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Abstract
DSP-based F0 estimation algorithms, such as multi-band
summary-correlogram (MBSC), are robust to noisy speech. Re-
cent studies show that mapping from raw waveform segments
into F0 estimates by DNNs can outperform DSP-based methods
in F0 estimation. However, generalization and noise robustness
of DNNs have not been fully addressed previously. We propose
a hybrid DSP and DNN based approach to F0 estimation. Key
contributions include: (a) a modified version of MBSC that is
substantially faster than the original algorithm while maintain-
ing the accuracy of F0 estimates; (b) a method for fusing DSP
features with raw waveform representations using a DNN ar-
chitecture to obtain noise-robust F0 estimation; (c) demonstrat-
ing that auxiliary DSP features improve generalization with a
relatively small number of DNN parameters. On the PTDB-
TUG database, the proposed algorithm outperforms the MBSC
and CREPE DNN baselines (including optimized versions) for
clean and noisy speech at 20, 10, and 0 dB SNR.
Index Terms: pitch estimation, summary-correlogram fusion,
noise-robust, deep learning

1. Introduction
Fundamental frequency (F0) estimation of a speech signal is the
process of extracting the periodicity from voiced speech seg-
ments. F0 estimation is important for many speech processing
applications such as automatic speech recognition (ASR) [1],
text-to-speech (TTS) synthesis [2], speech enhancement [3],
speaker verification [4], and voice separation [5].

Conventional F0 estimation approaches have utilized digital
speech processing-based (DSP) heuristics. These DSP-based
approaches can be divided into 3 main categories: time domain
processing [6, 7, 8, 9], frequency domain processing [10, 11,
12, 13], and time-frequency domain processing [14, 15].

Time domain methods like RAPT [6] and Kaldi F0 extrac-
tion [7] utilize the normalized cross-correlation (NCCF) func-
tion for F0 estimation. On the other hand, YIN [8] and PYIN [9]
make use of the cumulative mean normalized difference func-
tion for F0 estimation in the time domain. Additionally, the
subharmonic-to-harmonic ratio (SHR) is the basis for the fre-
quency domain F0 extractor in [10]. Another frequency do-
main F0 extractor in [11], utilizes the summation of residual
harmonics (SRH). The frequency domain F0 extractor SWIPE
[12] estimates F0 by matching the input signal spectrum with a
sawtooth waveform spectrum by cosine similarity, and SWIPE’
[12], a variant of SWIPE, utilizes only the first and prime har-
monics of the signals. A recent study [13], makes use of a
high-resolution frequency domain transformation to extract F0
estimates. Time-frequency domain methods like multi-band
summary-correlogram (MBSC) [15], or [14] separate a speech

signal into various bands, and apply time domain processing in
each band separately.

Unlike conventional DSP-based approaches, deep learning-
based approaches learn the mapping function from the data
to F0 estimates. These methods differ in both the input rep-
resentation that they use, and in the neural model architec-
ture. The recurrent JDC model [16], and the convolutional GIO
model [17] use spectrogram inputs to estimate fundamental fre-
quencies. Another convolutional neural model, SPICE [18],
uses constant-Q transforms (CQT) as inputs, and estimates F0
in a self-supervised fashion. Furthermore, the convolutional
CREPE model [19] processes segmented raw waveforms in-
stead of their frequency domain representations to obtain F0s.
Deep neural network (DNN) methods that process raw wave-
forms, such as the widely used state-of-the-art (SOTA) CREPE
model, have been shown to outperform several DSP baselines
such as SWIPE for F0 estimates for both clean and noisy con-
ditions if the DNNs are trained with adequate and sufficient
training samples. On the other hand, SOTA DSP methods like
MBSC are accurate and very robust to noise. To the best of
our knowledge, there has been no comparison of these recent
deep learning-based architectures with MBSC for noisy speech.
This can be due to the fact that the MBSC algorithm is slow.
The CREPE study reported robustness for different noisy con-
ditions. However, raw waveform processing in the initial layers
of DNNs are susceptible to a known vanishing gradient prob-
lem, which can adversely affect noise-robustness [20].

We propose a hybrid approach that fuses noise-robust aux-
iliary DSP representations and raw waveform representations to
obtain F0 estimates using deep learning. For fusing noise-robust
auxiliary DSP features, we use intermediate features, summary-
correlograms (SCs), from a modified version of MBSC. The
modified version of MBSC processes input waveforms much
faster than the original algorithm, enabling the fusion in our
proposed DNN architecture. We show that the proposed fusion
network, FusedF0, can outperform both the SOTA DSP base-
lines and raw waveform processing DNN, CREPE, for different
noise conditions using the PTDB-TUG database [21].

