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Abstract

Our prior experiments show that humans and machines seem

to employ different approaches to speaker discrimination, es-

pecially in the presence of speaking style variability. The ex-

periments examined read versus conversational speech. Lis-

teners focused on speaker-specific idiosyncrasies while “telling

speakers together”, and on relative distances in a shared acous-

tic space when “telling speakers apart”. However, automatic

speaker verification (ASV) systems use the same loss func-

tion irrespective of target or non-target trials. To improve ASV

performance in the presence of style variability, insights learnt

from human perception are used to design a new training loss

function that we refer to as “CllrCE loss”. CllrCE loss uses

both speaker-specific idiosyncrasies and relative acoustic dis-

tances between speakers to train the ASV system. When us-

ing the UCLA speaker variability database, in the x-vector and

conditioning setups, CllrCE loss results in significant relative

improvements in EER by 1-66%, and minDCF by 1-31% and

1-56%, respectively, when compared to the x-vector baseline.

Using the SITW evaluation tasks, which involve different con-

versational speech tasks, the proposed loss combined with self-

attention conditioning results in significant relative improve-

ments in EER by 2-5% and minDCF by 6-12% over baseline.

In the SITW case, performance improvements were consistent

only with conditioning.

Index Terms: Style-robust, Speaker verification, Loss function,

Conditioning, Attention

1. Introduction

Automatic speaker verification (ASV) is an open-set problem,

i.e., test speakers are unavailable to the system during training

but available during enrollment. ASV is, hence, a metric learn-

ing problem that maps speakers to a discriminative embedding

space. Most of the work on speaker verification has focused

on training with identification objectives. One such identifica-

tion objective is cross-entropy loss [1, 2]. Identification loss

functions learn linearly separable embeddings by focusing on

maximizing inter-speaker distances. However, they do not typ-

ically minimize intra-speaker distances. Hence, the resulting

embeddings do not have adequate discriminative properties.

To address the drawbacks of identification loss in ASV sys-

tems, Angular softmax [3] loss was used. Angular softmax uses

cosine similarity as the logit input to the softmax layer. Additive

margin variants of Angular softmax such as AM-Softmax [4, 5]

and AAM-Softmax [6] use a cosine margin penalty on the tar-

get logit. These techniques although effective, have been proven

sensitive to the value of scale and margin.

As an alternative to identification objectives, metric learn-

ing objectives that focus on minimizing intra-speaker distances
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have been used. Metric learning objectives such as contrastive

loss [7] and triplet loss [8] have been used in ASV tasks with

some success [9, 10]. However, these approaches require care-

ful selection of triplet pairs i.e. anchor, positive and negative

pairs, resulting in longer training cycles. Apart from the high

computational cost, these losses do not consider the perfor-

mance measures (such as equal error rate (EER) and detection

cost function (DCF)) in training; these measures are used in the

final evaluation of the speaker verification task.

It has been shown that considering a metric related to the

final evaluation improves ASV performance further at least in

text dependent ASV systems by using aAUC [11], aDCF [12]

and Cllr [13] objectives. The Cllr loss, in particular, provides

performance improvements without the need for triplet pairs

and provides computational cost similar to that of identifica-

tion objectives such as cross-entropy loss. Cllr was evaluated in

a text dependent speaker verification task [13] and its efficacy

has not been evaluated in a text independent case.

Given that everyday style variations in speech affect both

inter- and intra-speaker variabilities [14, 7], it is important to

use a loss function that maximizes inter-speaker distances and

minimizes intra-speaker distances. To addresses this issue, in

this paper, we introduce a loss function that is inspired by hu-

man speech perception.

1.1. Comparison between Humans and Machines

Speaking style variations occur frequently in everyday situa-

tions such as having a conversation, giving instructions, talking

to a pet, etc. However, these variations have little effect on hu-

man ability to recognize a familiar voice [15]. Previously it has

been shown that familiarity has an influence on human strategy

to recognize talkers: familiar talkers are recognized by match-

ing the stimuli to stored voice templates, while unfamiliar talk-

ers are recognized through acoustic feature comparisons [16].

