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This paper evaluates a novel framework for spoken dialect density prediction on both1

children’s and adult’s African American English. A speaker’s dialect density is de-2

fined as the frequency with which dialect-specific language characteristics occur in3

their speech. Rather than treating the presence or absence of a target dialect in a4

user’s speech as a binary decision, we instead train a classifier to predict the level of5

dialect density in order to provide a higher degree of specificity in down-stream tasks.6

For this, we experiment with self-supervised learning representations from HuBERT,7

hand-crafted grammar-based features extracted from ASR transcripts, prosodic fea-8

tures, and other feature sets as the input to an XGBoost classifier. We then train9

the classifier to assign dialect density labels to short recorded utterances. We achieve10

high dialect density level classification accuracy for both child and adult speech and11

demonstrate robust performance across age and regional varieties of dialect. We ad-12

ditionally use this work as a basis for analyzing which acoustic and grammatical cues13

affect machine perception of dialect.14
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2

mailto:ajohnson49@g.ucla.edu


I. INTRODUCTION15

Language identification (LID) and dialect identification (DID) have become integral parts16

of many large spoken language systems. For example, many multilingual automatic speech17

recognition (ASR) systems like OpenAI’s Whisper (Radford et al., 2022) and Meta’s Mas-18

sively Multilingual Speech models (Pratap et al., 2023) leverage large cross-lingual speech19

corpora for training and then perform LID during inference. Other systems like AWS tran-20

scribe (AWS, 2023) offer DID for commercial use cases, distinguishing input speech, for21

example, between English dialects from the US, UK, or India for better performance on22

regional dialects. As these models expand to support more languages and dialects, sev-23

eral challenges arise: First, data-driven DID methods that rely on the availability of large24

amounts of dialect-labeled speech may not generalize to less well-resourced dialects and25

variations. Second, even within a dialect, these systems are typically only trained on adult26

speech. Therefore, many DID systems are unable to accurately predict dialect for children’s27

speech, making them unsuitable for speech applications in early education. Third, some28

speakers may use more or fewer aspects of a dialect than others (as some people are per-29

ceived to have a thicker accent than others). As such, categorizing all speakers of a dialect30

into the same label group regardless of the frequency of use of dialect-specific pronuncia-31

tions, grammar patterns, and prosodic patterns may lead to inaccurate representations of32

some speakers in downstream applications.33

Despite recent advances in DID systems, few works have been proposed to better explain34

which acoustic and linguistic cues are essential for machines to accurately predict certain35
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dialects. Studies such as (Holliday, 2021) attempt to better understand which acoustic and36

prosodic cues are used by listeners to determine a speaker’s perceived ethnicity or dialect.37

However, it is largely unknown if machines use the same cues as humans to perform DID38

and, if so, to what extent they utilize them. This motivates the need for further research39

on explainable DID systems in which the importance of different types input cues can be40

further analyzed and compared to known phenomena in humans.41

In this paper, we build on the dialect density estimation system originally proposed in42

(Johnson et al., 2022a) in order to address these challenges. Particularly, we seek to better43

understand what acoustic cues, in addition to known morphosyntactic cues, affect machine44

perception of dialect. Dialect density is the frequency with which a speaker uses dialectal45

differences that are not present in a reference dialect(Craig and Washington, 1994; Wash-46

ington and Seidenberg, 2022). Therefore, automatic dialect density estimation consists of47

predicting a speaker’s dialect density from a short input sample of their speech. A machine48

can then use this estimate for better downstream model selection, tuning of decoding param-49

eters, or data sampling techniques. The dialect density labels need not be mutually exclusive50

between multiple dialects and can encode dialectal aspects of grammar and pronunciation51

separately if desired.52

This work proposes a model for African American English dialect density estimation from53

short utterances on both children’s and adult’s speech (utterances of length 30-90sec for adult54

speech and 2-3min for children’s speech). As education literature has demonstrated, speakers55

of minority dialects like AAE are often underrated in language abilities due to raters who are56

unfamiliar with AAE interpreting dialectal differences as language deficiencies (Washington57
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et al., 2018). In particular, children with higher AAE dialect density have been shown to58

underachieve in schools that primarily teach in MAE (Washington et al., 2018). Therefore,59

DID in educational spoken language systems could be used to detect and mitigate this bias,60

creating a pressing use case for the dialect explored in this work. We first train and test the61

proposed system on a dataset of adult’s AAE. We then show the generality of the feature62

extraction and model training paradigm to children’s speech by training and testing the63

proposed model on a corpus of spontaneous children’s speech from both AAE and non-AAE64

speaking students from the Atlanta, Georgia area.65

Although the phonetic and morphosyntactic dialectal features of AAE have been well66

documented (Lanehart and Malik, 2015; Thomas, 2015), few studies have been done to67

collect data or improve ASR system performance for the dialect, giving it status as a low68

resource dialect. Notably, (Koenecke et al., 2020) identifies a performance gap between MAE69

and AAE for several commercial ASR systems and points to insufficiently trained acoustic70

models as a possible cause. (Koenecke et al., 2020) also shows that commercial ASR system71

performance worsens as a function of increasing AAE dialect density. The model proposed in72

our work fuses traditional acoustic features, state-of-the-art neural network representations,73

and handcrafted features designed to detect documented aspects of AAE in order to create74

robust predictions of dialect density. The model combines information relating to acoustic75

phonetics, prosody, and morphology. We show high performance of the model for both76

AAE-speaking children and adults, as well as offer insights on how machines can better deal77

with the dialectal linguistic differences present. We additionally show the impact of input78
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features on the dialect density classifier in order to interpret how they affect the model and79

interact with each other. Next, we summarize the previous works related to this paper.80

A. Related Works81

Several recent studies have offered promising DID systems for a limited number of dialects.82

(Liao et al., 2023) introduces a time delay neural network, as popularized by the X-vector83

speaker embedding (Snyder et al., 2018), with attention across both time and frequency84

for classifying between a set of 16 dialects. The experiments performed in (Tzudir et al.,85