The paper is organized as follows. Section 2 introduces the
modified MBSC algorithm and the proposed FusedF0 network
for F0 estimation. In Section 3, we describe the experimental
setup, the dataset, the baselines and the F0 estimation metrics
used in the experiments. In Section 4, we report and discuss the
evaluation of the proposed architecture against the SOTA DSP
and DNN baselines. Lastly, in Section 5, we summarize our
contributions and discuss future work.
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Figure 1: The efficiency-improved summary-correlogram (SC) extraction process of the modified MBSC algorithm (in blue) and the
summary-correlogram encoder (SCEnc) network (in orange). ”Kernel” indicates the corresponding kernel size, and ”Filter” indicates
the corresponding number of input and output channels for the convolutional layers.
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Figure 2: FusedF0 architecture.

2. Model and Architecture
2.1. Improving the efficiency of MBSC

While MBSC achieves high F0 accuracy in quiet and in noise,
its computational complexity is high. We attempt first to re-
duce the algorithm’s complexity while maintaining F0 estima-
tion accuracy. Figure 1 shows the SC extraction process and
the summary-correlogram encoder (SCEnc) architecture. SCs
are extracted in a way that is similar to the MBSC algorithm:
first, wideband FIR filters are implemented, and the Hilbert
transform is used to obtain Hilbert envelopes. Then, multi-
channel comb-filters are used to enhance peaks in the spectrum.
These enhanced peaks are selected based on the harmonic-to-
subharmonic (HSR) ratio, and SCs are calculated to obtain the
final SC features.

We modified the algorithm to make it faster. First, we re-
sample the raw audio waveforms to 3.2 kHz (from 8 kHz), re-
duce the FFT size to 512 (from 8192) and the number of bands
to 3 (from 4); and use 64-point (instead of 32) FIR filters with
950 Hz bandwidth (instead of 1 kHz) and 650 Hz overlap (in-
stead of 200 Hz). These changes lead to a much faster SC
extraction for MBSC while retaining performance, as will be
shown in Section 4. SC calculations are based on the output
of the first band in addition to the Hilbert envelopes from the
3 frequency bands. These 4 different 65-dimensional SCs are
concatenated to form the final 4 × 65 dimensional SC feature
vector Xsc which is used in FusedF0. That is, the band dimen-
sion is 4 and the correlogram dimension is 65.

The feature vector, Xsc, is used in the modified MBSC
pitch extractor to obtain the multi-band SC computations, pitch
estimates, and voicing detection [15].

2.2. System Architecture

The FusedF0 architecture uses two different neural encoders:
a summary-correlogram encoder (SCEnc) and a raw waveform
encoder (RawEnc). The SCEnc maps SCs, which are extracted

from the faster modified MBSC, into 256-dimensional vectors.
Similarly, the RawEnc maps segmented samples of the raw au-
dio files into 256-dimensional vectors. After layer normaliza-
tions (LN), these encoded vectors are concatenated (Cat); and
a bidirectional LSTM (BiLSTM) layer is used for the fusion
of the encoded vectors (512-dimensional). Finally, a fully-
connected (FC) layer, followed by sigmoidal activations, maps
fused vectors into 360-dimensional outputs. The overview of
FusedF0 architecture is shown in Figure 2. The overall network
is characterized by the following equations:

Xcat = Cat(LN(SCEnc(Xsc)), LN(RawEnc(Xraw))),
(1)

Xfused = BiLSTM(Xcat), (2)
Xout = Sigmoid(FC(Xfused)), (3)

where Xsc indicates 4× 65 dimensional SC features, Xraw in-
dicates 1024-dimensional raw waveform features, Xcat stands
for 512-dimensional concatenated vectors, Xfused denotes
512-dimensional vectors after Bi-LSTM fusion layer, and Xout

denotes the 360-dimensional outputs.
SCEnc, shown in Figure 1, utilizes 1-dimensional convolu-

tions (Conv 1D). The first Conv 1D layer uses a stride of 2 on
the correlogram dimension, and the band dimensions are used
as the input channels of the first layer. Furthermore, the size of
the first Conv 1D layer kernel is 32. The output channels of all
the Conv 1D layers in the SCEnc are set to 256. The second and
third Conv 1D layers use a kernel size of 4 with a stride of 1.
All the Conv 1D layers are max pooled with a max pool kernel
of 2 after the ReLU [22] activations followed by batch normal-
izations [23]. We use a dropout [24] rate of 0.25 after these
layers. After the Conv 1D layers, the band and the correlogram
dimensions are flattened (i.e.,, the 4x65 outputs are made into a
vector). The flattened dimension is mapped by an FC layer with
sigmoid activations to obtain the final outputs of SCEnc.