Humans have shown to outperform machines in a task of

discriminating unfamiliar speakers in both style-matched and -

mismatched conditions from samples of read and pet-directed

speech (characterized by exaggerated prosody) [17, 18]. In our

recent experiments [19], results suggest that humans and ma-

chines maybe employing different approaches to speaker dis-

crimination in cases of moderate style variability. Moreover,

two studies [20, 21] have shown that humans vary their per-

ceptual strategies when “telling people together” versus “telling

people apart.” On the other hand, machines apply the same ap-

proach irrespective of target or non-target trials [18]. Given that

humans and machines seem to employ different approaches to

speaker discrimination, it is possible that machines might do

better if they employed human perceptual strategies. In addi-

tion, humans might do better with machine assistance in certain

situations. Therefore, we focus on learning from human speaker

perceptual strategies in developing ASV algorithms, in particu-
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lar, introducing a new training loss function.

In this work, we propose the CllrCE loss function for text-

independent ASV, especially in cases of style-mismatch. This

loss function is inspired by strategies used by humans for an

unfamiliar speaker discrimination task in the presence of mod-

erate style variability (read versus conversational speech). Sec-

tion 2 presents the proposed method. The experimental setup is

described in Section 3, and the results and discussion are pre-

sented in Section 4. We conclude with Section 5.

2. Proposed Method

2.1. Human speaker perception

Our previous work [22] studied human speaker perception for

moderate style variability (read versus conversational speech).

The results showed that listeners find it easier to “tell speakers

together” using speaker-specific idiosyncrasies, while listeners

“tell speakers apart” based on relative positions within a shared

acoustic structure rather than speaker-specific features.

This work aims to incorporate this strategy in the train-

ing loss function. Thus, we need a loss function that focuses

on speaker-specific idiosyncrasies for the “target speaker” task

while using acoustic distances between speakers for the “non-

target speaker” task.

2.2. Embedding Extractors

An x-vector/PLDA system [23] is the baseline used in this pa-

per. The inputs to the embedding extractor are 30-dimensional

mel-frequency cepstral coefficients (MFCCs) using a 25 ms

frame length and a 10 ms frame shift. The MFCCs are mean

normalized over a sliding window of up to 3 secs. Extrinsic

data augmentation of noise and reverberation [23] was applied

to the training data.

Since, the x-vector system performance is degraded in the

case of style-mismatch [24], we also want to evaluate the pro-

posed method in a system that has lesser degradation due to

style-mismatch. Hence, we perform additional experiments us-

ing an entropy-based variable frame rate (VFR) conditioning

network [25, 26] developed to compensate for speaking style

effects. This method uses VFR output [27, 24, 28] as a condi-

tioning vector in the self-attention pooling layer. Five different

approaches were used for conditioning. Among those, the best

performing VFR conditioning network, concatenation with gat-

ing, is used. In this setup, the statistical pooling layer is replaced

with a self-attention layer. The self-attention layer is then con-

ditioned using an entropy-based variable frame rate vector [24].

2.3. Loss Functions

2.3.1. Cross-Entropy (CE) Loss

A widely-used loss function for training ASV systems, includ-

ing the x-vector system, is the cross-entropy loss. This function

calculates loss for a multi-class classification problem. CE loss

Table 1: UCLA SVD database statistics in terms of number of

utterances.

Style read instructions narrative conversation pet-directed

Enroll 200 204 625+ 197 35+

Test 199 204 625+ 174 35+

+ Same enroll and test utterances.

can be calculated as,

LCE = −
1

m

m
∑

i=0

log
e
(WT

yi
.xi+byi

)

∑N

j=0 e
(WT

j
.xj+bj)

(1)

where xi is the ith training sample, yi is the ground truth

speaker label of the ith training sample, i ∈ {1, . . . ,m}, where

m is the total number of training samples. W indicates the

weight matrix, b is the bias vector. Wj and Wyi
are the jth

and yth
i columns of W, respectively. bj and byi

are the jth and

yth
i bias values, respectively. The CE loss is calculated for a

total of N speakers.

The CE loss aims at maximizing inter-speaker distances but

it does not minimize intra-speaker distances. By maximizing

inter-speaker distances (the posterior probability of the correct

class), the extracted embeddings are linearly separable. On the

other hand, for the embeddings to include desirable discrim-

inative features, the loss should also minimize intra-speaker

distances (that is increase embedding similarity). The embed-

dings trained on CE loss–maximizing inter-speaker distances–

are equivalent to the human approach of focusing on relative

positions within a shared acoustic structure to “tell speakers

apart”. To minimize intra-speaker distances and implement

other aspects of human perception strategies, we need a loss

that focuses on speaker-specific idiosyncrasies.