2022a) additionally found frequency-based data augmentation to be beneficial in training a86

recurrent neural network to classify low-resource dialects with either speaker embeddings or a87

combination of Mel frequency cepstral coefficients (MFCCs) and other acoustic features. The88

authors of (Yadavalli et al., 2022) designed a multitask learning framework for a conformer-89

based system that jointly learns to output ASR transcripts and DID labels for speech from90

three Telegu dialects. In order to overcome performance degradation caused by domain91

mismatch in end-to-end DID systems, (Shon et al., 2019) creates a domain-attentive fusion92

technique to better classify African and Arabic dialects across recording conditions and93

speaking styles.94

Despite these advancements, several challenges remain in DID, especially for widely spo-95

ken languages such as English, which display wide variability both within and across groups.96

For example, while many current DID systems may categorize US English as distinct from97

British English, they do not recognize differences between Mainstream American English98

(MAE), African American English (AAE), Southern American English, Creole English, and99
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other varieties. The work in (Duroselle et al., 2021) shows that ASR systems with more100

knowledge of the different dialects, achieved by joint training on DID and ASR, often per-101

form better across those dialects, implying that adding more specificity to the DID pipeline102

would improve the performance of downstream tasks. However, it is neither simple nor scal-103

able to simply attempt to train current DID systems to distinguish between larger sets of104

dialects. First, several dialects are low-resource dialects, meaning that there is not enough105

publicly available speech data to train large spoken language models to recognize them.106

Second, speech samples cannot always be categorized neatly into one dialect. Many speak-107

ers code-switch, alternating between different languages or dialects (Martin-Jones, 1995),108

or incorporate aspects of multiple dialects into their speech. The degree of the speaker’s109

code-switching may depend on several factors such as the speaking style or formality of the110

conversation (Labov, 2006). Assigning discrete labels to samples from these speakers and111

forcing a model to choose a single dialect for them would likely propagate error through the112

system. Third, many current DID models only classify dialect from acoustic features like113

spectrograms or Mel frequency cepstral coefficients, which mainly discern differences in pro-114

nunciation (e.g. (Ali et al., 2019; Lei and Hansen, 2011; Mawadda Warohma et al., 2018)).115

However, sociolinguistic variations can differ in several aspects besides just pronunciation116

(e.g. prosody, grammar, and diction). Previous works which have combined prosodic cues117

with spectral information (Tzudir et al., 2022b), or that have attempted to classify language118

or dialect from grammatical features of text (Zissman and Berkling, 2001) have shown that119

considering other aspects of language can improve automatic DID. This is especially ben-120

eficial in DID for speakers with relatively high acoustic variability like children. Although121
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children’s developing vocal tracts and articulatory motor skills may cause their speech to122

display different acoustic properties than adults’ speech (Lee et al., 1999), work in (John-123

son et al., 2023a) shows that incorporating prosodic and grammar information into DID124

systems trained on adults speech can make them more robust for children. Improving DID125

for children’s speech is of particular interest in educational speech technology, as mentioned126

previously. Applications like Read Along by Google (Google, 2023) use ASR and natural127

language processing (NLP) to recognize and provide pronunciation and literacy feedback to128

children as they practice reading aloud.129

1. Dialect Density130

Originally proposed in educational studies on AAE children’s language usage, dialect131

density is a metric for measuring how much dialectal influence appears in a speaker’s speech132

(Craig and Washington, 1994; Seymour et al., 1998; Washington et al., 1998). It is common133

to measure AAE dialect density as the percentage of words or sentences of a speaker’s speech134

that contain well-documented AAE dialectal characteristics that are not present in MAE135

speakers. The language differences between MAE and AAE may cause student speakers136

of AAE to be seen as developing language skills incorrectly, and so education researchers137

have found it necessary to measure one’s frequency of dialect usage separately from their138

pronunciation abilities (Moyle et al., 2014), lexical comprehension (Edwards et al., 2014),139

and other markers of language development (Van Hofwegen and Wolfram, 2010). Drawing140

inspiration from these studies, we aim to enable ASR systems with similar capabilities so141

that they can mitigate bias that may come from dialect-specific constructions.142
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B. Roadmap143

In Section II, we describe the structure of the proposed feature extraction pipeline and144

classification model for dialect density estimation. Then in Section III, we present the results145

of evaluating the system on adult speech from the CORAAL database and children’s speech146

from the GSU Kids speech database. Section IV presents a discussion and analysis of the147

results. Section V presents conclusions and future work.148

II. METHODS149

The overall goal of this work is to train a classifier to predict the frequency and strength150

of a speaker’s dialect usage from a short input utterance. The amount of dialect usage can be151

represented numerically with a dialect density measure (DDM) which gives the percentage152

of words in an utterance that contain a documented phonological or morphosyntactic char-153

acteristic of dialect. Here, we train a classifier to map features extracted from an utterance154

to the hand-labled DDM. This section describes the datasets, feature sets, and models used155

in this work.156

A. Datasets157

This study uses adult AAE speech data from the Corpus of Regional African American158

Language (CORAAL) (Kendall and Farrington, 2021) and Children’s speech data from the159

Georgia State University Kid’s Speech Database (GSU Kids) (data collected in (Fisher et al.,160

2019) and structured in (Johnson et al., 2022b)). An overview of each dataset is provided.161
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Statistics about each set and the average dialect density for the speakers are shown in Table162

I.163

1. CORAAL164

The CORAAL dataset contains recordings of interviews with African American English165

speakers from a variety of socioeconomic backgrounds, ages, and cities throughout the East166

Coast of the US. We use speech from 5 different cities in the database: Rochester, New York167

(ROC), Lower East Side Manhattan, New York (LES), Washington DC (DCB), Princeville,168

North Carolina (PRV), and Valdosta, Georgia (VLD). We avoid using recordings from the169

DCA or DTL datasets, as these were recorded decades before the others on dissimilar devices.170

Preliminary experiments show that recordings from these datasets are easily distinguishable171

by recording device and dialect, adding confounding factors to experiments which may seek172

to separate recordings by regional dialectal characteristics. There were a total of 65 different173

speakers from across the 5 regional datasets used. The speakers ranged in age from young174

teens to over 90 years old. The speakers also span a range of socioeconomic groups, although175

this information is not available for several speakers, and so we do not focus on drawing176

conclusions from the speakers’ reported socioeconomic status. From each speaker, we took177

