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Abstract
Many glottal source models have been proposed, but none has
been systematically validated perceptually. Our previous work
showed that model fitting of the negative peak of the flow
derivative is the most important predictor of perceptual similar-
ity to the target voice. In this study, a new voice source model
is proposed to capture perceptually-important source shape as-
pects. This new model, along with four other source models,
was fitted to 40 voice sources (20 male and 20 female) obtained
by inverse filtering and analysis-by-synthesis (AbS) of samples
of natural speech. We generated synthetic copies of the voices
using each modeled source pulse, with all other synthesis pa-
rameters held constant, and then conducted a visual sort-and-
rate task in which listeners assessed the extent of perceived sim-
ilarity between the target voice samples and each copy. Results
showed that the proposed model provided a more accurate fit
and a better perceptual match to the target than did the other
models.
Index Terms: voice source model, perceptual validation,
analysis-by-synthesis, flow derivative

1. Introduction
According to the linear speech production model [1], speech
signals are generated by filtering the voice source by the vocal
tract transfer function. Modeling the glottal source has been an
important topic for decades and has applications in many ar-
eas, such as speech coding and speech synthesis. Many source
models have been proposed with varying levels of complexity,
such as the Rosenberg [2], Liljencrants-Fant (LF) [3], Fujisaki-
Ljungqvist (FL) [4], and Rosenberg++ (R++) [5] models (see
[6] for review). With three parameters, the Rosenberg trigono-
metric model (denoted Ros) has two separate functions for the
opening and closing phases to represent the glottal flow vol-
ume velocity [2]. The LF and FL models represent the first
derivative of the glottal volume velocity pulse, which incorpo-
rates lip radiation effects. The four-parameter LF model [3]
uses a combination of sinusoidal and exponential functions, and
is commonly used in speech synthesis. With six parameters and
polynomial functions, the FL model provides greater detail in
modeling the glottal pulse shape, but the increased number of
parameters also makes it more difficult to use in practice. The
R++ model in [5] is computationally more efficient but percep-
tually equivalent when compared to the LF model. The four-
parameter glottal flow model (denoted EE1 [7]) uses a com-
bination of sinusoidal and exponential functions similar to the
LF model, but with the ability to adjust the slopes of the open-
ing and closing phases separately. The glottal flow model in [8]
(denoted EE2) improves the EE1 model by redefining the model
parameters (speed of opening and speed of closing) to allow for

lower computational complexity, faster waveform generation,
and more accurate pulse shape manipulation. In that study, the
EE2 model was used for automatic glottal flow estimation from
acoustic speech signals, and glottal area waveforms extracted
from high-speed endoscopic recordings of the laryngeal vibra-
tions were converted to glottal flow in order to evaluate the per-
formance of the glottal flow estimation algorithm.

Research efforts have also been devoted to studying the per-
ceptual importance of changes in source waveform shapes. In
[2], listening tests using a variety of glottal excitations showed
that simulated excitations with a single slope discontinuity at
closure were perceived as more natural-sounding, while very
small opening or closing times (or opening times approximately
equal to or less than closing times) were not preferred. In [9],
the LF model and a turbulent noise generator were used to syn-
thesize four voice quality types (modal, vocal fry, falsetto, and
breathy). Perceptual experiments showed that these four voice
quality types could be characterized by four parameters: pulse
width, pulse skewness, the abruptness of glottal closure, and
turbulent noise. In [10], nonmodal phonations were synthe-
sized using a speech synthesizer in which the glottal character-
istics were manipulated with quasi-articulatory parameters. In
other approaches, voice source waveforms were parameterized
to capture variations in voice quality [11, 12, 13, 14, 15, 16, 17],
while those characteristics related to vocal intensity were in-
vestigated and parameterized in [18, 19, 20, 21]. Data-driven
approaches, such as principal component analysis [22, 23] and
Gaussian mixture modeling [24], have also been used to model
source waveforms. In [25], the LF model was used to mod-
ify the glottal pulse shape for synthesis and transformation of
singing voice.

