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Abstract
Major Depressive Disorder (MDD) is a severe illness that

affects millions of people, and it is critical to diagnose this dis-
order as early as possible. Detecting depression from voice sig-
nals can be of great help to physicians and can be done with-
out the need of any invasive procedure. Since relevant labelled
data are scarce, we propose a modified Instance Discrimina-
tive Learning (IDL) method, an unsupervised pre-training tech-
nique, to extract augment-invariant and instance-spread-out em-
beddings. In terms of learning augment-invariant embeddings,
various data augmentation methods for speech are investigated,
and time-masking is found to provide the best performance. To
learn instance-spread-out embeddings, we explore methods for
sampling instances for a training batch (distinct speaker-based
and random sampling). It is found that the distinct speaker-
based sampling provides better performance than the random
one, and we hypothesize that this result is because relevant
speaker information is preserved in the embedding. Addition-
ally, we propose a novel sampling strategy, Pseudo Instance-
based Sampling (PIS), based on clustering algorithms, to en-
hance spread-out characteristics of the embeddings. Experi-
ments are conducted with DepAudioNet on DAIC-WOZ (En-
glish) and CONVERGE (Mandarin) datasets, and statistically
significant improvements are observed in the detection of MDD
relative to the baseline with no pre-training.
Index Terms: unsupervised pre-training, depression detection,
speaker information, instance discriminative learning

1. Introduction
Major Depressive Disorder (MDD) is one of the most severe
chronic mental health disorders, characterised by persistent de-
pressed mood, loss of interest in social activities, lack of energy,
and even suicidal thoughts [1]. Around 4.4% of the world’s pop-
ulation is estimated to suffer from depression [2]. It is believed
that the cause of MDD is multifactorial, which makes it unex-
plainable by conventional mechanisms and difficult to diagnose
[3]. Conventionally, diagnosing MDD is conducted by ques-
tionnaires [4]. However, many subjective factors might cause
mis-diagnosis [5]. Therefore, automatic depression detection
systems might help alleviate the above mentioned challenges.

There have been several studies focusing on automatic de-
pression detection from signals, such as voice, video, electroen-
cephalogram (EEG), etc. [6, 7, 8, 9]. Among those approaches,
automatic depression detection based on speech signals draws
more attention because speech signals can be an effective clini-
cal marker for depression [10, 11]. Speech signals also prevail
because they are relatively easy to obtain and analyze [6]. De-
pressed individuals typically have slow, uniform, monotonous
and/or hesitant voice characteristics [12, 13]. There have been
successful approaches to depression detection based on speech

signals. Various features have been investigated, such as Mel
Frequency Cepstral Coefficients (MFCCs) [14, 15], Mel Fil-
terbanks [16], vocal tract coordination (VTC) [17] and voice
quality features [18, 19, 10]. Aside from these handcrafted fea-
tures, some approaches use raw audio signals [20] in an end-
to-end manner or high-level features extracted from pre-trained
models, like x-vector [21], i-vector [18], NN2Vec [22], and De-
pression audio embedding (DEPA) [23]. In the back-end do-
main, researchers apply model architectures based on Convolu-
tional Neural Networks (CNN) and Long-Short-Term Memory
(LSTM) to capture spatial and temporal patterns of depression
[24, 16]. Other additional mechanisms might be incorporated
externally to improve model performance. For example, in [24],
an ensemble method with a CNN has shown good robustness to
acoustic variability, and in [22] Salekin et al. reformulate the
task into a weakly supervised learning problem.

