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Abstract
This paper proposes an automatic algorithm for estimating
the first two subglottal resonances (SGRs)—Sg1 and Sg2—
from continuous speech of children, and applies it to automatic
speaker normalization in mismatched, limited-data conditions.
The proposed algorithm is based on the observation that Sg1
and Sg2 form phonological vowel feature boundaries, and is
motivated by our recent SGR estimation algorithm for adults.
The algorithm is trained and evaluated, respectively, on 25 and 9
children, aged between 7 and 18 years. The average RMS errors
incurred in estimating Sg1 and Sg2 are 55 and 144 Hz, respec-
tively. By applying the proposed algorithm to a connected digits
speech recognition task, it is shown that: 1) a linear frequency
warping using Sg1 or Sg2 is comparable to or better than max-
imum likelihood-based vocal tract length normalization (ML-
VTLN), 2) the performance of SGR-based frequency warping
is less content dependent than that of ML-VTLN, and 3) SGR-
based frequency warping can be integrated into ML-VTLN to
yield a statistically-significant improvement in performance.
Index Terms: subglottal resonances, children’s speech, auto-
matic estimation, limited data, speaker normalization

1. Introduction
Recent research on speaker normalization for automatic speech
recognition (ASR) has shown that the second subglottal reso-
nance (Sg2) can be effective in normalizing children’s speech
to acoustic models trained on adults, especially when enroll-
ment data is limited or is in a language different from that of
the training data [1]. Motivated by the fact that Sg2 remains
fairly constant for a given speaker,—phonetic content has little
effect on the frequency of Sg2 [2]—speaker normalization was
achieved in [1] by linearly warping the frequency axis of a given
test speaker using the estimated Sg2 frequency. Sg2 was esti-
mated based on: (1) an empirical relation between Sg2 and the
third formant frequency (F3) [3], and (2) the observation that
Sg2 induces discontinuities in the second formant frequency
(F2) of vowels [2, 3]. Experiments on speaker normalization
revealed that in limited-data conditions, Sg2-based frequency
warping performed better than maximum likelihood-based vo-
cal tract length normalization (ML-VTLN) [4]. In addition,
Sg2 was found to be effective in performing cross-language
speaker normalization. In [5], the Sg2 estimation algorithm
was improved by incorporating the observation that Sg2, apart
from inducing frequency discontinuities, can cause attenuations
in the amplitude of the second formant [2, 3]. The improved
Sg2 estimation algorithm was used to perform Bark shift-based
nonlinear speaker normalization.

Although [1] and [5] apply Sg2 successfully to speaker nor-

malization, their methods have two major limitations: (1) the
Sg2 estimation algorithms require isolated vowels for achiev-
ing satisfactory performance since they are based on detecting
subtle acoustic events in speech that are caused by subglottal
coupling, and (2) the accuracy of Sg2 estimation depends on
the phonetic content of the vowel used (see Fig. 6 in [1]), and
consequently, the performance of Sg2-based normalization is
more content dependent than that of ML-VTLN (see Fig. 12 in
[1]). In order to overcome these limitations and develop more
practical approaches to speaker normalization using subglottal
resonances (SGRs), this study proposes an automatic algorithm
for estimating the first two SGRs—Sg1 and Sg2—from con-
tinuous children’s speech. The proposed algorithm is similar to
our recent SGR estimation algorithms for adults [6, 7, 8], but
is slightly modified to account for the larger acoustic variabil-
ity observed in children’s speech. By applying the proposed
algorithm to a connected digits ASR task, it is shown that Sg1,
like Sg2, can be effective in speaker normalization, and that in
limited-data conditions, SGR-based normalization is compara-
ble to ML-VTLN while being much less sensitive to the content
spoken. It is useful to be able to perform speaker normalization
using Sg1 since Sg2 estimation using the proposed algorithm
requires a good estimate of F3, which may be difficult to ob-
tain in narrow band children’s speech (e.g., telephone speech).
While the third subglottal resonance (Sg3) appears to comple-
ment Sg2 in improving speaker normalization performance [9],
such a possibility is not investigated here.