Few studies have attempted to systematically validate glot-
tal source models perceptually, and model development has fo-
cused more on replicating observed pulse shapes than on per-
ceptual sufficiency. As a result, it is unclear which (if any) devi-
ations from perfect fit between models and data have perceptual
importance. In our previous study [26], the Ros, FL, LF, EE1,
and EE2 source models were fitted to 40 natural normal and
pathological voice sources (20 male and 20 female) obtained
by inverse filtering and analysis-by-synthesis (AbS), subject to
mean square error (MSE) criteria for which each point of the
waveform was weighted equally. Evaluation of model fit at dif-
ferent parts of the source waveforms showed that the fit to the
target pulses was worst at the negative peak of the flow deriva-
tive. Synthetic copies of the voices were then created using
each modeled source pulse, while holding all other synthesizer
parameters constant (including formant frequencies and band-
widths, fundamental frequency (F0) and amplitude contours,
and spectral noise levels). These stimuli were compared to the
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AbS target in a sort-and-rate listening test (described below).
Across models and voices, the perceptual match between the
target and synthetic tokens was best predicted by the match be-
tween the target and modeled stimuli at the negative peak of
the flow derivative (R2 = 0.34). Fit during the opening phase
also contributed weakly but significantly (p < 0.01) to the per-
ceptual match. In a follow-up experiment, we fitted the models
to the AbS sources subject to MSE criteria while constraining
the models to fit the negative peak of the flow derivative pre-
cisely, which significantly increased the mismatch to the open-
ing phase (p < 0.01; see Figure 1). Informal listening tests
on several tokens showed that this significant mismatch to the
opening phase resulted in a noticeable perceptual difference be-
tween the target and modeled stimuli. These results indicate the
need for a source model with increased flexibility to provide a
close fit to all parts of the voice source signal, especially the
opening phase.

In this study, a new voice source model, motivated by data
from high-speed laryngeal videoendoscopy, is proposed to cap-
ture perceptually-important source shape aspects. This model is
then evaluated in comparison to 4 existing source models, with
respect to fit in both the MSE and perceptual senses.

2. Data and methods
2.1. Stimuli
Source model comparisons required a target source pulse to
which the models could be fitted, and the need for experimental
control during perceptual evaluations mandated that this target
be synthetic, so that voice stimuli could be created that differed
in the source, with all other parameters held constant. To ensure
that these synthetic targets were as natural in quality as possible
and that they represented a range of naturally-occurring voice
qualities, target stimuli were derived via analysis-by-synthesis
(AbS [27]) from 40 natural samples (20 male, 20 female) of the
vowel /a/. A steady-state vowel was chosen because it is rou-
tinely used for evaluating voice quality and carries substantial
information about the voice source. Further, the simpler acous-
tic structure of a steady-state vowel should yield responses from
listeners in the perceptual studies reflecting simpler perceptual
strategies that are more easily interpreted. Samples were di-
rectly digitized at 20 kHz using a Brüel & Kjær microphone
(model 4193), and a 1-second-long segment was excerpted for
analysis. The synthesizer sampling rate was fixed at 10 kHz.
Parameters describing the harmonic part of the voice source
were estimated from a representative cycle of phonation for
each voice using the inverse filtering method described in [28].
The harmonic and inharmonic components (the noise excita-
tion) were identified using a comb-liftering operation in the
cepstrum domain [29]. Spectrally-shaped noise was synthe-
sized by passing white noise through a 100-tap finite impulse
response filter fitted to that noise spectrum. F0 was estimated
pulse by pulse using the time domain waveform. Formant fre-
quencies and bandwidths were estimated using autocorrelation
linear predictive coding analysis with a window of 25.6 ms. The
complete synthesized source was then filtered through the vocal
tract model, and all parameters were adjusted until the synthetic
copy formed an acceptable match to the original natural voice
sample. A paired comparison (same/different) task ensured that
the AbS tokens were indistinguishable from the natural stimuli:
d prime ranged from 0 to 1.32 across voices, with a mean of
0.79 (sd=0.41). Given these results, the AbS tokens were used
in place of the natural voice samples as the target stimuli in all
subsequent analyses.
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Figure 1: An example of fitting the LF and the proposed models
to the same AbS source pulse subject to MSE criteria while con-
straining the models to fit the negative peak of the flow deriva-
tive precisely. Solid line: AbS source. Dashed line: model-fitted
source.

