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Objective

I Investigate the relationship between OQ (the glottal
open quotient; the relative amount of time the glottis
is open within a glottal vibratory cycle) and H1*-H2*
(the relative amplitudes of the first two harmonics of
the voice source).

I Compare results from a computational voice
production simulation and high-speed laryngeal
videoendoscopy data.

Background

I Increases in OQ are widely assumed to be the
physical precursors of perceived breathiness, in part
because of consequent increases in H1*-H2* [1].

I Empirical studies used electroglottographic (EGG)
data or inverse-filtered acoustic signals, and varying
levels of correlation between H1*-H2* and OQ have
been reported [2, 3].

I In the LF model [4] the relationship is expressed as
H1*-H2*=-6+0.27exp(0.055 OQ) [5].

I Modeling studies do not currently fully explain the
observed variability in experimental studies.

Data and methods

Human subject data
I Synchronous audio and high-speed video recordings

of the vocal folds
I Five subjects (4 male + 1 female)
I Vowel /i/
I Gradually change their phonations from breathy to

pressed while holding F0 and vowel quality as steady
as possible

I High-speed imaging: 10,000 frames/sec; a resolution
of 208×352 pixels

Extract glottal area from high-speed recording of
the vocal folds

Figure 1: Glottal area extraction

Data and methods

Measures from high-speed imaging
I OQ: the time from the first opening instant to the

onset of maximum closure (or minimum area),
divided by the length of the current glottal cycle.

I DC (i.e., the glottal gap size): defined as the
minimum glottal area normalized by the maximum
glottal area in each glottal cycle.

Acoustic measure
I H1*-H2*: measured from the audio signals with

VoiceSauce software [6].

Computational model simulation

Generating glottal area waveforms
The parametric voice source model in [7] (denoted
EE2) was chosen for this study.
I Provides greater glottal pulse shape flexibility than

the LF model.
I Allows for direct control of the glottal area pulse

shape compared to kinematic models.
I Parameters:

(1): OQ
(2): The maximum amplitude (MA) of the glottal area
waveform
(3): DC
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(a) OQ variations
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(b) MA variations
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(c) DC variations
Figure 2: Generated glottal area waveforms using the EE2
source model.

Simulating nonlinear source-filter interactions
I The glottal area was acoustically coupled to the

trachea and vocal tract airway system.
I Nonlinear source-filter interactions were simulated

using “LeTalker” [8] software.

Results: Human subject data
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(e) Speaker 5
Figure 3: H1*-H2* vs. OQ for speakers 1-5.

These varying patterns suggest that the relationship
between H1*-H2* and phonatory characteristics may be
speaker dependent.
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Figure 4: H1*-H2* vs. DC for speakers 1-5.

I Despite this variability, the cases in which glottal gaps
were observed are typically assigned an OQ of 100%
or close to 100%.

I Thus, the variability in H1*-H2 with varying DC partially
contributes to the observed variability in the relationship
between H1*-H2* and OQ in previous studies
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Results: Model simulations
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When MA is relatively small
I H1*-H2* increases monotonically with increasing OQ

(similar to the observations in Figures 3a and 3e).
I H1*-H2* varies very little with increasing DC (about 2

dB).
When MA is relatively large
I H1*-H2* first increases and then slightly decreases

with increasing OQ.
I H1*-H2 decreases monotonically with increasing DC

(similar to the human data in Figures 4b and 4e).
I Attributes to an increased degree of source-filter

interaction. OQ (DC) increases→ the mean glottal
area also increases→ a higher degree of
source-filter interaction→ the effect of “skewing” the
glottal flow waveform→ results in decreased
H1*-H2*.

Conclusion
I Human subject data: the effects of OQ and glottal

gap size on H1*-H2* may be variable and speaker
dependent. H1*-H2* may increase or decrease with
increasing glottal gap size, allowing more variability
of relationship between H1*-H2* and OQ to be
observed.

I Model simulations: supported the observed
variabilities and suggested that this relationship
depends on mean glottal area (MA), a parameter
associated with the degree of source-filter interaction
but not directly measurable from high-speed images
of the vocal folds.

I It is possible that the result derived from laryngeal
high-speed recordings (based on time quotient
measures) could be somewhat incomplete or
inconclusive.

I The simulation results in this study may also provide
a possible explanation for the large interspeaker
variability and weak correlations between time
domain measures and acoustic measures reported in
previous high-speed laryngoscopy-based studies
[9, 10].

Gang Chen - Electrical Engineering Department - University of California, Los Angeles Mail: gangchen@ucla.edu WWW: http://www.seas.ucla.edu/˜gangchen

http://www.ee.ucla.edu/~spapl/voicesauce/
http://sal.shs.arizona.edu/~bstory/LeTalkerMain.html
http://www.seas.ucla.edu/~gangchen