2-3 utterances, each 30-90sec in length (as done in (Koenecke et al., 2020)), that were178

annotated for dialect density. This totaled 208 utterances (about 2 hours) of dialect density-179

labeled adult AAE speech. Despite the fact that the CORAAL dataset contains hundreds of180

hours of speech, the number of different speakers from whom distinct dialectal patterns can181

be observed is far more limited, leading to the smaller dataset used in this work. The number182
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of utterances and speakers from each city are given in Table I. The utterances from ROC,183

PRV, and DCB were selected and labeled for dialect density by the authors of (Koenecke184

et al., 2020) and the utterances from VLD and LES were selected and labeled by authors of185

this work 1. Note that speakers from PRV and VLD on average have higher dialect densities186

than speakers from the other cities, possibly because those southern cities have historically187

had larger populations of AAE speakers. The audio recordings were originally sampled at188

44.1kHz and downsampled to 16kHz for experimentation.189

2. GSU Kids Database190

This dataset contains audio recordings of 203 children aged 9 to 13 from the Atlanta,191

Georgia area as they perform oral assessments consisting of a picture description task. The192

recordings contain a mix of spontaneous and scripted speech. Each child gives one speech193

sample, 2-3 min in length, totalling in about 15 hours of speech. While this leads to longer194

audio segments than those in the adult samples from CORAAL, we observe more similar195

numbers of words and number clauses between the child and adult samples of these lengths.196

The children’s speech was transcribed by the authors of (Fisher et al., 2019) who are experts197

in children’s language. Authors of this paper then annotated the dialect density of each198

recording following the same procedure described in (Koenecke et al., 2020) for the CORAAL199

data. All of the students are from the same school district which primarily serves children200

of working and lower middle class families. We acknowledge that socioeconomic status is201

an important factor in acquisition of dialectal language (Craig and Washington, 1994) and202

control for it as best as possible with the use of this largely homogeneous dataset.203
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City ROC LES DCB PRV VLD GSU kids

# Utt 50 30 50 50 28 203

# Speakers 11 10 22 10 12 203

Avg. DDM 0.047 0.042 0.088 0.194 0.141 0.040

TABLE I. Number of utterances, Number of speakers, and average dialect density measure (Avg.

DDM) of dialect from each city for the labeled portion of the CORAAL database used and the

Georgia State University Kids Speech Corpus.

3. Dialect Density Labels204

Each utterance was transcribed at the word level, and then any documented phonological205

AAE dialectal differences from MAE (ie. differences in pronunciation) or morphosyntactic206

differences (ie. differences in grammar or word choice) in the utterance were tagged as such.207

The dialect density measure (DDM) of each utterance is then calculated as the number208

of these dialectal differences divided by the number of words in the utterance (Koenecke209

et al., 2020). For educational applications with AAE children’s speech, it may also be useful210

to predict the child’s usage of phonological dialectal patterns and morposyntactic dialectal211

patterns separately. Having these two separate metrics (one corresponding to pronunciation212

and one corresponding to grammar) would allow spoken language systems to give dialect-213

appropriate feedback on a child’s pronunciation, grammar, and word usage separately. To214

explore a classifier’s ability to perform this task for children, we train the classifier to predict215

the total dialect density measure (DDM), the dialect density only taking into account the216

phonological aspects (Phon DDM), and the dialect density only taking into account the217

morphosyntactic aspects (Gram DDM) for each model. Similar to the overall DDM, Phon218

12



DDM is calculated as the number of phonetic features of AAE in an utterance divided by219

the number of words in that utterance. We find that calculating a morphosyntactic dialect220

density measure in the same way often does not produce a metric that aligns well with the221

raters’ perception of which children are low or high density dialect speakers. Therefore,222

we define morphosyntactic dialect density at the utterance level as done in (Oetting and223

McDonald, 2002). That is, we define the morphosynactic dialect density measure (Gram224

DDM) as the percentage of sentences that contain a marker of AAE grammar. Since the225

number of possible dialectal phonological differences is largely limited by the number of226

words in an utterance, and the number of dialectal morphosyntactic differences is largely227

limited by the number of grammar constructions (i.e. clauses), we normalize Phon DDM228

and Gram DDM by their respective maximum possible values. We evaluate the system229

performance in predicting Phon DDM and Gram DDM for only the children, since the230

adult speech samples are too short to estimate Gram DDM. The average dialect density231

measures for each dataset are given in Table I. To format dialect density estimation as a232

multi-class classification problem, we then assign discrete levels to the utterances based on233

their dialect density measures: 0 - dialect density of 0, 1 - dialect density between 0 and234

0.05, 2 - dialect density between 0.05 and 0.1, 3 - dialect density between 0.1 and 0.2, and 4 -235

dialect density greater than or equal to 0.2. Each utterance together with its dialect density236

label then constitutes one training or testing sample. Literature shows that a dialect density237

greater than 0.1 (i.e. 10% of the individual’s words contain a dialectal difference from the238

mainstream dialect) is often seen as a quite pronounced or high density dialect (Washington239

and Seidenberg, 2022). The number of utterances at each dialect density for each dataset is240
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Label 0 1 2 3 4

Bounds DDM = 0 0 < DDM ≤ 0.05 0.05 < DDM ≤ 0.1 0.1 < DDM ≤ 0.2 0.2 < DDM

CORAAL DDM 28 49 51 54 26

GSU Kids DDM 68 80 31 17 7

GSU Kids Phon DDM 95 82 16 8 2

GSU Kids Gram DDM 84 14 12 43 50

TABLE II. Number of utterances in each dialect density measure (DDM) bin for both the CORAAL

and GSU Kids datasets

shown in Table II. We note that the majority of adult speakers from the CORAAL speakers241

have DDMs from level 0 to 2 and the majority of child speakers from the GSU Kid Speech242