2.2. The proposed model
The proposed model is based on the models in [7, 8], which
were motivated by shapes of glottal area waveforms extracted
from laryngeal high-speed videoendoscopy. The model is a
combination of sinusoidal and exponential functions shown to
be effective in approximating a wide range of glottal flow pulse
shapes. The model is then refined using AbS to eventually cap-
ture the shapes of the glottal flow derivative, as the LF model
does. The model has six parameters: the time of the positive
peak (ti), the shape of the opening (S1; amplitude of the wave-
form at ti/2), the time of the peak flow (tp; zero-crossing of
the flow derivative), the time of the negative peak (te), the am-
plitude of the negative peak (Ee), and the slope of the return
phase (ta). The latter four parameters (tp, te, Ee, and ta) were
originally defined in the four-parameter LF model [3]. The first
two parameters were added in the proposed model to provide an
additional degree of freedom, so that the timing of the positive
peak and the shape from the start to the positive peak can be ma-
nipulated directly, independent of the negative peak of the flow
derivative. The parameters are perceptually-motivated, as men-
tioned in the Introduction. With these parameters, the glottal
opening phase could be modeled more accurately. Recall that
our previous studies showed that a significant mismatch to the
opening phase could lead to a noticeable perceptual difference
between the target and the modeled stimuli. An example of a
model waveform is shown in Figure 2. Given the six parame-
ters described above, mathematically the glottal flow derivative
u(t) is defined as:

u(t) =

⎧⎪⎨
⎪⎩

f( t
ti
, λ1) (0 ≤ t ≤ ti)

[f( (2te−ti−t)
2(te−ti)

, λ2)− 1] 12(1+Ee)
6+λ2

+ 1 (ti < t ≤ te)
−Ee
εta

[e−ε(t−te) − e−ε(tc−te)] (te < t ≤ 1)

f(t, λ) =
1

π(eλ + 1)
{eλt[λsin(πt)− πcos(πt)] + π}

λ1 = 12 · (0.5− S1)

λ2 = argmin
λ

∣∣∣∣f(
2te − tp − ti
2(te − ti)

, λ)− 12Ee + 6− λ

12(Ee + 1)

∣∣∣∣

ε =
1

ta
[1− e−(tc−te)/ta ]

tc is the time of closure. In practice it is convenient to set
tc = 1, i.e., the complete fundamental period [3]. ε, λ1 and λ2

are intermediate parameters. As illustrated in Figure 2, the pro-
posed parameters can be easily derived from the inverse-filtered
differential glottal waveform, and directly control the shape of
the glottal waveform in a straightforward way. Unlike the LF
model, which describes the open phase (0 < t < te) using one
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Figure 2: An example of the proposed model with S1 =
0.5, ti = 0.3, tp = 0.45, te = 0.6, Ee = 2, and ta = 0.05.

function, the proposed model uses two functions (0 < t < ti
and ti < t < te) to describe the open phase, allowing for more
flexibility in modeling. Figure 1 (b) shows an example of con-
straining the proposed model to fit the negative peak of the flow
derivative precisely, while still achieving satisfactory fittings in
other parts.

2.3. Model fitting
In this study, each of the 40 target AbS-derived source functions
was fitted with 5 source models: the Ros, LF, EE1, EE2, and the
proposed model. The FL model, which provided the worst fit
to the target sources in our previous experiment, was excluded
from further experiments. First-derivative representations were
calculated mathematically for the Ros, EE1, and EE2 models,
which describe flow pulses in the time domain, so that all mod-
els were fitted to the target AbS source functions in the flow
derivative domain. One cycle of the AbS source signal for each
speaker was normalized to a maximum amplitude of 1. Each
derivative-domain model was fitted to all of the AbS source
functions using MSE criteria, for which each point of the wave-
form was weighted equally. Additionally, the proposed model
was fitted a second time to the AbS source function with the
constraint of exactly matching the first point, the positive peak
of the flow derivative, the time of maximum flow (zero-crossing
of flow derivative), and the negative peak of the flow derivative.
This procedure was included in order to assess the perceptual
importance of the landmarks of the voice source signal. Note
that it is not always possible to exactly match ALL landmarks
for the other models, due to constraints inherent in the models
and their parameters. Because of the increased flexibility, es-
pecially in modeling the opening phase, the proposed model is
able to match all landmarks well. Target AbS source pulses and
the corresponding least-MSE-fitted sources using the proposed
model for six different speakers are shown in Figure 3. As this
figure shows, the proposed model is able to approximate a wide
range of pulse widths, pulse skewnesses, and abruptnesses of
glottal closure. Because this model fitting is a non-linear op-
timization problem and suboptimal solutions might be found
using standard optimization methods, model fitting was imple-
mented using a codebook search schema (exhaustive search)
similar to that in [8] in order to achieve nearly optimal solu-
tions. The codebook of each model has a size of 10000.