Unsupervised pre-training (UPT) is shown to be effective
in various tasks given data scarcity, such as Automatic Speech
Recognition (ASR) [25, 26], and Speech Emotion Recognition
(SER) [27, 28]. For SER tasks, Contrastive Predictive Coding
(CPC) is applied by separating positive examples from negative
examples though infoNCE minimization [27]. Speech SimCLR
is proposed to optimize contrastive loss between samples that
are augmented [28]. There have been a few studies that focused
on UPT for depression detection. Most of these approaches use
UPT models for feature extraction [22, 23, 29]. However, it’s
highly likely that the extracted features might lose important
information for depression classification, since the pre-trained
model is not optimized for depression detection. Hence, there
is a domain discrepancy problem which might negatively af-
fect performance. Inspired by a successful UPT method, In-
stance Discriminative Learning (IDL) [30], for image classifica-
tion tasks, we propose a modified IDL approach for depression
detection based on speech signals to extract augment-invariant
and instance-spread-out embeddings in the pre-training stage.
We investigate different sampling strategies for pre-training and
find that the method that works the best preserves some speaker
information. Additionally, a new sampling strategy, Pseudo
Instance-based Sampling (PIS), is proposed to boost instance-
spread-out characteristics.

The remainder of this paper is organized as follows: Section
2 presents the IDL technique and the proposed PIS method. The
experimental setup is described in Section 3, followed by results
and discussion in Section 4. Section 5 concludes the paper.

2. Instance Discriminative Learning
2.1. Pre-training Methodology

The schematic diagram of IDL [30] is shown in Figure 1. The
assumption of IDL pre-training is that, the embedding of an



instance and the embedding of its augmented object should
be invariant, and embeddings of different instances should be
spread-out. The embedding here is the output of the pre-trained
model. In our case, all utterances are divided into segments with
equal length, and each segment is taken as a distinct instance in
pre-training. For each batch, n segments are selected with pre-
defined sampling strategies which are introduced in Section 2.3.
For each segment xi in the batch, augmentation is applied and
we obtain x̂i. Embeddings, denoted by fi and f̂i, are obtained
by feeding the original segment and the augmented segment into
the Neural Network (NN) module. To get an augment-invariant
embedding, the probability that the augmented instance x̂i be-
ing classified as instance xi is maximized, and is defined as:

P (xi|x̂i) =
exp(< fi, f̂i > /τ)∑n

k=1 exp(< fk, f̂i > /τ)
(1)

Embeddings should be instance-spread-out, where the proba-
bility that an instance xj being classified as another instance xi,
j ̸= i, in a batch is minimized, and is defined as:

P (xi|xj) =
exp(< fi, fj > /τ)∑n

k=1 exp(< fk, fj > /τ)
, j ̸= i (2)

Here, probabilities are calculated as the ratios of exponential
inner products of two embeddings scaled by a hyper-parameter
τ . In all experiments , τ is empirically set to be 10.

We assume that the probability of an instance xi being rec-
ognized as a different instance xj is independent for j ̸= i.
For each instance xi, the joint probability that its augmented in-
stance x̂i can be recognized as xi and other instances xj cannot
be recognized as xi is denoted as:

Pi = P (xi|x̂i)
∏
j ̸=i

(1− P (xi|xj)) (3)

The NN module is then optimized by minimizing the average
negative log-likelihood over a batch. Hence, the loss is :

LIDL = − 1

n
(
∑
i

logP (xi|x̂i) +
∑
i

∑
j ̸=i

log(1− P (xi|xj)))

(4)

2.2. Augment-Invariant Embeddings

The first goal of IDL pre-training is to learn augment-invariant
embeddings, corresponding to Equation 1. Augmentation tech-
niques are applied to instances in the batch during pre-training.
However, for speech signals, effects of augmentation methods
on depression status have not been fully explored. To mitigate
potential negative effects of some augmentation methods that
might change acoustic correlates of depression, such as pitch,
formants, etc. [10], augmentation methods used in this work are
carefully chosen to be additive noise and volume perturbation at
the signal level. For comparison, Vocal Tract Length Perturba-
tion (VTLP) [31], as an augmentation technique that can change
formant features, is also applied. All signal-level augmenta-
tions are conducted using open-source nlpaug package [32]. In
addition, to better analyze the effects of augmentation in the
time and frequency domains separately, TM (time masking),
FM (frequency masking) and SpecAugment (as a combination
of TM and FM along with time-warping) [33] are applied at the
feature level, using mel-spectrograms.