Database have DDMs from level 0 to 1.243

B. Features244

We extract several feature sets that relate to documented aspects of AAE dialect and245

then train a backend classifier to predict the dialect density level of a given utterance. The246

following section describes the five proposed feature sets and backend model:247

1. Grammatical Features248

African American English has different grammar than Mainstream American English. For249

example, AAE constructions may contain verb conjugations, collocations, or word usages250

that are not seen in MAE. Motivated by the desire to capture these grammatical aspects251

of AAE which have been well-documented in linguistic studies (Lanehart and Malik, 2015),252

we create a hand-crafted feature set composed of the following values to detect the most253
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commonly seen of these differences (as determined in (Craig et al., 2003)) in ASR transcripts254

of spoken AAE.255

We first use the ASR system, HuBERT-base (Hsu et al., 2021), to automatically tran-256

scribe each utterance. As an ultimate goal of this work is to perform transcription and257

dialect density estimation with as little work required from the teacher as possible, we use258

the ASR transcripts as is without human corrections. Our previous work in (Johnson et al.,259

2023a) showed that HuBERT achieved lower average word error rate (WER) than Wav2Vec2260

(Baevski et al., 2020) but worse performance than Whisper (Radford et al., 2022). How-261

ever, Whisper’s language modeling often forced the output to align with a language pattern262

similar to that seen in training, removing AAE constructions from the transcripts. For ex-263

ample, Whisper may interpret the utterance, “We wasn’t doin’ nothin’” as, “We weren’t264

doing nothing,” which does not represent the dialectal grammar and pronunciation differ-265

ences present in the speech sample. While HuBERT gave a higher average WER, we noticed266

that it represented these differences more faithfully for the higher dialect density speakers.267

From the HuBERT ASR transcripts, we then calculated the following quantities intended268

to capture commonly recognized grammatical traits of AAE:269

• GPT2 Sentence Perplexity: We calculated the perplexity of the ASR transcript270

under the GPT2 language model (Radford et al., 2019). This gives the average nega-271

tive log likelihood of a sequence of words occurring in their given order (i.e. a value272

inversely proportional to the likelihood of the sentence being spoken). As GPT2 is273

likely trained on primarily Mainstream American English text, we hypothesize that274
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AAE constructions and ASR errors due to dialectal differences will give higher per-275

plexity to ASR transcripts from higher density speakers.276

• Habitual or Future “be” perplexity AAE grammar constructions may contain277

an un-conjugated instance “to be,” as in “They be crazy out there.” We calculate the278

ratio of perplexity of the original sentence with the perplexity of the sentence replacing279

the verb “be” with the contraction of “are” or “is” (e.g. “They’re crazy out there”).280

We similarly calculate the perplexity for the use of ”future be” (e.g. “He be here281

tomorrow”).282

• Completetive “done”: (e.g. “They done finished it.”) We calculate the ratio of the283

perplexity of the original utterance to the perplexity of the utterance with the word284

“done” removed. This value will return 1 if the word “done” does not appear in the285

ASR transcript, and we choose a backend classifier that can ignore this or other values286

if they are not informative.287

• Simple Past “had”: (e.g. “She had went inside” to express the simple past, “She288

went inside.”). We compute the ratio of the perplexity of the original utterance to the289

perplexity of the utterance with the word “had” removed.290

• Subject Verb Agreement: Like the habitual “be,” AAE has several grammar con-291

structions that contain subject-verb combinations that do not follow the typical subject292

verb agreement patterns of MAE. For example, AAE constructions can include double293

marking of number and tense (e.g. “he wants to hits them,” or “they both felled.”),294

generalization of “is” and “was” to plural and second person, (e.g. “They was from295
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Los Angeles”), and use of a verb stem as past tense (e.g. “They come here yester-296

day.”). To capture these, we use the SpaCy Python library (Honnibal et al., 2020) to297

automatically apply part of speech and dependency tagging to the input utterances298

and then return a binary decision on whether or not a mismatched subject-verb pair299

(i.e. a plural subject and singular verb or vice versa) was detected. We also apply300

direct string matching to detect common subject-verb pairs with irregular verbs (e.g.301

“They was” or “We is”).302

• Consecutive Nouns: Some AAE constructions like absence of possessive -s (e.g.303

“That’s John house”), absence of plural -s (e.g. “It’s two inch long.”), and use of304

Appositive or pleonastic pronouns (e.g. “That girl, she likes chocolate”) can be de-305

tected by the presence of consecutive nouns. We use SpaCy part of speech tagging306

to tag nouns in the ASR transcript and return a binary decision for whether or not307

consecutive nouns (not including possessives or proper noun phrases) were detected.308

• “Ain’t” as a Preverbal Negator: We return a binary decision on whether or not309

the word “ain’t” is detected in the utterance through string matching on the ASR310

transcripts.311

• Negative Concord: AAE grammar constructions may include double negatives or312

negative concord (e.g. “They ain’t done nothing to nobody.”). We use SpaCy part313

of speech and dependency tagging to automatically detect whether or not a negative314

verb with a negative object appears in the transcript to return a binary decision for315

this.316
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• Existential “it” and “got”: AAE speakers may use an existential “it” or “got”317

in the place of reference words (e.g. “it was a ton of people” or “They got a ton of318

people” instead of “there were a ton of people.”) We calculate the ratio of the sentence319

perplexity of the utterance with the perplexity of the utterance replacing phrases with320

existential “it” or “got” with the corresponding MAE phrase (e.g. replacing “It was”321

or “They got” with “There were”).322

• Indefinite Article: AAE may include invariant use of the indefinite article regardless323

of the starting sound of the following noun (e.g. saying “a airplane”). We use string324

matching to determine the presence of the article “a” followed by a word starting with325

a vowel and return a binary decision for this.326

• Irregular Participle: AAE may include using regular verb forms for irregular par-327

ticiples (e.g. “a broke down car” instead of “a broken down car”). We use SpaCy part328

of speech tagging to identify verbs that modify nouns and are not in participle form329

and then return a binary decision for the detection of these.330

• Zero Preposition: Some prepositions are variably included in AAE. Notably, the331

preposition “of” is often omitted in constructions with the preposition “out” (e.g. “She332

came out the car.”). We use SpaCy part of speech tagging to identify the presence333

of prepositions after the word “out” and return a binary decision for the detection of334

these.335
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2. HuBERT Self-Supervised Learning Representations (SSLR)336