2.3.2. Cllr Loss

To focus on speaker-specific idiosyncrasies without increasing

the length of the training cycles, we chose the log-likelihood-

ratio cost function (Cllr) [29] as a loss function for training the

embedding extractor that we refer to as “Cllr loss”.

Cllr is an application independent measure for evaluating

soft decisions in ASV performance. There is a closed-form so-

lution for Cllr [29] that provides the Cllr loss function as follows:

Cllr(θ) =
1

2

(

Ctar(θ)

Ntar

+
Cnon(θ)

Nnon

)

(2)

Ctar(θ) =
∑

i∈tar

log2(1 + e
−sθ(xi,yi)) (3)

Cnon(θ) =
∑

i∈non

log2(1 + e
sθ(xi,yi)) (4)

where θ represents the model parameters, sθ(xi,yi) is the score

from the last layer of the embedding extractor for speaker yi

from input xi, ‘tar’ is a set of target speakers and ‘non’ is a set

of non-target speakers. The two terms in Equation 2 represent

the costs for Ntar “target” (Ctar(θ)) and Nnon “non-target”

speakers (Cnon(θ)).
Cllr can be interpreted as a measure that is inversely related

to information. The lower the Cllr, the more the average infor-

mation per trial (in bits) increases. Optimization is performed

with the objective of minimizing Cllr loss. Cllr loss is calcu-

lated for each minibatch by considering the outputs of the last

linear layer as scores and using the class labels to define target

and non-target speakers. Thus, Cllr loss minimizes intra-speaker

distances by focusing on speaker-specific idiosyncrasies. This

is similar to the human approach to “tell speakers together”.

2.3.3. Proposed method: CllrCE loss

We propose to use the combination of cross-entropy loss and

Cllr loss for training ASV systems, so that the loss function

can maximize “inter-speaker” distances and minimize “intra-



Table 2: Performance using the UCLA database (in EER and minDCF) with CE and CllrCE loss functions. The loss functions are

used to train the x-vector system and the best performing VFR conditioning: concatenation with gating. The best performance in each

condition with a statistically significant improvement over the baseline is boldfaced. If denoted by a ‘*’ it is not a statistically significant

improvement over the baseline.

Loss CE CllrCE

Enroll Test
x-vector (Baseline) VFR conditioning x-vector VFR conditioning

EER % minDCF0.01 EER % minDCF0.01 EER % minDCF0.01 EER % minDCF0.01

read

read 0.50 0.018 0.50 0.013* 0.50 0.023 0.50 0.018

instructions 0.49 0.054 0.49 0.037* 0.49 0.037* 0.49 0.027*

conversation 2.86 0.254 2.29 0.232 2.29 0.240 1.71 0.197

narrative 0.80 0.162 0.80 0.115* 0.80 0.123* 0.80 0.104*

pet-directed 17.14 0.928 14.29 0.943 17.14 0.943 17.14 0.886*

instructions

read 1.47 0.154 0.98 0.120 1.47 0.137 1.47 0.108*

instructions 0.45 0.005 0.45 0.005 0.45 0.005 0.45 0.005

conversation 2.79 0.296 2.79 0.263* 2.79 0.263* 2.24 0.238

narrative 1.23 0.110 0.77 0.102 0.92 0.090 0.77 0.072

pet-directed 18.92 0.933 13.51 0.933 16.22 0.920 16.22 0.908

conversation

read 2.03 0.246 1.52 0.178 1.52 0.188 1.52 0.173

instructions 2.97 0.267 2.48* 0.248* 2.48* 0.225* 2.48* 0.213*

conversation 0.57 0.035 0.57 0.035 0.57 0.029* 0.57 0.020*

narrative 1.94 0.224 1.94 0.187 1.94 0.179 2.10 0.155

pet-directed 20.00 0.887 17.14 0.915 17.14 0.900 17.14 0.858

narrative

read 0.48 0.046 0.32* 0.032* 0.16 0.036 0.16 0.020

instructions 0.46 0.024 0.46 0.019* 0.46 0.019* 0.46 0.013*

conversation 1.46 0.132 1.10 0.121 1.10 0.127 0.73 0.096

pet-directed 18.58 0.828 13.27 0.908 13.27 0.855 14.16 0.841

pet-directed

read 14.29 0.886 14.29 0.829* 14.29 0.857* 14.29 0.871*

instructions 18.92 0.919 13.51 0.946 16.22 0.934 16.22 0.908

conversation 21.21 0.914 18.18 0.867 18.18 0.842 21.21 0.774*

narrative 19.47 0.886 14.16 0.929 15.93 0.892 15.04 0.864

speaker” distances. We thus use a combined loss function and

refer to it as “CllrCE loss”,

CllrCE(θ) =
1

2
(Cllr(θ) + LCE) (5)