Figure 1: A schematic diagram of IDL pre-training. xi indicates
an original instance and x̂i represents its augmented version,
i = 1, 2, ..., n, where n is the batch size. fi and f̂i denote
embeddings of xi and x̂i. Red and blue blocks are augment-
invariant and instance-spread-out computations, respectively.

2.3. Instance-Spread-Out Embeddings

2.3.1. Distinct speaker-based and Random Sampling

Equation 2 attempts to achieve the goal of training embeddings
to be instance-spread-out. Depending on different sampling
strategies, the pre-training task has different implicit tendencies.
In distinct speaker-based sampling (DS), it is guaranteed that
each segment in a batch is from a distinct speaker. Hence, while
the model is trying to spread out embeddings from different in-
stances, it is also optimized to classifying different speakers. In
other words, speaker information might be preserved in the em-
bedding. The other sampling strategy is random sampling (RS),
where segments in a batch are not constrained to be chosen from
distinct speakers. If two samples in a batch are from the same
speaker, they will still be classified into two instances during
pre-training. Therefore, setting the RS strategy might eliminate
speaker discriminative information from the embedding.

2.3.2. Pseudo Instance-based Sampling

Inspired by Hubert [25], pseudo labels generated by clustering
algorithms can reveal implicit correlation between hidden rep-
resentations and underlying acoustic units in Automatic Speech
Recognition (ASR) tasks. Embeddings trained from IDL might
also have such a non-trivial correlation with depression sta-
tus. The correlation can provide distinguishable characteris-
tics across instances which may help with depression classi-
fication. Therefore, PIS is proposed to sample instances in a
batch according to pseudo labels assigned by clustering algo-
rithms instead of being speaker-dependent. Let X denote all
segments X = [x1, x2, ..., xn]. At the first stage, the model
is pre-trained using IDL with DS sampling strategy. Then, em-
beddings, F = [f1, f2, ...fn], are obtained by feeding X into
the best pre-trained model. Embeddings are clustered using a
simple k-means model with C cluster centroids. Correspond-
ing pseudo labels, Ŷ = [ŷ1, ŷ1, ..., ŷn], are assigned as clus-
ter centroid variables, where ŷi = 1, 2, ..., C. At the second
stage, instead of sampling instances in a batch with DS, each
instance is sampled from a distinct cluster to guarantee all sam-
ples in a batch have distinct pseudo labels. Therefore, C is pre-
determined to be the batch size in the second stage to guarantee
all samples in a batch are from different clusters.



Table 1: Performance of IDL in terms of average F1-scores with different augmentation methods using distinct speaker-based sampling
(DS) on DAIC-WOZ and CONVERGE test sets. Baseline is the experiments without pre-training. ND and D stands for non-depression
and depression, respectively. In the Augmentation column, TM stands for Time-Masking, FM is Frequency-Masking, and SpecAug
stands for SpecAugment. VTLP denotes Vocal Tract Length Perturbation. Noise and Volume stands for noise perturbation and volume
perturbation, respectively. The best F1-scores are boldfaced. ∗ indicates that the change is not statistically significant.

Exp Augmentation DAIC-WOZ CONVERGE
F1 (avg) F1(ND) F1(D) F1 (avg) F1(ND) F1(D)

Baseline NA 0.4258 0.5357 0.3158 0.7228 0.7101 0.7355

IDL - Feature Level Aug
TM 0.6458 0.8116 0.4800 0.7412∗ 0.7503 0.7321
FM 0.6103 0.7761 0.4444 0.7256 0.7343 0.7168

SpecAug 0.6189 0.8378 0.4000 0.7316 0.7432 0.7200

IDL - Signal Level Aug
VTLP 0.5428 0.6984 0.3871 0.7197 0.7378 0.7015
Noise 0.6083 0.8000 0.4167 0.7293 0.7537 0.7048

Volume 0.6458 0.8116 0.4800 0.7257 0.7453 0.7063

3. Experimental Setup
For both pre-training and downstream datasets, we use 40 di-
mensional mel-spectrograms as input features, extracted with
the Librosa library [34] every 32ms with a 64ms Hanning win-
dow. Experiments are conducted using PyTorch [35].