As shown in (Yang et al., 2021), the HuBERT SSLR have proven to be useful for a variety337

of speech tasks. Here we apply them to train a classifier to predict dialect density. For each338

utterance, we first extract the hidden state from the last layer of HuBERT. We then divide339

the 1024 x N output SSLR (where N is the number of 20ms frames in the audio signal) into340

segments of 5 frames (corresponding to 100ms of the audio signal). These 100ms segments341

are compiled with a sliding window with a shift of 20ms, meaning that there is overlap342

between adjacent segments. We compute the average of each 5-frame segment and use these343

1024 x 1 vectors to train a K-nearest neighbor (Knn) classifier to predict the dialect density344

level of a new input averaged segment of HuBERT SSLR during inference. These 1024 x345

1 vectors are extracted from all 100ms frames of every training utterance and given the346

dialect density label of the utterance from which they came for training the Knn classifier.347

Tuning on the validation set showed that the best K for the Knn classifier was 90. After348

training the Knn classifier on the frames of the training set, we then similarly extracted the349

HuBERT SSLR from the test set, averaged over each 100ms segment, computed the Knn350

prediction for each segment, and computed the percentage of frames assigned to each of the351

five dialect density levels. The soft-label 5 x 1 vector containing the percentages of frames352

at each dialect density level is then used as an input to the backend classifier for final dialect353

density level prediction. As HuBERT is trained with an unsupervised clustering step, we354

hypothesize that its self-supervised learning representations will be useful in a downstream355

dialect-related task using clustering.356
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3. ASR Phoneme-level Features357

For this feature set, we first use the Wav2Vec2-Phoneme model (Xu et al., 2022) to358

transcribe each utterance at a phoneme level. Wav2Vec2-Phoneme has a total of 391 different359

possible phoneme outputs. Validation on the CORAAL adult speech training set which holds360

out CORAAL DCB as the test set showed that only 38 of these phonemes were present in361

the dataset, and so we restricted the output of the system to only consider those 38 for all362

experiments. We then compute the frequency of each phoneme and bigram frequency of363

each phoneme pair normalized by the number of phonemes in the utterance. This created364

a 38-dim feature vector for the unigram phoneme frequency and a 1444-dim feature vector365

(ie. 382) for the bigram phoneme frequency counts. We note that the majority of entries366

in the bigram feature vector were 0, as many phonemes would not typically occur next to367

each other in a given order. A vector containing these counts for each phoneme or phoneme368

combination is then used as an input to the backend classifier.369

4. OpenSmile Features370

The OpenSmile feature set (Eyben et al., 2010), which extracts paralinguistic features371

relating to speaker pitch, voice quality, spectral shape, MFCCs, and other factors has proven372

to be effective in low-resource DID in multiple studies (Johnson et al., 2022a; Tzudir et al.,373

2022b). Here, we investigate the performance Geneva Minimalistic Acoustic Parameter Set374

(GeMAPS) (Eyben et al., 2015) feature set of the OpenSmile features in dialect density375

classification. We elect to use the smaller GeMAPS v01a feature set instead of the larger376
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ComparE 2016 feature set (62 vs 6373 features respectively) as we wish to use the feature377

set primarily to investigate the prosodic information contained in the utterance, which can378

be achieved through the use of the low level descriptors (LLDs) and their statistical func-379

tionals available in GeMAPS. Although the dialect density measures used in this paper are380

calculated without respect to prosodic markers, previous work shows that prosodic markers381

of dialect often cooccur with phonological and grammatical markers of dialect and are used382

by human listeners to discern dialect, as shown with AAE in (Holliday, 2021). While the383

LLDs of the GeMAPS set are available in the ComparE set as well, the large number of384

features contained in the overall feature set compared to the size of the available dataset385

might cause the classifier to overfit, and thus, we opt against using the full ComparE 2016386

feature set.387

5. X-Vector Speaker Embeddings388

Originally proposed as a feature for speaker identification, X-vectors are the output of a389

later hidden layer of a time delay neural network trained for speaker discrimination (Snyder390

et al., 2018). These features have proven to be useful in DID (Johnson et al., 2022a; Liao391

et al., 2023). We use them as a feature here to train the backend system to learn dialect392

density. From each utterance, we extract the 512 dimension X-vector using the Kaldi toolkit393

(Povey et al., 2011). We also perform a comparison of these embeddings with the more recent394

ECAPA-TDNN X-vectors (Desplanques et al., 2020).395
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C. Model396

After extracting features, we use an XGBoost model (Chen et al., 2015) to map the397

input features to a discrete dialect density level. XGBoost is an ensemble method which398

iteratively trains decision trees to perform classification, adding new trees to the ensemble to399

compensate for the errors of the previous tree in each iteration. These models perform well400

in classification tasks that rely on fusing information from different feature sets and have401

proven useful in dialect density estimation in our previous work (Johnson et al., 2022a).402

These models also offer much more explainability than deep neural networks, as the impact403

of each feature used in decision can be explored through SHAP value analysis (Lundberg404

and Lee, 2017). That is, we can calculate a measure of feature importance for each input405

feature in the five-class dialect density level classification problem.406

D. Prediction tasks407

We perform three sets of experiments to validate our proposed system.408

Task 1: Individual Feature Performance We use the features described in the previous409

section as the input to the XGBoost model with the goal of predicting the speaker’s dialect410

density measure from one of 5 discrete levels. We first test the performance of each feature411

individually in predicting the overall DDM for both adults and children and the Phon. DDM412

and the Gram DDM for children.413

Task 2: Combined Feature Performance Given the performance of the individual414

features in predicting the DDM classes, we then use a concatenation of the features in the415
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model to perform the 5-class dialect density level classification.416

Task 3: Binary Thresholding We acknowledge that choosing boundaries for each dialect417

density level requires domain knowledge which may not exist for every dialect or accent.418

Therefore, the multi-class classification method we present is less reproducible for some low-419

resource dialects. As an alternative, we also perform the experiment as a binary classification420

task. In this experiment, we choose a threshold and train the classifier to predict whether or421

not the dialect density measure for each test sample is less than or equal to that threshold.422

We then shift the threshold across the range of dialect density measures for the test set.423

For the adult speech, where data is labeled for different dialect regions, we consider two424

train/test configurations: cross-region and multi-region. In the cross-region case, we train425

the system on four regions and test on the held-out region, rotating over all regions. This426

scenario is designed to show the performance of the system with no training data from the427

same region as the test set. In the multi-region case, we randomly hold out 20% of the full428