Given that this loss function is inspired by human speaker

discrimination strategies in the presence of moderate style vari-

ability, i.e, between read and conversational speech, we hypoth-

esize that this loss function will provide the most improvement

in conversational speech tasks.

3. Experimental Setup

Experiments were setup using Pytorch [30] and Kaldi [31].

Adam [32] optimization was used with a batch size of 128 and

trained for 100 epochs.

3.1. Databases

3.1.1. The UCLA Speaker Variability Database (SVD)

To systematically study performance in the presence of style

variability, the UCLA Speaker Variability Database [33, 34, 35,

36], a multi-speaker speech database including multiple speech

tasks per speaker is employed. It incorporates commonly-

occurring variations in speech from 101 female and 101 male

speakers, recorded in a sound-attenuated booth at a sampling

rate of 22kHz. The tasks include reading sentences character-

izing scripted speaking style (≈ 75 sec per speaker); giving

instructions as unscripted clear monologue style (≈ 30 sec

per speaker); narrating a recent happy, annoying, or neutral

conversation characterizing unscripted affective speech (≈ 30

sec each affect per speaker); having a conversation on a call

with a familiar person (speaker’s side speech only) characteriz-

ing unscripted conversational style (60–120 sec per speaker);

and talking to pets in a video representing pet-directed speech

(60–120 sec per speaker).

To cover enough phonetic variability, such that there is neg-

ligible effects from it, and style variability is predominant [37],

30 sec-long speech samples were used for evaluation, This re-

sults in a total of 1,838 30 sec segments for evaluation as

shown in Table 1. A majority of speakers had less than 1 min

of speech for pet-directed speech and affect-matched narrative

case. Hence, the style-matched cases for those styles were omit-

ted, as a style-matched case requires at least 1 min (two 30 sec

samples) of speech from the same speaker. This provides a total

of 23 style-matched and mismatched tasks for evaluation. The

UCLA SVD data were downsampled to 16 kHz, to match the

rest of the databases used.

3.1.2. The Speakers in the Wild Database (SITW)

To evaluate the performance of the proposed loss on a large-

scale database we use SITW [38] for evaluation. It includes

speakers employing multiple speaking styles such as inter-

views, presentation, talk show, social-media videos etc. This

database consists of 2,883 recordings from 117 male and 63 fe-

male speakers divided into 6,445 utterances sampled at 16 kHz.

Single-speaker utterances in the eval set are referred to as

“core”. Enrollment utterances with multiple speakers (segmen-

tation labels for the person of interest (POI) available) are re-



Table 3: Performance using the SITW evaluation (in EER and minDCF) with CE, Cllr, and CllrCE loss functions. The loss functions

are used to train the x-vector system and the best performing VFR conditioning: concatenation with gating. The best performance in

each condition with a statistically significant improvement over the baseline is boldfaced.

Core-Core Core-Multi Assist-Core Assist-Multi

Loss Model EER % minDCF0.01 EER % minDCF0.01 EER % minDCF0.01 EER % minDCF0.01

CE
x-vector (Baseline) 3.66 0.3820 5.87 0.4629 5.47 0.4041 6.90 0.4512

VFR conditioning 3.69 0.3989 5.81 0.4740 5.26 0.4027 6.54 0.4651

Cllr
x-vector 4.13 0.4153 6.46 0.4940 6.24 0.4376 7.57 0.4824

VFR conditioning 4.29 0.4009 6.65 0.4821 6.28 0.4337 7.68 0.4776

CllrCE
x-vector 3.77 0.3654 5.88 0.4394 5.70 0.3833 6.74 0.4290

VFR conditioning 3.47 0.3346 5.73 0.4178 5.36 0.3738 6.73 0.4191

ferred to as “assist”, while the test utterances that do not include

segmentation labels for POI are referred to as “multi”.