We use Crepe-Tiny [19], which uses one eighth the num-
ber of filters in each convolutional layer compared to the full



CREPE model size, as the RawEnc. However, we use the output
FC layer of the Crepe-Tiny, followed by sigmoid activations,
with 256-dimensional output instead of a 360-dimensional out-
put. The frame (or the segment) shift for both SCEnc and
RawEnc are 10 msec long.

Similar to [19, 25, 26], FusedF0 network outputs are rep-
resented on the logarithmic scale with equal sized bins, and
the corresponding scales of these bins for the 360-dimensional
output vector Xout are smoothed with the Gaussian kernel
smoother used in [19, 25] to form a smoothed output vector
Ŷ . Aiming for a better fit to speech signals, unlike the above
mentioned studies which focused on singing voices and music,
we cover a frequency range from 30 to 400 Hz, and divide this
range into 360 equal sized bins, which corresponds to 12.5-cent
intervals, on the logarithmic scale. The following equations:

c(f) = 1200 · log2
f

10
, (4)

ĉ =

∑m+4
m−4 ŷici∑m+4
m−4 ŷi

, m = argmax
i

ŷi , (5)

f = 2ĉ/1200 · 10 , (6)

are used for converting the frequency scale f in Hz to the log-
arithmic scale c(f); calculating the local weighted average ĉ of
smoothed values ŷi with the closest logarithmic frequency bins
ci; and converting back to the frequency scale in Hz, respec-
tively.

3. Experimental setup
Trained models were optimized using the Adam optimizer [27]
with a learning rate of 0.0002, and decay rates β1 = 0.9
and β2 = 0.98. Binary cross-entropy was used as the loss
function for the optimization. The hyperparameters of the
FusedF0 architecture were optimized using the validation set.
We used early stopping to prevent overfitting. Since the vali-
dation loss metrics did not improve, the Crepe-Opt (full) model
was trained for 32k iterations; the Crepe-Med-Opt and the pro-
posed FusedF0 models were trained for 40k iterations; and the
Crepe-Tiny-Opt was trained for 51k iterations. We used an
NVIDIA Tesla A100 GPU for the experiments.

For the RawEnc in our architecture, we investigated the use
of different CREPE variant sizes, but our experimental findings
reveal that the performance of the fusion algorithm degrades
with increasing CREPE variant size. Since the summary correl-
ogram encoder does not require many parameters, we argue that
using too large of a RawEnc leads to overfitting to raw wave-
form features.

3.1. Database, baselines and evalution metrics

We trained and evaluated the proposed FusedF0 model on the
PTDB-TUG [21] database, which has ground truth labels from
laryngograph signals. The PTDB-TUG database contains 10
female and 10 male native English speakers. It consists of 236
speech recordings for each speaker (∼ 0.5 hours per speaker)
and the corresponding ground truth F0s. We excluded the fe-
male speaker F10 and the male speaker M10 from our training
set in order to evaluate the average test performance of seen and
unseen speakers. For each of the 18 seen speakers, 140 utter-
ances were used for the training set, 46 utterances were used
for the validation set, and 46 utterances were used for the test
set. Similarly, for each of the unseen speakers F10 and M10, 46
utterances were included in the test set.

All samples in the dataset were downsampled to 16 kHz.
The proposed model and the baselines were tested on clean and
noisy speech signals. We added babble noise to the clean speech
recordings using the noise files from the NOISEX-92 [28] noise
corpus at 20, 10, and 0 dB SNR. For the training and validation
sets, only the clean samples were used.

