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Abstract—A novel Statistical Algorithm for F0 Estimation
(SAFE) is proposed to improve the accuracy of F0 estimation
under both clean and noisy conditions. Prominent signal-to-noise
ratio (SNR) peaks in speech spectra constitute a robust infor-
mation source from which F0 can be inferred. A probabilistic
framework is proposed to model the effect of noise on voiced
speech spectra. Prominent SNR peaks in the low-frequency band
(0 – 1000 Hz) are important to F0 estimation, and prominent SNR
peaks in the middle and high-frequency bands (1000–3000 Hz) are
also useful supplemental information to F0 estimation under noisy
conditions, especially the babble noise condition. Experiments
show that the SAFE algorithm has the lowest gross pitch errors
(GPEs) compared to prevailing F0 trackers in white and babble
noise conditions at low SNRs. Experimental results also show that
SAFE is robust in maintaining a low mean and standard deviation
of the fine pitch errors (MFPE and SDFPE) in noise. The code of
SAFE is available at http://www.ee.ucla.edu/~weichu/safe.

Index Terms—F0 estimation, noisy speech, pitch detection, sta-
tistical learning.

I. INTRODUCTION

T HE source-filter model of speech production [1] assumes
that speech signals can be modeled as an excitation signal

filtered by a linear vocal-tract transfer function. The funda-
mental frequency (F0) is defined as the inverse of the period of
the excitation signal during the voicing state [2], [3] . Accurate
F0 tracking in quiet and in noise is important for several speech
applications, such as speech coding, analysis, and recognition.

Some F0 tracking algorithms are based on the source–filter
theory of speech production and estimate F0 for voiced speech
segments. They assume that F0 is constant and the vocal tract
transfer function is time invariant within a short period of time,
e.g., a frame of 10–20 ms. These algorithms usually have two
stages. The first stage consists of obtaining F0 candidates and
the likelihood of voicing on a frame-by-frame basis. The second
stage consists of using dynamic programming to decide the op-
timal F0 and voicing state for each frame.

The first stage can be classified into two categories: single-
band and multi-band. In the single-band method, F0 candidates
are extracted from one frequency band [2]. There are several
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methods to generate F0 candidates. SIFT [4] applies inverse
filtering to voiced speech to obtain the excitation signal from
which it estimates F0 by using autocorrelation. Cepstral-based
methods (e.g., [5]) separate the excitation from the vocal tract
information in the cepstral domain by using a homomorphic
transformation; the interval to the first dominant peak in the
cepstrum is related to the fundamental period. RAPT [6] and
YAPPT [7] generate F0 candidates by extracting local maxima
of the normalized cross correlation function which is calculated
over voiced speech. Praat [8] calculates cross correlation or au-
tocorrelation functions on the speech signal and regards local
maxima as F0 hypotheses. TEMPO [9] obtains F0 candidates
by evaluating the “fundamentalness” of speech which achieves
a maximum value when the AM and FM modulation magnitudes
are minimized. YIN [10] uses the autocorrelation-based squared
difference function and the cumulative mean normalized differ-
ence function calculated over voiced speech, with little post-pro-
cessing, to acquire F0 candidates. Yegnanarayana et al. [11] ob-
tain F0 candidates from exploiting the impulse-like character-
istics of excitation in glottal vibrations. Finally, Le Roux et al.
[12] simultaneously perform frame-wise F0 candidate genera-
tion and time-direction smoothing.

In the multi-band method, a decision module is usually used
to reconcile the F0 candidates generated from different bands.
Gold and Rabiner [13] use measurements of peaks and val-
leys of voiced speech as input to six separate functions whose
values are then processed by an F0 estimator to obtain F0 can-
didates. Lahat et al. [14] calculate autocorrelation functions of
the spectral magnitudes in different bands and then obtain F0
candidates by evaluating the local maxima of the functions. Sha
et al. [15] detect F0 candidates by minimizing the values of si-
nusoid-based error functions calculated on 4 frequency bands:
25–100, 50–200, 100–400, and 200–800 Hz. These multi-band
methods focus mainly on the low-frequency bands.