3.1. Datasets

3.1.1. DAIC-WOZ

The Distress Analysis Interview Corpus - Wizard of Oz (DAIC-
WOZ) [36] is an English dataset containing audio, text and
video of interviews from 189 male and female participants, col-
lected by a virtual interviewer. Audio files range between 7-33
min (16 min on average), with a non-depression vs depression
ratio of 3:1. In this work, only recordings belonging to partic-
ipants are extracted according to the groundtruth time stamps.
Train, validation and test sets are partitioned in the same way as
that provided in the dataset [36].

Librispeech [37] is used as the pre-training dataset for
downstream tasks on DAIC-WOZ. It is the largest publicly
available speech corpus in English with mostly reading style
speech. Two subsets, training and validation, are partitioned
with the ratio of 9:1 without speaker overlap, and the validation
set is used to choose the best pre-trained model.

3.1.2. CONVERGE

The Mandarin dataset we use is a part of the China, Oxford
and Virginia Commonwealth University Experimental Research
Genetic Epidemiology (CONVERGE) study [38]. The dataset
contains 391 hours of recordings from 7959 females with al-
most equal numbers of depression and non-depression classes.
The sampling rate was 16kHz, and train, validation and test sets
are split into 60%, 20% and 20%.

CN-Celeb [39] is chosen as the pre-training dataset for clas-
sification experiments conducted on CONVERGE. The dataset
contains more than 130,000 utterances in Mandarin from 1000
Chinese celebrities across multiple genres. Training and valida-
tion subsets are partitioned in the same way as Librispeech.

3.2. DepAudioNet

The back-end model we apply is DepAudioNet proposed in
[16, 20] for depression detection from speech signals. 40-
dimensional Mel-spectrogram features first pass through a one-
dimensional convolution layer with a kernel size of 3 to capture
short-term characteristics. Batch normalization is enabled after

convolution. A max-pooling layer with a kernel size of 3 fol-
lows the convolution layer to capture mid-term features, with
a dropout factor of 0.05 and an activation function as ReLU.
Two LSTM layers and a fully connected layer activated by a
Sigmoid with a hidden size of 128 are concatenated to generate
binary predictions.

For experiments on DAIC-WOZ, the model is pre-trained
on Librispeech corpus. Utterances from each speaker are com-
bined together and segmented into multiple fixed length seg-
ments with 120 frames each. The model is trained for 100
epochs with a batch size of 20. The learning rate is set to 1e-3,
and the decay factor is set to 0.9 every two epochs. The model
with the smallest validation loss is chosen to initialize the down-
stream model. For the depression classification task, to mitigate
length variation and class imbalance, random cropping and ran-
dom sub-sampling are applied [16]. Each utterance is randomly
cropped into a fragment with the same length as the shortest ut-
terance, to mitigate any influence from longer objects. Then,
each fragment is segmented with a fixed window length of 120
frames. A new subset is generated by sampling an equal num-
ber of depression and non-depression segments randomly with-
out replacement. To fully utilize as many samples as possible,
five individual models are trained using five randomly selected
subsets for 100 epochs each, with a learning rate of 1e-3, and
a decay factor of 0.9 every two epochs. Final predictions are
obtained by averaging probabilities of the five models.

For CONVERGE experiments pre-trained on CN-Celeb,
random cropping and sub-sampling are disabled because the
dataset is balanced. One model is trained using all segments.
The learning rate is empirically set to 1e-2. Other experimental
configurations are the same as DAIC-WOZ experiments.