To objectively compare with the DNN F0 baseline CREPE
[19], we trained CREPE on this database using the output loga-
rithmic frequency scale conversions described in Section 2 with
the same 30 Hz to 400 Hz frequency range. To examine the
effect of the model size of this baseline, we used 3 different
sizes: full, medium, and tiny. We denote these models that were
optimized for speech signals and trained on the PTDB-TUG
database as Crepe-Opt (full), Crepe-Med-Opt (medium), Crepe-
Tiny-Opt (tiny). We also evaluated the original CREPE (full)
model (without Viterbi smoothing), which was trained on many
datasets (RWC-Synth [9], MIR-1k [29], MDB-stem-synth [30],
MedlyDB [31], Nsynth [32], and Bach10 [33]).

In addition to the modified MBSC (MBSCv2), we evaluated
MBSC [15] and SWIPE’ [12] since they have been shown to
be highly effective DSP-based F0 estimation algorithms in the
literature.

Moreover, for all the neural models, the modified MBSC’s
voicing detector was used in determining voiced/unvoiced
(V/UV) decisons. After the V/UV decisions, F0 estimates were
made and truncated between [60, 400 Hz] during inference.

For the evaluation metrics, we calculated mean absolute er-
ror (MAE) and gross pitch error (GPE) [11] using the voiced
segments. These metrics were calculated with following equa-
tions:

MAE =

∑Ntotv
fr=0 |fpred − fref |

Ntotv

, (7)

GPE =
Nerrv

Ntotv

· 100 , (8)

where fpred and fref denote predicted and reference frequen-
cies, respectively. The MAE metric is calculated for each
voiced frame fr, and the total number of voiced frames is de-
noted by Ntotv . A threshold of 10% is for the GPE metric, and
Nerrv indicate the number of voiced frames where the relative
prediction errors are above this threshold.

4. Results and Discussion
4.1. Efficiency of the modified MBSC

We modified the original MBSC model proposed in [15] with
the changes introduced in Section 2.1. In order to evaluate the
efficiency of the modified version (MBSCv2) with respect to
MBSC, latencies of the MBSCv2 and MBSC algorithms for
different length input speech signals are shown in Figure 3. For
these experiments, we used an Intel Core i7-4700HQ CPU with
2.40GHz clock speed. As can be seen from this figure, after
the modifications, we achieve approximately 90% reduction in
the latencies while maintaining similar performance as shown
in Tables 1 and 2. Even though we achieve improvements on
the efficiency of the SC extraction process, its latency is below
real-time.

4.2. Performance comparison with DNN and DSP baselines

We evaluated the proposed FusedF0 algorithm, and compared
it to both SOTA DNN and DSP baselines. For all comparisons,
we used the PTDB-TUG test set described in Section 3.1.



Figure 3: Plot of latency (y-axis, in seconds) with respect to
different utterance lengths (x-axis, in seconds) for the MBSC
[15] and the modified MBSC (MBSCv2) algorithms. MBSCv2
is shown in blue, and MBSC is shown in red.

Table 1 shows the MAEs and Table 2 shows the GPEs for
the clean and noisy speech signals. FusedF0 outperforms the
baselines in all cases. Although CREPE models trained on
PTDB-TUG can outperform DSP baselines for the clean and
the noisy speech signals at 20 dB and 10 dB SNR, FusedF0
significantly outperforms those models in terms of the MAE
and GPE (%) metrics as shown in the tables. FusedF0’s per-
formance is even more impressive at 0 dB SNR compared to
the best DNN model, Crepe-Med-Opt; FusedF0 has a GPE of
5.81 and an MAE of 5.66 compared to Crepe-Med-Opt, which
has a GPE of 9.47 GPE and an MAE of 8.57 MAE. This re-
inforces our hypothesis that fusion of SC features can increase
the robustness of DNN models. Additionally, in Table 2, MBSC
and MBSCv2 slightly perform better than FusedF0 at 0 dB al-
though FusedF0 outperforms these for the clean, 20 dB, and 10
dB speech in terms of GPE.