The multi-band approach has also been used to apply Lick-
lider’s pitch perception theory [16] to F0 estimation. The irreg-
ular excitation signal may cause voiced speech to be aperiodic
in some frequency bands [17]. It is hypothesized that the higher
levels of auditory processing isolate groups of contiguous har-
monics to infer the fundamental frequency from a selection of
these groups. In this view, it is hypothesized that auditory nerves
and the auditory brainstem are capable of using an autocorrela-
tion mechanism to infer F0 over different frequency channels. de
Cheveigne shows that integrating the values of AMDFs across
different channels in the time domain can improve F0 estima-
tion accuracy [18]. Wu et al. [19] used correlograms to select
reliable frequency bands, modeled F0 dynamics using a statis-
tical approach, and then searched for the optimal F0 contour in
an HMM framework.
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These F0 candidate generation methods can also be applied
to noisy conditions. Krusback et al. [20] use an autocorrelation
function with confidence measures. Shimamura et al. [21] pro-
posed a weighted autocorrelation function. Abe et al. [22] use
the instantaneous frequency spectrum to enhance harmonics and
suppress aperiodic components, which improves F0 estimation
accuracy. Liu et al. [23] use joint time–frequency analysis to ob-
tain robust adaptive representation of the speech spectrum from
which important harmonic structures can be extracted. Nakatani
et al. [24] use dominance spectra based on instantaneous fre-
quencies to evaluate the magnitudes of the harmonics relative
to background noise, and estimate F0 using only the reliable
harmonics. Deshmukh et al. [25] use an aperiodicity, period-
icity, and pitch detector to generate F0 candidates by calculating
the AMDFs over different frequency channels in the spectral
domain.

According to the experimental results in this study, some of
the methods mentioned above can work well under relatively
noise-free conditions. However, when the low-frequency band
is contaminated by noise, an increase in F0 estimation errors is
observed. Since it is possible that F0 harmonics in the middle
or high-frequency bands are not corrupted, it may be beneficial
for an F0 estimation method to utilize these harmonics in deter-
mining F0. Current multi-band methods [14], [15] mainly retain
F0 candidates obtained from the most reliable band, which is
a “hard-decision,” while the Licklider’s pitch perception model
uses an empirically-based “soft-decision” to merge the informa-
tion from different bands [18]. Wu et al. [19] uses a “soft-de-
cision” approach to combine the information across bands. We
propose a Statistical Algorithm for F0 Estimation (SAFE) which
also utilizes a “soft-decision” method. A data-driven approach
is used to learn how the noise affects the amplitude and loca-
tion of the peaks in the signal-to-noise ratio (SNR) spectra of
clean voiced speech. The likelihoods of F0 candidates are ob-
tained by evaluating the peaks in the SNR spectrum using the
corresponding models learned from different bands. It is worth
noting that Ying et al. [26] use a probabilistic method to esti-
mate F0 distribution in order to avoid local optima in F0 esti-
mation. Wang et al. [27] modeled the between-frame F0 transi-
tions in a statistical approach to improve both F0 estimation and
unvoiced/voiced decision.

In the following sections, the statistical effects of noise on
clean voiced speech spectra are studied. This relationship be-
tween the noise and information source for F0 estimation is
modeled in a probabilistic framework. In testing, the posterior
probabilities of the F0 candidates are then calculated. In the ex-
perimental section, the performance of the proposed method
under different noise types and SNRs is compared with pre-
vailing F0 estimation methods.

II. SAFE: A STATISTICAL ALGORITHM FOR F0 ESTIMATION

A flowchart of SAFE is shown in Fig. 1. This paper focuses
on estimating fundamental frequency (F0) values over voiced
frames that may be corrupted by quasi-stationary noise. Suppose
that the range of F0 in human speech is from to ,
and the frequency resolution of F0 estimation is . Then is
used to denote the set of all possible F0 values

.

Fig. 1. Flowchart of SAFE.

Given the power spectrum of a single observed noisy
voiced frame under a stationary noise condition , the proba-
bility of being the fundamental frequency of that frame can
be expressed as . The most likely estimate, denoted
by , should be

(1)

Let and denote the power spectrum of the noisy
voiced frame and noise at frequency , respectively. Then the
a posteriori SNR at frequency denoted by is

(2)

As quasi-stationary noise is assumed in this study, the noise
spectrum for each utterance is estimated by averaging the ini-
tial 10 and final 10 frames of noisy speech. The frame shift is
10 ms, and the frame length is 40 ms.