Vocal tract length differences among speakers has been
known to be a major source of inter-speaker variability (see
[10], for example), and several parametric [11, 12] as well
as maximum likelihood-based (ML-based) [13, 4] approaches
have been proposed to alleviate the degradation in ASR perfor-
mance that can result from it. Although ML-based approaches
outperform parametric approaches in general (see [14], for ex-
ample), parametric methods like Sg2-based warping can be
more effective in limited-data conditions [1, 5]. It is shown
in this study that a simple integration of SGR-based frequency
warping into ML-VTLN [4] can yield a statistically-significant
improvement in performance when data is limited.

Section 2 describes the proposed SGR estimation algorithm
for children and presents the results of its evaluation. In Section
3, SGR-based frequency warping and its integration into ML-
VTLN are discussed. Section 4 presents the results of speaker
normalization experiments, and Section 5 concludes the paper.

2. Automatic estimation of Sg1 and Sg2

Automatic algorithms for estimating Sg1 and Sg2 of adult
speakers were proposed recently in [6] and [7]. In [6], Sg1



was estimated using a model relating two correlated measures
of vowel height: the Bark difference between the first formant
frequency (F1) and Sg1—denoted as B1,s1—was predicted
from the Bark difference between F1 and the fundamental fre-
quency (F0)—denoted as B10. Similarly, in [7], Sg2 was esti-
mated using a model relating two correlated measures of vowel
backness: the Bark difference between F2 and Sg2—denoted
as B2,s2—was predicted from the Bark difference between F3
and F2—denoted as B32. In [15], it was shown that the al-
gorithms developed in [6] and [7] gave satisfactory results for
children taller than 150 cm. In a more recent study [8], the al-
gorithm in [7] was improved by including F3 and F0 in the
model for predicting B2,s2. Since the algorithms in [6] and [8]
were effective with a limited amount of speech data and also
independent of spoken content, modified versions of these al-
gorithms were developed in this study for children’s speech.

2.1. Methods

For simplicity, let the models for predicting B1,s1 and B2,s2 be
denoted as M1 and M2, respectively. For training M1 and M2,
we used data from 25 speakers—17 boys, 8 girls—in a recently-
collected children’s corpus, which, at present, contains simul-
taneous recordings of speech and subglottal acoustics from 29
children—20 boys, 9 girls—aged between 7 and 18 years. In
this study, microphone as well as accelerometer (subglottal) sig-
nals of 9 different vowels—[i], [I], [E], [æ], [A], [2], [o], [U] and
[u]—were extracted from the corpus, and used for training M1
and M2. Further details of the recording procedures and the
recorded material can be found in [15].

As in our previous studies [6, 8], measurements of F0
and formant frequencies F1–F3 were required for training M1
and M2. For each speaker, microphone signals of 3–5 tokens
per vowel were chosen for analysis. Using Wavesurfer [16],
F0 and F1–F3 were measured semi-automatically from the
steady-state portions of the chosen tokens, i.e., the parameters
of Wavesurfer were adjusted manually until the F0 and for-
mant contours were found to be satisfactory. ‘Ground truth’
values of Sg1 and Sg2 were also required for model training.
The ‘ground truth’ SGR frequencies of each speaker were ob-
tained by making several measurements of Sg1 and Sg2 in the
accelerometer signals of vowel tokens, and finding their aver-
ages. On average, Sg1 and Sg2 were measured in 11 and 13
tokens per speaker, respectively. The procedure for measuring
Sg1 and Sg2 was identical to the one described in [15]: infor-
mation from three different spectral representations—Fourier
transforms, linear prediction spectra and power spectral den-
sity estimates—was combined to obtain reliable measurements.
‘Ground truth’ Sg1 values ranged between 532 and 893 Hz
(mean = 727 Hz), while ‘ground truth’ Sg2 values ranged be-
tween 1261 and 2160 Hz (mean = 1734 Hz).

For training M1 and M2, features B10, B1,s1, B32 and
B2,s2 were computed using the formant and F0 frequencies as
well as the ‘ground truth’ SGRs of all 25 speakers in the training
set. As in our previous studies [6, 8],B10 was found to correlate
strongly withB1,s1 (r2 = 0.92), whileB32 was found to corre-
late strongly withB2,s2 (r2 = 0.83). Model M1 was trained by
performing a linear regression between B1,s1 and {B10, F3}
(r2 = 0.93); the increase in r2 (from 0.92 to 0.93) caused by
the inclusion of F3, was statistically significant (p < 0.001).
Model M2 was similarly trained by performing a linear regres-
sion between B2,s2 and {B2