CORAAL data set for testing and train on the remaining data, repeating the experiment429

5 times and reporting the average performance. Since the children’s speech data all comes430

from a single region, we perform a 5-fold validation experiment and present the average431

results.432

E. Comparison with Our Previous Work433

We make several modifications to our previous framework for dialect density estimation434

in (Johnson et al., 2022a) in accordance with new developments in speech and language pro-435

cessing. First, we previously noted that sentence perplexity calculated with an LSTM-based436
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language model was an effective feature in estimating dialect density. With the increasing437

effectiveness of GPT-based language models, we instead try a perplexity feature calculated438

with the most recent open-source GPT model (GPT-2 at time of writing). We also imple-439

ment more granular hand-crafted features to target specific grammatical patterns that may440

affect perplexity for greater interpretability. Next, we add self-supervised learning represen-441

tations from HuBERT here, as they have recently been shown to be effective in a variety of442

speech tasks (Yang et al., 2021). In addition, our previous work with the OpenSmile feature443

set of over 6000 features showed that several of the most impactful features from the set444

related to voice quality and prosody. We opt to use the more compact GeMAPS feature set445

from OpenSmile, as it contains features relating to the most useful features of our previous446

work and reduces the chance of overfitting. We again use the X-vector speaker embedding447

in this work. Previously, we trained a neural network to predict a speaker’s regional accent448

(using the speaker’s city of origin as a label) from the input X-vectors extracted from non-449

dialect density-labeled speech CORAAL. The output softmax probability from that system450

was then used as a feature in dialect density estimation. We have since found that some451

region’s recordings in CORAAL are highly separable by recording quality and channel ef-452

fects, and so we instead use the raw X-vector as a feature here. Last, we used correlation453

between the sets of predicted and actual DDM labels in our previous work. In this work,454

we format the problem as a classification problem for greater interpretability of the machine455

performance on individual samples.456
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III. RESULTS457

Because this is the first reported effort on automatic dialect density prediction, the results458

for all three tasks are reported in comparison to the accuracy associated with predicting the459

most frequent class in the training data, i.e. the prediction based only on class priors.460

The training prior condition represents an uninformed baseline; model accuracy below this461

baseline reflect over-fitting. A low training prior result indicates train/test mismatch in the462

class distributions for the cross-region scenario.463

Table III shows the 5-class dialect density-level classification accuracy for task 1, where464

an XGBoost model is trained separately on each of the specific feature types described465

in Section II. We show the performance of the models trained separately for adults (both466

cross-region and multi-region scenarios) and children. The DCB set is used in this ex-467

ploratory work for the cross-region scenario, because it has the median dialect density of468

the CORAAL database. With the exception of the ECAPA-TDNN X-vector, all features469

provide benefit over the uninformed training prior baseline for the adult conditions. For470

children, as discussed further in Section IV, grammar features are only informative for the471

gram-DDM score, and most of the acoustic features are uninformative for the gram-DDM472

score. The experiments showed that both the Wav2Vec2-Phoneme Bigram features and473

ECAPA-TDNN X-vector feature perform substantually worse than their related counter-474

parts, the Wav2Vec2-Phoneme unigram feature and Kaldi X-vector feature, respectively.475

Therefore, these features are dropped in subsequent experiments.476
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Feature set
Feat

Dim

CORAAL Adults

(Test DCB,

Train Other)

CORAAL Adults

(20% RHO)

GSU Kids

(5-fold validation)

Metric
Overall

DDM

Overall

DDM

Overall

DDM

Phon

DDM

Gram

DDM

Grammar Feat 13 32.0% 47.6% 37.7% 25.1% 56.4%

HuBERT SSLR-knn 5 40% 45.2% 56.2% 51.3% 35.8%

Wav2Vec2-Phoneme

Unigram
38 44.0% 52.4% 52.1% 54.5% 51.3%

Wav2Vec2-Phoneme

Bigram
1444 40.0% 51.1% 48.9% 46.6% 36.4%

OpenSmile Gemaps 62 36.0% 41.7% 48.2% 56.4% 43.6%

Kaldi X-vector 512 34.0% 48.2% 44.0% 53.6% 33.3%

ECAPA-TDNN

X-Vector
128 16.0% 37.8% 42.8% 55.2% 29.2%

Tr-Prior 24.0% 26.0% 39.4% 43.2% 41.3%

TABLE III. DDM classification accuracy of XGBoost classifier trained on each individual feature set

(task 1) for adults (cross-region DCB and multi-region) and children, with results for the training

prior maximum (Tr-Prior) for reference. The accuracy is shown with the overall dialect density for

both adults and children. In addition, for children, results are given for the dialect density taking

into account only phonological characteristics of dialect (Phon DDM) and the dialect density taking

into account only grammatical characteristics of dialect (Gram DDM).

Table IV shows the classification accuracy for task 2, where we concatenate the features477

and train a single model to perform the dialect density level estimation. The average cross-478

region (Avg CR) and average RHO results are not directly comparable because of random479

sampling, but the performance difference is substantial in that it is roughly double the480
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CORAAL Adults GSU Kids 5-fold Validation

Overall DDM DDM Type

Model ROC LES DCB PRV VLD Avg CR Avg RHO Overall Phon Gram

Tr-Prior 18.0% 5.0% 24.0% 2.0% 28.6% 15.5% 26.0% 39.4% 43.2% 41.3%

XGboost 46.0% 56.7% 48.0% 48.0% 32.9% 46.3% 60.1% 73.8% 61.2% 59.0%

TABLE IV. Performance of the XGBoost model trained on the combined feature set (task 2) (ex-

cluding the Wav2Vec2-phoneme bigram and ECAPA-TDNN X-Vector features). For reference, we

show performance associated with the training prior maximum (Tr-Prior) for each test set. Results

are reported for the overall DDM score for both cross-region (CR) and multi-region conditions for

the adult AAE speech in CORAAL. For children’s speech, cross-validation results are reported for

DDM, Phon DDM and Gram DDM.