The SNR is a measure of the spectral magnitude at fre-
quency being contaminated by the noise. According to the
source–filter theory of speech production, a voiced speech spec-
trum has a harmonic structure. Local SNR peaks (correspond to
mainly harmonics) contain more information than valleys re-
garding F0. It is assumed that the information contained in the
set of local SNR peaks is sufficient to estimate
F0, where is the number of local SNR peaks. Thus, the pos-
terior probability of is

(3)

In a ROVER system for automatic speech recognition [28],
the posterior probabilities of a word from different sub-systems
are combined with different weights. Inspired by ROVER, local
SNR peaks can be assumed to be independent in inferring F0
given the noise shape and level. The overall posterior probability
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can be approximated as a weighted combination of posterior
probabilities

(4)

where is the confidence measure of the th local SNR peak.
If each local SNR peak is assumed to have an equal confidence
score, then is set to .

If the distribution of given the noise, i.e., , is as-
sumed to be uniformly distributed when prior information is not
available, then can be obtained from the Bayesian
rule

(5)

Let denote the frequency of the local SNR peak . Be-
cause is not usually equal to a multiple of , can be de-
composed into a multiple and a residual as follows:

(6)

where denotes the nearest integer of . Hence, the
residual ranges from 0.5 to 0.5. If the fraction of is
exactly 0.5, either rounding upwards or downwards does not
change F0 estimation error rates in SAFE.

Given and noise , the local SNR peak has the fol-
lowing attributes: multiple , residual , a posteriori SNR ,
and frequency band index in which the frequency is. In
other words, the peak resides in band . The reason why

is not adequate on its own is because there are not enough
training samples for each frequency bin. Then we have

(7)

We assume that the deviation of a local SNR peak from a mul-
tiple of , caused by noise, will not exceed half . Therefore,

is independent of the noise , i.e., .
After the decomposition shown in (6), the residual can be as-
sumed to be independent of and given , , and ,
i.e., . The local SNR

is independent of and given the band index and
noise condition , i.e., .
Furthermore, is assumed to be uniformly distributed.
Since can be assumed to be determined by and regard-
less of noise, the Dirac function is assumed to
be equal to 1. Then we can have

(8)

where is a constant.

A. Prominent SNR Peaks

Before studying the distribution of the residual and local SNR
peaks, it is important to select useful local SNR peaks for F0 es-
timation. Short and long-term smoothed SNRs denoted by �

and � are obtained by smoothing with a Hamming window
of length and in Hz, respectively. The Hamming
window is used because of its relatively small side lobes. Since
the short-term smoothing can reduce the number of false alarm
local SNR peaks and retain F0 information, in (8) is replaced
by � . To depict the relationship between the two smoothed
SNRs, an SNR difference at the th local peak in � denoted
by can be expressed as follows:

� � � (9)

where � is the number of the local peaks in � . is further
normalized with respect to all the peaks in the frame as follows:

� (10)

where and are the mean and standard deviation of the se-
quence . The local SNR peak is regarded as a promi-
nent SNR peak for F0 estimation only if is above a certain
threshold. In this study, the threshold is empirically set to 0.33.

Figs. 2 and 3 show the SNR spectra of a voiced frame of a
female and a male speaker, respectively, corrupted by different
levels of additive white noise (20, 10, and 0 dB). The number on
top of each peak of the short-term smoothed SNR is the value
of the normalized difference SNR of that peak. It can be seen
that not all local SNR peaks reside in the vicinity of multiples of
F0. Most false alarm or deviated peaks have a lower normalized
SNR difference compared to the peaks near the multiples of F0.
Take the false alarm local peaks around 300 Hz of the voiced
frames in all panels of Fig. 2 for example. These peaks, indicated
by arrows, have a lower than their adjacent prominent peaks
in the three noise conditions.

As shown in Figs. 2 and 3, the lower a peak is than the long-
term smoothed SNR, the more likely it is corrupted by the noise
and shifted from its original location, and the less likely it is to
be close to the multiples of F0. Hence, prominent SNR peaks
which are less corrupted by the noise and less deviated from
a multiple of F0 can provide reliable information for inferring
F0s. When middle- and high-frequency bands are less corrupted
by noise, it is possible that prominent peaks can exist in these
bands, e.g., the peaks around 2800 Hz in female voiced frames
and the peaks around 1700 Hz in male voiced frames under 20,
10, and 0 dB SNR conditions. Retaining these prominent peaks
and discarding non-prominent peaks might improve the perfor-
mance of F0 estimation.