Furthermore, in Table 1, we observe that Crepe-Opt, Crepe-
Med-Opt, and Crepe-Tiny-Opt outperform the original CREPE
(full) [19] model, which was not trained on PTDB-TUG. This
makes sense since DNN-based models usually require training
on data with a similar distribution to the test data. Moreover,
Crepe-Med-Opt model performs the best among the Crepe-
based baselines. This could be attributed to the size of model
parameters. Since the PTDB-TUG database is a relatively small
dataset, using the 22M full Crepe model, Crepe-Opt, may not
result in an ideal inductive bias, although validation losses are
used for early stopping in the experiments. Similarly, Crepe-
Tiny-Opt baseline can be considered too small for this database.
We reported the average performance of the seen and unseen
speakers in Tables 1 and 2. Individually: for the best per-
forming DNN baseline, Crepe-Med-Opt, the GPEs (%) of the
seen speakers are 0.79 (clean), 1.2 (20 dB), 1.38 (10 dB), and
9.05 (0 dB); while the GPEs of the unseen speakers are 3.99
(clean), 4.18 (20 dB), 4.46 (10 dB), and 9.89 (0 dB). For the
proposed method, FusedF0, the GPEs of the seen speakers are
0.74 (clean), 0.83 (20 dB), 1.17 (10 dB), and 4.94 (0 dB); while
the GPEs of the unseen speakers are 3.14 (clean), 3.07 (20 dB),
4.19 (10 dB), and 6.68 (0 dB). This demonstrates that FusedF0
can outperform the best-performing DNN baseline for both seen
and unseen speakers, especially on noisy test conditions.

As described in Section 2, the SCEnc uses SC fea-

Table 1: Mean absolute errors (MAEs) of the proposed FusedF0
model and baselines for clean and noisy (babble) speech at 20,
10, and 0 dB SNR.

Model Params Trained on Clean 20dB 10dB 0db

CREPE 22M Many 6.65 8.05 8.87 13.3
Crepe-Opt 22M PTDB-TUG 3.32 3.69 4.07 11.2
Crepe-Med-Opt 5.9M PTDB-TUG 2.91 3.12 3.49 8.57
Crepe-Tiny-Opt 0.5M PTDB-TUG 3.51 3.7 4.18 12.25

SWIPE’ - - 9.72 10.4 12.4 19.9
MBSC - - 5.42 5.43 5.52 5.68
MBSCv2 - - 5.22 5.48 5.78 5.91

FusedF0 5.9M PTDB-TUG 2.41 2.45 3.17 5.66

Table 2: Gross pitch errors (%) of the proposed FusedF0 model
and baselines for clean and noisy (babble) speech at 20, 10, and
0 dB SNR.

Model Params Trained on Clean 20dB 10dB 0dB

CREPE 22M Many 6.09 6.54 7.41 10.9
Crepe-Opt 22M PTDB-TUG 2.75 3.19 3.56 12.1
Crepe-Med-Opt 5.9M PTDB-TUG 2.39 2.69 2.92 9.47
Crepe-Tiny-Opt 0.5M PTDB-TUG 2.84 3.22 3.54 13.02

SWIPE’ - - 5.78 5.98 6.69 8.41
MBSC - - 5.37 5.47 5.54 5.55
MBSCv2 - - 5.3 5.57 5.71 5.59

FusedF0 5.9M PTDB-TUG 1.94 1.95 2.68 5.81

tures, which are intermediate representations from the modi-
fied MBSC, and the RawEnc is based on Crepe-Tiny. Since
FusedF0 outperforms the DNN and DSP baselines, including
Crepe-based models and the MBSCv2 model, we conclude that
fusion of SCs and raw waveform representations has a syner-
getic effect.

5. Conclusion

We propose a novel hybrid DSP and DNN F0 tracking architec-
ture by fusing summary-correlogram representations and raw
waveform representations of speech signals. We also modified
the MBSC algorithm to make it faster with a 90% reduction in
latency while maintaining F0 accuracy. We extracted the SCs
used in FusedF0 in a similar fashion to the modified MBSC.
We showed that the proposed FusedF0 outperforms strong DSP
and DNN baselines such as MBSC and CREPE with a rela-
tively small number of network parameters. Furthermore, we
demostrated the robustness of FusedF0 on noisy speech signals,
and showed that auxiliary SC features used in neural FusedF0
can improve F0 errors by up to 38% compared to the best per-
forming DNN baseline.

We may further improve the architecture efficiency by di-
viding the input utterance into smaller chunks for SC calcula-
tion. Additionally, F0 annotation of a larger dataset like Lib-
riSpeech [34] can be a significant future direction for a better
F0 evaluation.

6. Acknowledgements

This work was supported in part by the NSF.



7. References
[1] J. Guglani and A. Mishra, “Automatic speech recognition sys-

tem with pitch dependent features for punjabi language on kaldi
toolkit,” Applied Acoustics, vol. 167, p. 107386, 2020.

[2] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T. Liu,
“Fastspeech 2: Fast and high-quality end-to-end text to speech,”
in ICLR. OpenReview.net, 2021.
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