3.1.3. VoxCeleb Database

ASV systems were trained on the Voxceleb2 DEV set [39].

It consists of speech from YouTube videos of 3,682 male and

2,313 female speakers and includes 1,092,009 utterances with a

sampling rate of 16 kHz. The main disadvantage of using Vox-

Celeb2 for testing is that it comprises interview-style speech

only and does not include different styles for each speaker.

Hence, we believe that this database does not provide a good

representation of the test case scenario targeted in this work.

4. Results and Discussion

4.1. UCLA SVD Evaluation

The loss functions used in our experiments are cross-entropy

loss (CE), Cllr loss, and CllrCE loss. These loss functions are

used to train the x-vector system and the best performing VFR

conditioning: concatenation with gating. Table 2 compares the

performance (in EER % and minDCF) of the CE and CllrCE

loss functions for the UCLA database. The Cllr loss function

by itself does not provide an improvement over the widely-used

CE loss function in both the x-vector and VFR conditioning

architectures. Therefore, we do not report those results in Ta-

ble 2. Statistical significance was verified using McNemar’s

test [40]. Unless mentioned explicitly, all performance differ-

ences reported in this section are significant with p < 0.05.

In the x-vector setup, CllrCE loss provides statistically sig-

nificant improvements over CE loss in 11/23 tasks and is the

same as CE loss in 12/23 tasks. The minDCF is significantly

better with CllrCE loss in 7/23 tasks and worse in 4/23 tasks

when compared to CE loss. In the VFR conditioning setup,

CllrCE loss provides statistically significant improvements in

4/23 tasks, especially in tasks involving conversational style,

compared to VFR conditioning with CE loss. Since in the VFR

conditioning setup style variability is addressed, the improve-

ment with CllrCE loss is not consistent. The CE loss performs

significantly better in 8/23 tasks. The performance in terms of

minDCF values show that the CllrCE loss provides significant

improvements over CE loss in 12/23 tasks, and the same perfor-

mance in 11/23 tasks. The most relative improvement is seen

with tasks that include conversational or narrative style speech

in enrollment and/or test conditions.

Overall, VFR conditioning trained with CllrCE loss pro-

vides significant improvements over the x-vector baseline (with

CE loss) in 7/23 tasks in EER, and 12/23 tasks in minDCF.

When compared to their CE counterparts, we again notice that

the conditions where the CllrCE loss provides improvements are

the ones that include conversation style speech and narrative

style speech (closest to the conversation style).

4.2. SITW Evaluation

Table 3 presents the performance on the SITW evaluation set

using different loss functions. The loss functions used are cross-

entropy loss (CE), Cllr loss, and CllrCE loss. These loss func-

tions are used to train the x-vector system and the best perform-

ing VFR conditioning: concatenation with gating.

The results show that the best performing system in terms

of minDCF values is the one with combination loss in the VFR

conditioning setup. However, EER values of the CllrCE loss in

the VFR conditioning setup are slightly worse than the CE loss

counterpart for assist-core and assist-multi evaluations. Over-

all, the proposed loss function with the VFR conditioning setup

results in the best performance on the SITW evaluation. Since

SITW involves mainly conversational speech, this result agrees

with our hypothesis that the new loss function improves ASV

system performance for conversational styles.

Overall results show that the combined CllrCE loss im-

proves ASV performance for the two configurations when com-

pared to CE and Cllr loss functions individually. Thus, implying

that the Cllr and CE loss functions are complementary.

5. Conclusion

In order to improve ASV performance in the presence of style

variability, this work introduces a new loss function (CllrCE)

that is inspired by human speech perception. CllrCE loss fo-

cuses on both speaker-specific idiosyncrasies to “tell speakers

together” and on relative acoustic distances between the speak-

ers to “tell speakers apart”. This combined loss maximizes

inter-speaker distances while minimizing intra-speaker dis-

tances resulting in performance improvements over the widely

used CE loss function and also the Cllr loss function, showing

their complementarity. To the best of our knowledge, this is the

first work to propose a training loss function for ASV that is

inspired by human perception. In future, this work will be ex-

tended to study perception strategies between other styles and

use those to improve ASV approaches. Further studies on the

effects on short-duration scenario [41, 42] and other embedding

extractors [43, 44] would provide better understanding of the

proposed loss function.
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