As mentioned above, only prominent peaks are used in (4),
i.e., is changed to the number of prominent SNR peaks.

B. Distribution of the Residuals

Recall that the residual is dependent on the local SNR value
and the band index. To reduce the model complexity, it can
be assumed that the distribution of the in (8)
slightly changes when is rounded, i.e.,

(11)

where denotes the SNR bin which is rounded to. The
intervals of the SNR bins in dB are spaced by 3.33 dB and are
as follows: .
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Fig. 2. SNR spectrum of a voiced frame of a female speaker corrupted by different levels of additive white noise (20, 10, and 0 dB). The number on top of each
peak of the short-term smoothed SNR is the value of the normalized difference SNR �� of that peak. Arrows around 300 Hz indicate peaks with a lower �� than
their adjacent prominent peaks.

The distributions of the residuals given different rounded
SNR bins, frequency band index and noise conditions are
shown in Fig. 4. Two white noise conditions: 20 and 0 dB
SNRs are studied. This analysis is conducted over all the
voiced frames in the KEELE corpus [29] with F0 ground truth
values obtained from the simultaneously recorded laryngograph
signal. In this study, three bands: 0–1000 Hz, 1000–2000 Hz,
and 2000–3000 Hz, are employed to represent the low-,
middle-, and high-frequency bands, respectively. Note that all
the residual distributions in Fig. 4 are derived only from the
prominent peaks in the low-frequency band. Most distributions
are centered on zero, which means that these peaks can gen-
erate unbiased F0 estimates. It can be seen that under a certain
noise condition, the higher the rounded SNR is, the smaller the
variance of the residuals. Because having a smaller residual
variance means that the frequencies of local SNR peaks are
less likely to be affected by noise, local SNR peaks from
higher SNR bins are more reliable for F0 estimation. Under
20-dB conditions, no prominent peak has a local SNR higher
than 56.67 dB; under 0-dB condition, the local SNRs of all
prominent peaks are below 36.67 dB.

A comparison of the distributions of the residuals of the
prominent and non-prominent peaks is shown in Fig. 5 for
the white noise condition with 0-dB SNR. In the low-fre-
quency band, prominent peaks can have a local SNR as high
as 36.67 dB, while the local SNRs of non-prominent peaks are
below 26.67 dB. Furthermore, the residuals of the non-promi-
nent peaks with low local SNRs are mostly distributed away
from zero, which means that it is difficult to infer F0 from these
non-prominent peaks. Although the residuals of the non-promi-
nent peaks with high local SNRs are distributed around zero,
the distributions have larger variances compared to the residuals
of the prominent peaks with the same local SNR.

Curve-fitting or Gaussian mixture modeling can be used to
model the distributions of the residuals; however, it is impor-
tant to control the number of parameters in the model which
enables training with limited data and prevent model over-fit-
ting. A Doubly truncated Laplacian distribution, denoted by

, is used for modeling , i.e., the dis-
tribution of residuals given the rounded SNR bin, band index
and noise condition:

otherwise
(12)
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Fig. 3. SNR spectrum of a voiced frame of a male speaker corrupted by different levels of additive white noise (20, 10, and 0 dB). The number on top of each
peak of the short-term smoothed SNR is the value of the normalized difference SNR �� of that peak.

where and represent the mean and the variance, respectively.
is set to to ensure that .

Hence, only two free parameters need to be estimated.
Given a sequence of residuals denoted by

(suppose all the residuals are independent and identically dis-
tributed) we have

(13)

Let and . Then

(14)

Under the maximum-likelihood criterion, the estimated
mean and variance denoted by and (or ) should maximize

the joint probability which is equivalent to maximize
.

Since when ,
achieves its maximum when for any , i.e.,

(15)

Since when ,
achieves its maximum when and , i.e.,

(16)

To solve , let denote the sorted sequence
of the sequence in an ascending order, we have one feasible
solution of

is odd
is even.

(17)
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Fig. 4. Distributions of the residuals given different rounded local SNRs for a 3.33-dB interval at the low frequency band (0–1000 Hz). Different white noise
conditions (20 and 0 dB global SNRs) are shown. The horizontal axes are the residuals with a bin size of 0.01. The vertical axes are the probabilities of occurrences.
The title on each sub-figure shows the interval of rounded local SNR � .

