signals were initially normalized to 
remove any dependency of the signals to the gains in the 
sensors.  This in effect gave an equal weight to each of the 
training signal especially when no apriori knowledge was 
known of sensor calibration.  A class representor to each 
pre-defined class was obtained.  Figure 5 shows the results 
of classification with the CRM method in the Haar 
subspaces.  A coiflet-5 wavelet with 5 levels of 
decomposition is used for this classification.  For this case, 
the haar method results in 10.9% error while the complete 
method gives a 5.45% error.  Signal pre-processing and a 
selective choice of signals for obtaining the representors 
during training obtain better classification results. 

Wavelet methods have been chosen for hybrid SSE for 
enhancing classification re-inforcements, while serving as 
an alternative to verification of time domain SSE results.  
Selection of which method to activate as a generic while 
having the other on reserve depends on the sensed signals 
waveforms and WINS applications.  Having obtained 
promising results from wavelet methods with minimum 
pre-processing, a hybrid-SSE implementation is 
considered with time-domain and wavelet method 
classification. 

 

 

 

 

 

 

 

 

CONCLUSIONS  
 
A Signal Search Engine (SSE) architecture has been 
developed for time domain signal classification.  A 
prototype SSE has been demonstrated with successful 
results.  An SSE system level architecture study for the 
low clock rate correlation operation indicates it will yield 
micro power operation. [3]  Wavelet method classification 
is introduced with increasing accuracy with the 
incorporation of signal pre-processing and state space 
decomposition.  An initial investigation on the Haar and 
complete class representor method gives much promising 
results for a hybrid – SSE.  Having formulated signal 
classification through the time domain SSE and possible 
implementation of hybrid-SSE with the wavelet method, 
less than 15% error rates were obtained during tests of 
measured data from each of these methods independently. 
 
 
 
 

Class Representor Method classification of acoustic
data signals from the arctic terrain in the Haar and
Complete subspaces using the Coiflet-5 wavelet at 5
levels of decomposition. 

Figure 5 
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