2.4. Perceptual experiment
To determine the perceptual importance of these results, we
generated synthetic copies of the voices using each modeled
source pulse for each voice, with all other synthesizer param-
eters held constant at the values derived during AbS, as illus-
trated in Figure 4. For the proposed model, only the model-
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Figure 3: Target AbS source pulses and the corresponding least-
MSE-fitted sources using the proposed model for six different
speakers. Panels (a), (b), and (c): male speakers. Panels (d),
(e), and (f): female speakers. Solid line: AbS source. Dashed
line: the proposed model.
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Figure 4: Flowchart showing how stimuli were generated for
the perceptual experiment.

fitted sources with exact matching at the landmark points were
used in this experiment (denoted “Proposed-LM”). 40 listeners
(UCLA students and staff; 18-33 years of age; M=21.15 years;
sd=3.03 years) assessed the similarity of all versions of each
voice in a visual sort-and-rate task [30, 31], in which listen-
ers assessed the extent of perceived match between the origi-
nal voice samples and each copy. Each listener heard 10 voice
“families”, where each family included an original natural voice
sample, the corresponding target AbS token, and the 5 model-
synthesized tokens of the same voice, such that across subjects
each family was judged by 10 listeners. The stimuli were pre-
sented as distinct icons on the screen. For each family (each
trial), listeners were asked to play the stimuli by clicking the
icons, and to place perceptually similar sounds close together
on a line on the screen, while perceptually dissimilar sounds
were to be placed farther away. Listeners were instructed to use
as much of the line for sorting the stimuli as they wished. They
could listen to the stimuli as often as they like, and the study
was not timed.

Although listeners saw no numerical values associated with
the endpoints of the line, the left and right endpoints were as-
signed values of 0 and 1000, respectively. Thus, a numerical
value could be assigned to the position of each token. We then
calculated the distance of each modeled token from the target
AbS voice, and this value was subsequently normalized within
family for the range of values used on that given trial by that lis-
tener. The absolute values of these normalized distances were
used in subsequent analyses, because the orientation of the line
was arbitrary and varied from listener to listener.
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3. Results
3.1. Overall model fit
Table 1 shows MSE values for fit, of each of the source mod-
els under study, to the target AbS sources. (See table caption
for the meaning of model labels.) A two-way repeated mea-
sures ANOVA (model by speaker sex) showed significant main
effects of model [F (5, 190) = 12.99, p < 0.0001] and sex
[F (1, 38) = 8.71, p < 0.01] on mean MSE, as well as a sig-
nificant model by sex interaction effect [F (5, 190) = 4.27, p <
0.001]. Tukey post-hoc t-tests (with Bonferroni adjustment
for multiple comparisons) indicated that no cross-model differ-
ences were significant for female speakers. For male speakers,
a separate t-test showed that the “Proposed” model had lower
MSE values than the Ros, LF, EE1, and EE2 models (p < 0.05).

Table 1: MSE values (in %) of fitting models to the AbS sources.
“Proposed” denotes fitting the proposed model subject to MSE
criteria. “Proposed-LM” denotes fitting the proposed model
subject to MSE criteria with the constraint of exact landmark
matching.