Note that when is even, any value between and
can satisfy (15). As shown in (17), the number of residuals that
are greater than is equal to the number of residuals that are
less than . Equation (16) can be simplified as

(18)

Although there is no close-form solution to (16), Newton’s
method can be used to search for . Note that .
When a bin with a high rounded SNR does not have training
instances, no effort of running the mean and variance solvers
is spared. In case of some unseen residuals might have higher
SNRs, the mean is set to 0, and the variance is set to a small
value, e.g., 0.01.

There is one similarity between SAFE and Wu et al. method
[19]: the use of Laplacian distribution for data modeling. The
meaning and range of the modeled random variables are dif-
ferent. SAFE models the residual derived from the prominent
peak in the SNR spectrum. The residual ranges from 0.5 to
0.5. Wu et al. method models the time lag derived from the peak
in the correlogram. The time lag ranges from to .

The logarithms of the averaged estimated variances of the
residual distributions for different bands are shown in Fig. 6.
Averaging is across all noise levels: clean, 20 dB, 10 dB, 5 dB,
0 dB, 5 dB. The noise type is white noise. It can be seen that
the variance of the lower frequency band at a certain rounded
SNR bin is smaller than the counterpart of the higher frequency
band. When the variance of the estimated residual distribution is
small given a frequency band, it means that the probability of ac-
curately estimating F0 in that band is high. As mentioned above,
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Fig. 5. Comparision of the distributions of the residuals of prominent SNR peaks (PP) and non-prominent SNR peaks (Non PP) given different rounded local
SNRs at the low frequency band (0–1000 Hz). The noise condition is white noise at 0-dB global SNR. The horizontal axes are the residuals with a bin size of 0.01.
The vertical axes are the probabilities of occurrences. The title on each sub-figure shows the interval of rounded local SNR � .

Fig. 6. Comparison of the log of the averaged estimated variances of the
residual distributions under different frequency bands (low, middle, high). The
noise condition is white noise. Estimated variances from different noise levels
(clean, 20 dB, 10 dB, 5 dB, 0 dB, �5 dB) are averaged.

it is still possible to use the prominent peaks lying in the middle
and high-frequency bands to improve F0 estimation. Note that
the higher the rounded local SNR, the smaller the variance is.

In Fig. 7, the estimated means of the residual distributions for
different bands under clean and noisy conditions are compared.
The noise types are white and babble noise. The means under
noisy conditions at different SNRs (20 dB, 10 dB, 5 dB, 0 dB,

Fig. 7. Comparison of the averaged estimated means of the distributions of
residuals under different noise conditions using the KEELE corpus. Estimated
means from different noise levels (clean, 20 dB, 10 dB, 5 dB, 0 dB,�5 dB) and
different frequency bands (low, middle, high) are averaged.

5 dB) are averaged. It can be seen that the estimated means
are not exactly equal to zero under both clean and noisy con-
ditions if local SNR is less than 55 dB. F0 estimation actually
benefits from learning a Laplacian distribution with a nonzero
mean which better fits the real distribution of the data.
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Fig. 8. Comparison of the distributions of rounded local SNRs under different
frequency bands (low–1, middle–2, high–3). The noise condition is white noise.
The distributions under different noise levels (20 dB, 10 dB, 5 dB, 0 dB,�5 dB)
are averaged.

C. Distribution of the Local SNRs

In the previous section, local SNRs of the prominent peaks
are rounded. It can be assumed that this rounding does not sig-
nificantly change the in (8), i.e.,

(19)

where is a constant. The distribution can be learned by using
a histogram-like approach based on the training set.

The distributions of the rounded local SNRs of the prominent
peaks under different bands and noise conditions are shown in
Fig. 8. The distribution under noisy conditions at different SNRs
(20 dB, 10 dB, 5 dB, 0 dB, 5 dB) are averaged. It can be seen
that the peaks of noisy speech are more likely to be distributed in
bins with low SNRs compared to clean speech, which can be one
of the reasons why estimating F0 values is difficult under noisy
conditions. For either clean or noisy condition, the rounded local
SNRs of the prominent peaks from the low frequency band are
also more likely to be concentrated in high SNR bins compared
to the middle and high frequency bands.