32, B32, F3, F0} (r2 = 0.92); the
increase in r2 (from 0.83 to 0.92) caused by the inclusion of
B2

32, F3 and F0, was statistically significant (p < 0.001). It

must be pointed out that a further addition of B2
10 (analogous

to B2
32) and F0 to model M1 did not result in any significant

improvement in modeling accuracy.
In order to account for the large acoustic variability in chil-

dren’s speech, we also investigated the idea of splitting M1
and M2 into 2 models each. Since differences in vocal tract
lengths is a major source of acoustic variability, models M1 and
M2 were split based on the speakers’ average F3 values (F3
is known to be a good indicator of vocal tract length). Fig-
ure 1(a) shows the distribution of average F3 values for the 25
speakers in the training set. The median of this distribution—
approximately 3300 Hz—was used for model splitting: model
M1l was trained using data from speakers whose average F3
values were less than 3300 Hz (15 speakers), and model M1g

was trained using data from the remaining 10 speakers. Models
M2l and M2g were trained similarly. In our training set, the
‘threshold value’ of 3300 Hz corresponded roughly to an age
of 10 years (see Fig. 1(b)). Since most children reach puberty
at the age of 12–13 years, a ‘threshold value’ of 3300 Hz was
considered reasonable.
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Figure 1: (a) Distribution of average F3 values in the training
set of the SGR estimation algorithm (median ≈ 3300 Hz). (b)
Scatter plot of average F3 versus speaker age. An average F3
of 3300 Hz corresponds roughly to 10 years (close to puberty).

2.2. The algorithm

In this study, we investigated the efficacy of two approaches—
one based on using M1 and M2, and the other based on using
(M1l;M2l) or (M1g;M2g). Let the algorithms based on these
two approaches be denoted as A and A′, respectively. Given a
speech signal, the steps in estimating Sg1 and Sg2 are:

1. Down sample the signal to 8 kHz.
2. Perform pre-emphasis with the filter: H(z) = 1− 0.97z−1.
3. Track F0 and F1–F3 automatically using Snack [17]. Set
the window length to 30 ms and the window spacing to 5 ms.
4. Select voiced frames using Snack’s binary voicing parameter.
5. Compute the average F3 over all voiced frames.
6. For algorithm A, use M1 and M2. For algorithm A′, use
(M1l;M2l) or (M1g;M2g) depending on whether the average
F3 is less than or greater than 3300 Hz, respectively.
7. Estimate Sg1 and Sg2 for each voiced frame. To estimate
Sg1, predict B1,s1 using the model selected in Step 6, subtract
it from F1 (Bark), and convert the resulting value from Bark to
Hertz. Estimate Sg2 in a similar fashion.
8. Estimate Sg1 and Sg2 for the given utterance by averaging
the frame-level estimates obtained in Step 7.

2.3. Evaluation and results

Algorithms A and A′ were evaluated on a small test set con-
sisting of 9 speakers—4 boys, 5 girls—aged between 8 and
16 years. Out of the 9 test speakers, 4 were chosen from the
recently-collected children’s corpus (see Sec. 2.1) while the re-



Table 1: Mean and standard deviation of RMS errors (across
speakers)—µrms and σrms—incurred in estimating Sg1 and
Sg2 using algorithms A and A′.

Sg1 Sg2
A A′ A A′

µrms (Hz) 55 55 155 144
σrms (Hz) 37 38 81 72

maining 5 were chosen from a previously-collected corpus [3]
containing microphone and accelerometer recordings of 9 chil-
dren (only speakers who were 7 years or older were chosen
for evaluation). The ‘ground truth’ SGR frequencies of the test
speakers were obtained as described in Sec. 2.1. ‘Ground truth’
Sg1 values ranged between 610 and 845 Hz (mean = 711 Hz),
while ‘ground truth’ Sg2 values ranged between 1427 and 1965
Hz (mean = 1645 Hz). AlgorithmsA andA′ were applied to ev-
ery utterance in the test set. For comparing the performance of
A and A′, the mean and the standard deviation of root mean
squared errors (across speakers)—µrms and σrms—were used.