standard deviation of the RHO results. In all cases, the model substantially outperforms481

the uninformed training prior baseline and the results for all individual features, as expected.482

Figure 1 presents the result of the binary dialect density measure classification experi-483

ment (task 3) for the different regions of the adult speech (cross-region) and for the children’s484

speech. For each test set, we compute the accuracy of the system in predicting whether or485

not the speaker of a given sample had a dialect density measure above a series of different486

thresholds. The corresponding plots show the difference in model prediction accuracy rela-487

tive to the uninformed training prior baseline. Small values (positive or negative) indicate488

that performance is not significantly different from the training prior, i.e. the features are489

not informative, which will be the case for thresholds where one class has few examples.490

Larger negative values reflect over-training, generally associated with a mismatch in the491

binary class distribution between training and testing.492
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FIG. 1. Performance of the task 3 binary model in predicting whether or not a speech sample

displayed an overall DDM higher than a given threshold. Each plot shows the difference in the

classification accuracy relative to performance associated with the training prior decision vs. the

DDM threshold. The plots for adults correspond to the five cross-region systems, and the plot for

GSU Kids shows the 5-fold CV average for overall DDM.

IV. DISCUSSION493

In this section, we analyze the experimental results. The Knn-generated soft-labels using494

the frames of the HuBERT SSLR and the Wav2Vec2-Phoneme unigram model classify di-495

alect density level best for both the children and adults’ speech. It is worth noting that there496

are typically more phonological than morphosyntactic aspects of AAE dialects in a speaker’s497

speech, as a sentence can have several words containing pronunciation differences but will498

often only have one subject-verb structure that can be modified. Therefore, the overall DDM499

is often dominated by the Phon DDM term, and features that capture acoustic differences in500

pronunciation like the HuBERT SSLR and the Wav2Vec2-Phoneme outputs appear best for501
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predicting the overall DDM. However, these features do not appear to capture grammatical502

features of AAE dialect well. The hand-crafted grammar features and X-vector features503

perform best for predicting DDM-gram for the adults. Although the X-vector features are504

derived for speaker identification and not semantic tasks, the TDNN used to extract the fea-505

ture pools information over several time windows, capturing segment-level information. This506

segment-level information is likely more useful in categorizing a speaker’s likelihood of speak-507

ing with a morphosyntactic dialectal difference than features that operate at the frame-level508

only (e.g. Wav2Vec2 or HuBERT features.). While the hand-crafted grammatical features509

perform well for adult speech, their performance degrades for the children’s speech. This is510

likely due to the higher number of ASR transcription errors in children’s speech which may511

prevent the downstream NLP algorithm from accurately matching grammatical patterns.512

The X-vector feature again performs well for classifying the number of morphosyntactic di-513

alectal differences in the children. We also note that the OpenSmile prosodic features are514

useful for this, as some grammatical patterns may typically co-occur with specific intonation515

or changes in pitch, making the prosody a good indicator of grammatical differences. While516

the adults in the study each display one of five different regional dialects, all of the children517

are from the same school district, making them more likely to share prosodic and dialectal518

grammar patterns that generalize better across the training and testing sets.519

In the combined model, we dropped the worse performing Wav2Vec-Phoneme bigram and520

X-vector features. Although studies have shown that bigram features typically outperform521

unigram features, the smaller size of the data used in this work may be insufficient to522

adequately train a model using bigram features, which are much higher dimension than the523
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unigram features. We also examine the performance of the speaker embeddings in this task.524

The 512 dimensional Kaldi X-vectors outperformed the 128 dimensional ECAPA-TDNN525

X-vectors. This may indicate that the more compressed ECAPA-TDNN X-vectors contain526

only more identity focused information while the larger Kaldi X-vector feature retains more527

information on dialect.528

The model trained on the combined feature set outperforms all models trained on indi-529

vidual feature sets for CORAAL DCB and performs well across the other test sets. We note530

that the model trained on the other four sets and tested on CORAAL VLD has the lowest531

dialect density level prediction performance. This is likely due to the fact that the speakers532

from Valdosta display some aspects of southern American dialect that are not seen in the533

other datasets, and thus are difficult for the model to learn. Particularly, AAE speakers534

from North Carolina and Georgia have been shown to exhibit vowel shifts more in line with535

those seen in Southern American English while AAE speakers from Washington DC and536

New York often display vowel shifts that are more unique to AAE (Thomas, 2001; Yaeger-537

Dror and Thomas, 2010). The model performed best for CORAAL LES out of the adult538

datasets, as the Lower East Side of Manhattan dialect has been influenced by speakers of539

several other regions, and training on speech from other areas will likely generalize better540

to speakers from there than to a more isolated area. The work in (Koenecke et al., 2020)541

also demonstrates that commonly used ASR systems have shown better ASR WER for the542

northern AAE dialects than the southern AAE dialects, and so a higher number of ASR543

errors in the VLD Wav2Vec2-Phoneme features and grammatical feature input transcripts544

may have caused worse prediction accuracy.545
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–546

Figure 3 shows the beeswarm plot depicting which features were most used in predicting547

dialect density level for the adult’s speech when testing on CORAAL DCB. Each line shows548

how separable each utterance was by the feature shown on the left. We note that the Knn soft549

labels generated from the HuBERT SSLR were most often used in the classification (where550

knn0, knn1, knn2, knn3, and knn4 denote the Knn soft labels for dialect density level in551

ascending order). The unsupervised pre-training on a large amount of data appears to have552

made the HuBERT SSLR especially potent in capturing small acoustic differences relating553

to pronunciation and regional phonological varieties. We then see that several components554

of the X-vector feature (e.g. xvec 237) were effective in distinguishing dialect density level,555

capturing shared traits across speakers at the segment level. From the Wav2Vec2-Phoneme556

model, it appears that a higher number of detections of the vowel \a\ (shown as “a” in557

the bee swarm plot) correlated with a lower predicted dialect density. This is consistent558

with documented phenomena in which vowel formant frequencies shift between MAE and559

southern American dialects, including varieties of AAE, which may result in alternate pro-560

nunciations of some vowel sounds and cause the model trained on MAE to recognize them561

as other sounds (Johnson et al., 2022b; Lanehart and Malik, 2015). Last, several of the562