D. Post-Processing

For an utterance, the posterior probabilities, , for
each frame are obtained by calculating (4). Then, a dynamic pro-
gramming approach, the same as that used in RAPT, was used
to smooth the tracked F0 contour and to allow octave jumps at
a certain cost [6]. A brief description of the dynamic program-
ming is as follows.

The objective of dynamic programming is to search for an
F0 contour that minimizes an objective function. Given an F0
contour, the objective function is defined as a summation of the
frame-level local cost and transition cost functions. The local
cost function for a certain frequency at one frame is inversely
related to the F0 likelihood value. The inter-frame F0 transition
cost function is defined under four conditions: voiced-to-voiced

, unvoiced-to-unvoiced , voiced-to-unvoiced

, and unvoiced-to-voiced . In the con-
dition, the cost function is defined as an increasing function of
inter-frame proportional frequency change, but allows for oc-
tave jumps at some specifiable cost. In the condition,
the cost function is defined as 0. In the or con-
ditions, the cost function is defined as a combination of a spec-
tral stationarity function and the inverse function of the Itakura
distortion [30].

The focus of the proposed method is to reduce F0 estimation
error under both clean and noisy conditions. However, voicing
boundaries can affect the results of F0 tracking [31]. Hence,
each F0 tracking algorithm is forced to estimate F0 values over
all the voiced frames regardless of the SNRs.

The F0 trackers (RAPT, Praat, TEMPO, WWB) also output
voiced/unvoiced decisions. If the ground truth and the F0 tracker
agree that a frame is voiced or unvoiced, the F0 value is not
changed. If a ground truth unvoiced frame is assumed to be
voiced, the F0 value is set to be 0. If a ground truth voiced frame

is assumed to be unvoiced, is estimated by using an in-
terpolation-based method

(20)

where and denote the left and right closest frame to the
current frame among the frames that both the ground truth
and F0 tracker agree to be voiced. One exception of this interpo-
lation is that if frame is in the first or last assumed unvoiced
segment by the F0 tracker in a ground truth voiced segment, the

is set to be either or depending on whether the
right or left frame is closer.

An example of F0 estimation made with SAFE is shown in
Fig. 9. The segment corresponds to the beginning of the ut-
terance of the second female speaker in the KEELE corpus.
The noise condition is babble noise at 0-dB SNR. Each ver-
tical strip in the bottom panel shows the F0 posterior probabili-
ties over the voiced frame. The darker a point is, the higher the
probability that F0 corresponds to that frequency. Since RAPT
has the lowest GPE among all the F0 estimators, and SAFE
uses the same cost function as RAPT for the dynamic program-
ming-post processing, only the tracked F0 of RAPT and SAFE
are shown in Fig. 9. It can be observed from the spectrogram
in the top panel that the babble noise is mostly concentrated on
the low-frequency band. The babble noise can corrupt the har-
monic structure of the voiced frame by suppressing or shifting
the spectral peaks in the original clean speech, or by inserting
new harmonic structures of the periodic babble noise into the
original spectrum. The new added strong harmonic structures
from babble noise may cause estimation errors. For some re-
gions in which the target speech has high energy at high fre-
quencies, e.g., around 1.6 s, the prominent peaks in the middle
and high frequency bands, which are less affected by noise, can
be used to infer the F0 value.

III. EXPERIMENTS

Three error metrics: gross pitch error (GPE), mean of the fine
pitch errors (MFPE), and standard deviation of the fine pitch
errors (SDFPE) are used [2] to evaluate the performance of
F0 estimation algorithms. Let denote the number of the
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Fig. 9. Spectrogram, F0 posterior probabilities from SAFE, and F0 contours from RAPT and SAFE of a segment of an utterance from the second female speaker
(f2nw0000) in the KEELE corpus under babble noise condition at 0 dB SNR.

frames that both the F0 tracker and the ground truth consider
to be voiced, means “both voiced”; and represent the
number of frames for which

(21)

where is the frame index, and is a threshold which is typi-
cally 20%, means “gross error.” The number of remaining
frames, denoted by , is equal to . means
“fine error.”

GPE is defined as

(22)

MFPE denoted by is defined as:

(23)

where denotes the set of all the frames in which no gross
error occurs.