Table 1 compares the performance of A and A′. While A′

did not perform any better than A in estimating Sg1, it offered
a small performance improvement—7% reduction in µrms and
11% reduction in σrms—in estimating Sg2. In essence,A′ was
not only more accurate in estimating Sg2, but also more con-
sistent across speakers. Therefore, in all our speaker normal-
ization experiments, model M1 (algorithm A) was used for es-
timating Sg1, while models M2l and M2g (algorithm A′) were
used for estimating Sg2 (in children’s speech). Since formant
and F0 tracking are more error prone in children’s speech than
in adults’ speech, it is important to note that a non-negligible
portion of SGR estimation errors could be the result of errors in
F0 and/or formant tracking. Nevertheless, the errors incurred
by A and A′ are acceptable from a speaker normalization point
of view (see Sec. 3 for an explanation).

3. Speaker normalization algorithms
The proposed SGR estimation algorithm was applied to speaker
normalization in a mismatched, connected digits ASR task us-
ing the TIDIGITS database [18]. Acoustic hidden Markov mod-
els (HMMs) were trained on 55 adult males and tested on 25
boys and 25 girls (train and test speakers were chosen as per the
documentation contained in the TIDIGITS database). Although
we could have simulated a mismatched scenario using both
male and female data for training, we chose the above setup
so that the improvements due to normalization could be more
easily observed. HMMs were monophone based, had a left-to-
right topology, and contained 3 emitting states each. The out-
put state distributions were six-component Gaussian mixtures
with diagonal covariance matrices. Twelve Mel-frequency cep-
stral coefficients (MFCCs) plus log energy, and their first- and
second-order derivatives, were used for parameterizing speech
signals; features were extracted using a frame length of 25 ms
and a frame spacing of 10 ms. Word error rate (WER) was
used as the performance metric in all experiments. The baseline
(without normalization) WER was 37.6%. In order to reduce
the mismatch between adult males and children, we applied the
following normalization algorithms to children’s speech.

I. ML-VTLN: VTLN is a normalization scheme which is
based on the assumption that vocal tract lengths of speakers are
related linearly to one another [4]. Given the data of a particular
test speaker, we implemented ML-VTLN as follows. (1) Extract
features X from one enrollment utterance. (2) Using the set of
pre-trained HMMs λ, find the transcription W corresponding

to the enrollment utterance. (3) Extract warped features Xα for
α ∈ [0.7, 1.3] by varying α in steps of 0.02 (similar to the im-
plementation in [1]). Xα is the same as X , except that the fre-
quency axis is warped linearly by a factor α. (4) Find the ‘best’
α: α̂ = argmaxα P (Xα|λ,W ). (5) Recognize the remaining
utterances after frequency warping by a factor α̂.

II. SGR-based normalization (SGRN): SGR-based nor-
malization is a parametric approach which is inspired by the
phonetic invariance of SGRs and the relationship between
SGRs and formant frequencies—Sg1 forms a boundary be-
tween [+low] and [-low] vowels, while Sg2 forms a boundary
between [+back] and [-back] vowels [19, 3]. Before implement-
ing SGRN on the test data, Sg1 and Sg2 were estimated for all
the training speakers (using our previous algorithms for adults),
and ‘reference’ values (Sg1r and Sg2r) were calculated by av-
eraging the estimated SGRs. Then, given the data of a particular
test speaker, SGRN was implemented using the following steps.
(1) Estimate Sg1 and Sg2 from one enrollment utterance. (2)
Find the warp factor: αs = Sg1r/Sg1 for normalization with
Sg1, and αs = Sg2r/Sg2 for normalization with Sg2. (3)
Perform Step 5 of ML-VTLN. It must be noted that αs will dif-
fer from its ‘true value’ due to SGR estimation errors. A simple
calculation using the nominal ‘ground truth’ values of Sg1 and
Sg2 and the RMS estimation errors shown in Table 1 reveals
that αs tends to have an error of just 7–8%, on average.

III. SGR-based warping for ML-VTLN (ML-SVTLN):
The advantage of ML-VTLN is its ability to estimate the warp
factor with respect to statistical models (HMMs), while the ad-
vantage of SGRN is its reduced complexity due to the absence
of a grid search. ML-SVTLN combines the benefits of both
techniques by obtaining a better first-pass transcription than the
one obtained in ML-VTLN (with little additional complexity).
Using the same notation as above, the steps in ML-SVTLN are
as follows. (1) Pick an enrollment utterance; estimate Sg1 and
Sg2. (2) Find αs, where αs = Sg1r/Sg1 or Sg2r/Sg2. (3)
Extract features Xαs from the enrollment utterance, and per-
form recognition with λ to obtain the transcription W . (4) Per-
form Steps 3–5 of ML-VTLN. An algorithm in parallel with
ML-SVTLN (and bypassing the use of SGRs) is one that esti-
mates the optimal warp factor in two iterations of ML-VTLN.
However, such a procedure is inefficient since it requires two
recognition passes.