OpenSmile features such as the harmonic-to-noise ratio (HNR), autocorrelation function,563

standard deviation of the F0 semitone, and standard deviation of the slope of the loudness564

were also often used by the decision trees of the ensemble classifier. HNR has been shown to565

be useful in distinguishing several speaker characteristics like age and speaking style (Fer-566
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rand, 2002) while changes in F0 and loudness over time may be indicative of the presence567

of dialect-specific prosodic patterns.568

The model trained on the combined features performs well for the children’s speech.569

The model achieves over 70% classification accuracy in the 5-class dialect density level570

prediction task. One reason why this model performs better for the children’s speech than571

for the adult’s speech may be that the children in the test and train splits are from the same572

geographic area, whereas the adult models are trained on speech from other regional AAE573

variants. Another reason is that, although the recordings of the children performing the574

picture description educational assessment are unscripted, the children are all performing575

the same assessment and are likely to share some of the same vocabulary and grammar while576

performing it. This may make it easier for the model to analyze shared traits across content577

that are not available across the completely spontaneous interview speech in CORAAL.578

However, the high variability in children’s speech still presents challenges for the model.579

It can be observed that the overall DDM prediction accuracy (DDM Acc.) is sometimes580

lower than the DDM considering only phonological differences (Phon DDM Acc.) or the581

DDM considering only grammatical differences (Gram DDM Acc.). This may indicate that582

for some regional variations of AAE or age-specific ways of speaking, the grammatical and583

phonological language characteristics are not strongly correlated. It then becomes a more584

complex problem for the classifier to jointly identify the presence of both of these types of585

linguistic tokens in an input utterance. As a result, the performance of the joint prediction586

may be worse than the individual phonological or grammatical DDM prediction. For these587
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cases, we may either explore increasing the complexity of the classifier or simply creating a588

weighted sum of the individual predictions in the future.589

The model trained to perform binary classification with thresholded dialect density mea-590

sures as opposed to multi-class classification generally performed well across the choice of591

threshold for the test sets. For all CORAAL test sets except LVC, the greatest benefit of592

the classifier over the training prior for a DDM threshold 0.05 and 0.1. This is likely due to593

the fact that most regions had a larger number of samples in this range, and so the classi-594

fier was able to better learn to distinguish DDMs from the input data. For the children’s595

speech, we see that the classifier accuracy is most above training prior baseline when the596

DDM threshold is in the lower range. This follows logically, as many of the children’s speech597

samples have lower dialect density, and so the classification problem becomes easier as the598

threshold rises to the point where most samples in both the test and training sets will have599

lower dialect density measures than the threshold. Therefore, the training prior baseline600

performance will be much higher at the higher DDM thresholds for this case. Overall, these601

experiments give insight on which DDM thresholds the classifier performs best at given the602

variation across regions and the currently available training data. From this, we observe603

a tendency for the classifier to become more accurate as more data in the target dialect604

density range is added, pointing for a possibility for the classifier to become much stronger605

with additional training data.606

As expected, the multi-region scenario outperforms the cross-region scenario (Table IV),607

because of the reduced mismatch in the train/test distributions. We realize that the record-608

ings taken from the same region (i.e. recorded by the same interviewer) may share some609
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recording conditions or channel effects that can be used to form spurious correlations with610

the speaker’s dialect density. However, the Wav2Vec-Phoneme and grammar features do611

not pass information on the background conditions or channel effects to the backend clas-612

sifier. Therefore, background effects that may be common across multiple recordings of the613

same region cannot be used to indirectly learn dialect density classification. Because these614

features perform similarly to those that are more subject to background noise and channel615

effects (e.g. OpenSmile Gemaps features and Kaldi X-vector feature), we believe that fea-616

ture correlations with characteristics of the audio that are not directly related to speaker617

and dialectal qualities are minimal.618

We note a few comparisons with our prior work in (Johnson et al., 2023b). Previously,619

we found character-level perplexity of the transcripts to be a useful feature in dialect density620

estimation. However, in this work, we do not see the word level perplexity from GPT2 used621

by the classifier as often as several of the other features available. As (Holtzman et al.,622

2019) points out, large language models like GPT2 may learn a bias for longer sentences623

and repetitive grammar structures when training on large text corpora, meaning that their624

prediction of likelihood of words occuring in a sequence does not generalize well to sponta-625

neous spoken speech. Our previous work also found the frequency of several sounds in the626

transcripts to be good indicators of the dialect spoken. This is especially true for vowels that627

may undergo a formant shift or consonants that are more often dropped or de-emphasized in628

different dialects. We noticed a similar trend for a few vowels and consonants for the adults’629

and children’s speech. The addition of the Knn soft labels in this work seems to improve630
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performance over our previous results, and the features are relatively robust for both adult631

and child speech.632

V. CONCLUSIONS633

This work shows promising progress in automatically detecting dialect density levels of634

speakers across age and regional dialect. Given the limited size of the datasets, we achieve635

reasonably high dialect density level classification accuracy over the adult’s speech (often636

ranging from 10%-40% above the uninformed max training prior baseline) and over 70% ac-637

curacy for children. We demonstrate the utility of HuBERT self-supervised representations,638

prosodic features from OpenSmile, hand-crafted grammatical features, speaker embeddings,639

and phoneme-level transcripts in the prediction task. The feature sets provided may be640

adapted for use in several other language and dialect identification tasks, and the frame-641

work presented offers explainability for which speech features capture dialectal differences642

that are useful for automatic classification. We anticipate that additional training data643

would lead to improved results with high enough fidelity for real-time classroom use. This644

study also highlights the degree of dialectal speaker variability both within and across re-645

gions and how spoken language systems should be adapted to handle them. Our future646

work includes using dialect density predictions in downstream tasks such as bias mitigation647

in language technology, fair educational speech technologies that provide dialect-appropriate648

automatic feedback to spoken responses in oral assessments, and applying this framework649

to other dialects.650
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FIG. 2. Bee swarm plot depicting the relative impact of features in the ensemble classifier for the

adult speech from CORAAL.

36



FIG. 3. Bee swarm plot depicting the relative impact of features in the ensemble classifier for the

child speech from the GSU Kids’ Speech Corpus.
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