SDFPE denoted by is defined as

(24)

where MFPE and SDFPE are used to measure the bias and pre-
cision of the F0 estimation when no gross estimation error is
occurred.

In this section, we compare the GPE, MFPE, and SDFPE
using the KEELE [29] and CSTR [32] corpora. The 5 minute
37 seconds KEELE corpus contains a simultaneous recording

of speech and laryngograph signals for a phonetically-balanced
text which was read by five male and five female speakers. The
5 minute 32 seconds CSTR corpus is composed of laryngograph
and speech signals from one male and one female speaker. Each
speaker read 50 sentences in the CSTR corpus. Ground truth
F0s were obtained by running an autocorrelation method on the
laryngograph signal in addition to some manual correction.

Speech signals are downsampled from 20 000 Hz to 16 000
Hz for both corpora. Noise is artificially added to the corpora
to test the robustness of the F0 trackers under different noise
conditions. The program FaNT [33] with the default command
line option (-u -m snr_8 khz) was used to employ white and
babble noise segments from the NOISEX92 [34] corpus to the
speech signals to generate utterances with SNR of 20, 10, 5,
0, and 5 dB. The white noise is acquired by sampling high-
quality analog noise generator. The babble noise is acquired by
recording 100 people speaking in a canteen with room radius
over 2 m.

The parameters of SAFE are as follows: fast Fourier trans-
form (FFT) size is 16 384; frequency resolution is 1 Hz; frame
length and step size are 0.04 and 0.01 seconds, respectively;

and are 50 and 400 Hz, respectively; the lengths of
the short-term and long-term windows for spectrum smoothing
are 50 and 400 in Hz, respectively. A peak is regarded as a
prominent peak if the normalized difference SNR is greater
than an empirically determined threshold of 0.33; the ranges
of the low-, middle-, and high-frequency bands are 0–1, 1–2,
and 2–3 kHz, respectively; local SNRs of the peaks are rounded
to the nearest value in the following sequence , where

. The weighting factors in (4) are all set to the
reciprocal of the number of the prominent peaks in that frame.
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For the KEELE corpus, a five-fold cross-validation scheme
is applied. For each fold under a certain noise level, the speech
of one male and one female speaker are used for testing, the
residual and SNR models are trained from the remaining speech
and its ground truth. Since 54% of the KEELE corpus is voiced
speech, if the frame step size is 0.01 s, each fold has about 14 000
frames for training. Since there are 23 rounded local SNR bins,
if each voiced frame has ten prominent peaks on average, each
residual model has about 6000 samples for training. Because
some bins with high SNRs might have fewer training instances,
e.g., 5% of the average—300 samples, it is still possible to ro-
bustly train a doubly-truncated Laplacian distribution with only
two free parameters.

A comparison of the GPEs of RAPT, Praat, TEMPO, YIN,
Wu et al. method (WWB), and SAFE on the KEELE corpus is
shown in Table I. Note that Yegnanarayana et al. [11] results are
not included, because silence was added to the KEELE corpus in
their experiments. There are two configurations of Praat: auto-
correlation (default) or cross-correlation. The cross-correlation
configuration is used, since it consistently provided better re-
sults. The default settings were used for RAPT, Praat, TEMPO,
YIN, and WWB, except that the voicing thresholds were op-
timized. The implementation of WWB was provided by Prof.
Dan Ellis and his group at Columbia University. Three config-
urations of SAFE were compared: standard (SAFE), only with
information from the low frequency band as the prevailing F0
tracking algorithms [SAFE (LFB)], and with zero mean residual
estimation (SAFE ). It can be seen that all F0 trackers
have GPEs lower than 3.5% in quiet. All algorithms suffer from
performance degradation when the SNR drops. As expected, it
is more difficult to accurately estimate F0 in the babble noise
condition compared to the white noise condition with the same
SNR. The SAFE algorithm has the lowest GPE when the SNR
is at or below 5 dB under white noise, or at or below 10 dB
under babble noise. It can be concluded from Table I that dis-
carding information from middle and high-frequency bands can
cause an increase in GPE, especially for babble noise which is
usually concentrated at low frequencies. Forcing the means of
the estimated residual distributions to be zero can also result in
an increase in GPE. The performance of the SAFE algorithm
using non-prominent peaks is not tested, because not only the
non-prominent peaks are negative factors in F0 estimation, but
also the proposed doubly truncated Laplacian distribution is not
supposed to fit the saddle-like distributions of non-prominent
peaks as shown in Fig. 5.