4. Normalization experiments and results
The TIDIGITS database contains utterances of 1, 2, 3, 4, 5
or 7 digits. All normalization experiments were performed in
limited-data conditions since only one enrollment utterance was
used in every case. First, in order to compare the content de-
pendence of VTLN with that of SGRN—using Sg1 (SGRN1)
and Sg2 (SGRN2)—, we performed normalization experiments
with single-digit enrollment utterances (“one” to “nine”, “zero”,
and “oh”). The resulting WERs are shown in Fig. 2(a). Clearly,
SGRN1 and SGRN2 not only outperformed ML-VTLN on av-
erage (the difference in WERs was statistically significant at
p < 0.05), but they also proved to be much more consistent
across spoken content. This is an important improvement over
the results in [1], where SGR-based normalization was found
to be highly content dependent. The consistency of SGRN
is further exemplified by Fig. 2(b), which compares the stan-
dard deviations of warp factors obtained from ML-VTLN and
SGRN2. SGRN1 and SGRN2 were comparable in performance
(see Fig. 2(a)), and the warp factors obtained using the two ap-
proaches were very similar (r = 0.84, mean absolute difference
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Figure 2: (a) Comparison of ML-VTLN and SGRN for different single-digit enrollment utterances (“one” to “nine”, “zero”, and “oh”).
(b) Standard deviation of ML-VTLN warp factors versus standard deviation of SGRN2 warp factors (one data point per test speaker).
(c) Comparison of ML-VTLN, SGRN and ML-SVTLN for varying amounts of enrollment data.

= 0.024). Therefore, a piece-wise linear warping involving Sg1
and Sg2 did not yield any significant improvement over using
Sg1 or Sg2 alone. It must be noted that ML-VTLN, simply
by virtue of being an ML-based method, should theoretically
outperform SGRN. This does not always happen in practice,
particularly in mismatched conditions, because the ML-VTLN
warp factor is affected by first-pass transcription errors.

Next, we compared the performance of ML-VTLN, SGRN
and ML-SVTLN—using Sg1 (ML-SVTLN1) and Sg2 (ML-
SVTLN2)—by varying the length of enrollment utterances
from 1 to 7 digits. The resulting WERs are shown in Fig. 2(c).
Although ML-SVTLN1 and ML-SVTLN2 performed better
than ML-VTLN in all cases (the difference in WERs was sta-
tistically significant at p < 0.01), the improvement was larger
when ML-VTLN performed poorly (compare the WERs for 4
and 7 digits, for example). SGRN1 and SGRN2 were, on av-
erage, comparable to ML-VTLN in performance, although they
were outperformed as the amount of enrollment data increased.
For completeness, we also performed linear warping using F3
(as described in [11]). It resulted in a WER of 5.4% with 7 en-
rollment digits, clearly suggesting that SGR-based warping is
the better approach in limited-data conditions.

5. Conclusions
In this paper, an automatic algorithm for estimating the first two
SGRs in continuous children’s speech was proposed. Sg1 was
estimated by modeling the relation between two measures of
vowel height, while Sg2 was estimated by modeling the relation
between two measures of vowel backness. The idea of choos-
ing automatically between two F3-dependent models—based
on a ‘threshold value’ of 3300 Hz—was investigated; such an
approach provided some improvement in Sg2 estimation, but
not in Sg1 estimation. The proposed SGR estimation algorithm
was used in two speaker normalization schemes (SGRN and
ML-SVTLN) in mismatched, limited-data conditions. SGRN
(with Sg1 or Sg2) was not only comparable to ML-VTLN in
performance, but it also had the following advantages: (1) no
grid search was required for estimating the warp factor, and (2)
warp factor estimation was much less susceptible to the content
of enrollment data. Moreover, when information about Sg1 or
Sg2 was provided to ML-VTLN (ML-SVTLN), a significant
improvement in performance was observed.
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