Ros LF EE1 EE2 Proposed Proposed-LM

Male 27.8 14.1 25.8 21.6 3.9 6.9

Female 11.3 3.6 3.8 3.5 1.2 1.6

3.2. Perceptual experiment
Results of the perceptual experiment are shown in Table 2. Re-
call that 40 listeners participated in this task, but each only heard
10 of the 40 voices. Thus, every 4 subjects heard the stimuli
from all 40 voices. Because a pre-test showed no significant dif-
ferences in rating, we averaged the results of every 4 subjects,
to make 10 “metasubjects”, where each “metasubject” (consist-
ing of 4 listeners) heard all 40 voices. This enabled us to run
an ANOVA with “metasubject” as the error term. A two-way
(model by sex of voice) repeated-measures ANOVA showed
significant main effects of model [F (4, 36) = 155.77, p <
0.0001] and sex [F (1, 9) = 26.49, p < 0.001] on mean per-
ceptual distance, as well as a significant model by sex interac-
tion effect [F (4, 36) = 10.62, p < 0.001]. Tukey post-hoc
t-tests (with Bonferroni adjustment for multiple comparisons)
indicated that the proposed-LM model formed a significantly
better match to the target AbS stimulus (lower mean perceptual
distance) than the other models (p < 0.0001). The perceptual
distance to the target token for the LF model was only lower
than that of the Ros model (p < 0.0001), but not statistically
different from those of the EE1 and EE2 models. The differ-
ence between male and female voices in perceptual distances
between the modeled and target tokens was significant only for
the Ros model, for which male voices were closer perceptual
matches to the AbS voice than female voices (p < 0.0001). For
both sexes, the Ros model had a higher perceptual distance than
the other models (p < 0.0001).

Table 2: Normalized perceptual distances (range from 0 to 1)
between the model-fitted voices and the target AbS voice, for
male and female voices. A smaller number indicates a closer
perceptual distance (closer match) to the target AbS voice.

Ros LF EE1 EE2 Proposed-LM

Male 0.57 0.46 0.38 0.40 0.26

Female 0.71 0.42 0.46 0.43 0.32

4. Relation to prior work
This paper presented a systematic perceptual evaluation of var-
ious source models, and proposed a new model to capture
perceptually-relevant information. The study in [9] investigated
the factors of vocal quality that might be affected by changes in
voice source signals but only 3 listeners were involved. In that
study, only the LF model was used to generate the source signal.
In [4], 6 models were evaluated but were only used in a task to
minimize the linear predictive error from the original voice. In
this study, 5 models were evaluated in terms of both physical
fits (MSE) to the AbS source and perceptual matches to the tar-
get AbS stimuli. Results were based on perceptual experiments
with 40 listeners and 40 voice samples.

5. Discussion
Compared to the 4-parameter LF model [3], 2 perceptually-
motivated parameters were added in the proposed model to
provide more flexibility in matching the glottal opening phase.
With the increased number of parameters, it is not surprising
that the proposed model provided a better model fit. Never-
theless, the significant improvement achieved by the proposed
model over the LF model in perceptual experiments indicated
that the source variability at the opening phase (captured by the
two additional parameters) is perceptually salient. Recall that
the characteristics of the glottal closing phase (e.g., the neg-
ative peak of the flow derivative) have usually been assumed
to be perceptually important, because of their association with
the main acoustic excitation of the vocal tract [32]. However,
this study demonstrated the perceptual importance of the glottal
source shape at the opening phase, providing insights to mod-
eling studies and synthesis applications. In addition, the pa-
rameters in the proposed model are based on the landmarks of
the glottal pulse and can be measured directly from the glottal
waveform, allowing more efficient source parameterizations in
applications such as speech coding.

6. Conclusion and future work
This study presented a new voice source model with increased
flexibility to capture the perceptually-important source shape
aspects. Five voice source models were fitted to 40 natural
voices obtained by inverse filtering and analysis-by-synthesis
(AbS). Synthetic copies of the voices were generated using each
modeled source pulse. Models were perceptually evaluated us-
ing a visual sort-and-rate task in which listeners assessed the
extent of perceived match between the AbS copies and stimuli
created with model-fitted sources. Compared to the other mod-
els, on average, the proposed model provided more accurate fit-
tings (in terms of MSE) to the AbS-derived source. In addition,
perceptual experiments showed that the proposed model pro-
vided closer perceptual matches to the target AbS voice than the
other models. In order to demonstrate the potential applicability
of the proposed model for improving the quality of speech syn-
thesis, a preliminary experiment was conducted in which source
models were fitted to source signals representing different voice
qualities (breathy, modal, and pressed) and F0 levels. Pilot re-
sults showed that, on average, the proposed model provided a
more accurate fit than did the other models. Future work will
examine the effect of using this model in synthesizing continu-
ous speech.
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