To determine the generalizablity of SAFE, the model trained
from the KEELE corpus is used for the CSTR corpus. According
to the performances of the F0 algorithms shown in the Table I,
it can be seen that F0 estimation for the CSTR corpus is easier
under white noise, but harder under babble noise compared to
the KEELE corpus. Although there is mismatch between the
KEELE and CSTR corpora, SAFE still has the lowest GPE
under low SNR conditions for both. The mismatch can explain
why SAFE has a lower GPE compared to the standard
SAFE. Thus, it may be more appropriate to use SAFE
when prior information of the testing set is not available.

The MFPEs for the KEELE and CSTR corpora are shown
in Table II. It can be seen that the best configuration of SAFE
has less than 1 Hz MFPEs under all noise conditions. Other F0
trackers have less than 3 Hz MFPEs under most noise condi-

TABLE I
GPE (%) OF THE RAPT, Praat, TEMPO, YIN, WWB, AND SAFE USING

THE KEELE AND CSTR CORPORA.LFB: ONLY THE LOW FREQUENCY BAND

(0-1000 Hz) IS USED. ��� � �: A ZERO MEAN IS USED IN THE DOUBLY

TRUNCATED LAPLACIAN DISTRIBUTION. BOLD NUMBERS

REPRESENT THE LOWEST GPE IN EACH COLUMN

tions. Note that 3 Hz is only 1.2% of the average of all possible
F0s which is 225 Hz. That means all F0 trackers do not make
significantly biased F0 estimation under clean and most noisy
conditions. For the KEELE corpus, the means of the residuals
are slightly less than zero most of the time as shown in Fig. 7.
Thus, the standard SAFE which considers the bias is supposed
to have slightly lower F0 estimation than the zero mean version
of SAFE. Due to the mismatch between KEELE and CSTR cor-
pora, the negative bias causes the MFPEs of the standard SAFE
to be more deviated from zero compared to the zero mean ver-
sion of the SAFE on the CSTR corpus.

The SDFPEs on KEELE and CSTR corpus are shown in
Table III. It can be seen that the SDFPEs of SAFE are slightly
higher (1–2 Hz) than other F0 estimators under some con-
ditions. Since the MFPE and SDFPE are calculated over the
frames in which the F0 tracker does not have gross F0 estima-
tion errors (less than 20% gross error), the number of frames
for calculating the SDFPE over different F0 trackers under the
same noise condition is different. It is known that F0 estimation
accuracy is higher over less noisy frames [31]. Given a certain
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TABLE II
MFPE (Hz) OF THE RAPT, Praat, TEMPO, YIN, WWB, AND SAFE USING

THE KEELE AND CSTR CORPORA. LFB: ONLY THE LOW FREQUENCY BAND

(0-1000 Hz) IS USED. ��� � �: A ZERO MEAN IS USED IN THE DOUBLY

TRUNCATED LAPLACIAN DISTRIBUTION

noise condition, if an estimator only correctly estimates F0 over
a few frames that have high frame-level SNRs, it could have
relatively low MFPE and SDFPE, but a high GPE. Therefore,
having higher MFPEs or SDFPEs does not necessarily mean
that SAFE is less accurate in F0 estimation.

IV. CONCLUSION

Prominent signal-to-noise ratio (SNR) peaks constitute a
simple and an effective information source for F0 inference
under both clean and noisy conditions. The statistical frame-
work of F0 estimation is promising in modeling the effect of
the additive noise on the clean spectra given F0. In addition to
low frequencies, middle- and high-frequency bands (1-3 kHz)
provide supplemental useful information for F0 inference.
The proposed SAFE algorithm is more effective in reducing
the GPE compared to prevailing F0 trackers especially at
low SNRs, and robust in maintaining low mean and standard
deviation of the fine pitch errors.

TABLE III
SDFPE (Hz) OF THE RAPT, PRAAT, TEMPO, YIN, WWB, AND SAFE USING

THE KEELE AND CSTR CORPORA. LFB: ONLY THE LOW FREQUENCY BAND

(0-1000 Hz) IS USED. ��� � �: A ZERO MEAN IS USED IN THE DOUBLY

TRUNCATED LAPLACIAN DISTRIBUTION
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