4. Results and Discussion
4.1. Comparison of Different Augmentation Methods

To investigate the effects of augment-invariant characteristics,
different augmentation methods used in pre-training are com-
pared while fixing the sampling strategy to be DS. F1-scores for
the baseline system without pre-training, and IDL pre-training
with various augmentation methods on DAIC-WOZ and CON-
VERGE test sets are shown in Table 1. All best F1-scores are
statistically significant compared with the baseline unless spec-
ified. In the feature-level augmentation experiments, the effect
of time and frequency perturbation on depression status can be
analyzed by perturbing the spectrogram in time or frequency at
a time. Table 1 shows that TM gives the best performance with



a relative average F1-Score improvement of 51.67% on DAIC-
WOZ and 2.55% on CONVERGE compared with the baseline
system. FM is the worst among the three with a relative im-
provement of 43.33% and 0.39% on DAIC-WOZ and CON-
VERGE, respectively. Applying SpecAugment achieves an in-
termediate performance with a relative improvement of 45.35%
and 1.22%, respectively. The results suggest that, augmenting
the signal in the spectral domain, such as frequency masking,
might result in loss of depression-specific information. The
worst performance is observed for IDL with VTLP as the aug-
mentation method, which also proves the hypothesis that mod-
ifications of spectral domain parameters can negatively affect
depression classification. Because the spectrum is less affected
by noise and volume perturbations compared with VTLP, mod-
erate improvement can be observed on both datasets using these
perturbations. Combination of augmentation methods are eval-
uated but performances are worse than using a single method.

4.2. Sampling Strategy Comparison

The instance-spread-out characteristics of the proposed pre-
training method are explored by setting different sampling
strategies with TM augmentation, since TM is the best augmen-
tation technique found in the experiments reported in Section
4.1. Average F1-scores on DAIC-WOZ and CONVERGE test
sets using different sampling strategies are shown in Table 2.

In Table 2, we observe that setting the batch sampling
strategy to be DS yields relative improvements of 13.64% and
4.79% on DAIC-WOZ and CONVERGE, respectively, com-
pared with using RS. Unlike RS, DS might preserve speaker
information because embeddings of two speakers’ instances are
optimized to be spread-out, this observation implies speaker-
discriminative information might be crucial in determining de-
pression status. An ablation study is conducted in Section 4.3
to prove that speaker information is preserved using DS.

Table 2: Average F1-scores of Baseline and unsupervised pre-
training methods on DAIC-WOZ and CONVERGE. SS stands
for sampling strategy. Best Results are boldfaced.

F1(avg) SS DAIC-WOZ CONVERGE
Baseline - 0.4258 0.7228
CPC[40] - 0.5104 0.7371

Speech SimCLR[28] - 0.5747 0.7288

IDL
RS 0.5683 0.7073
DS 0.6458 0.7412
PIS 0.6834 0.7435

In the IDL-PIS experiments, TM is also chosen for aug-
mentation. PIS can further improve depression classification
performance compared with DS, with relative improvements of
5.82% on DAIC-WOZ and 0.31% on CONVERGE. Improve-
ments demonstrate that pseudo-labels generated by the cluster-
ing model provide a high correlation with depression status.

As a comparison with other UPT methods, experiments
with CPC [40] and Speech SimCLR [28] without reconstruction
loss are conducted and reported in Table 2. Results show that
CPC and Speech SimCLR can perform better than the baseline
system but not as well as the proposed IDL method.

4.3. Ablation Study on Speaker Classification

We have shown that sampling instances in a batch using the DS
sampling strategy during pre-training can help with the down-

Table 3: Average F1-scores and Speaker Classification Accu-
racy (Spk Cls Acc) of Baseline and unsupervised pre-training
on DAIC-WOZ. w/o ft stands for no fine-tuning

Exp F1(avg) Spk Cls Acc(%)
Baseline 0.4258 21.98
IDL (DS w/o ft) 0.3472 68.26
IDL (DS ) 0.6458 72.16
IDL (RS) 0.5683 59.45
IDL (PIS) 0.6834 71.60

stream depression classification task. To prove that speaker
information is preserved in embeddings optimized by pre-
training, speaker classification tasks with embeddings generated
from downstream models as input are conducted on the DAIC-
WOZ test set using a simple SVM classifier [41]. 30% of the
segments constitute the speaker classification test set.

Table 3 shows that, for IDL pre-training using TM with
DS on Librispeech, without fine-tuning on the DAIC-WOZ, a
68.26% speaker classification accuracy is achieved. The cor-
responding F1-score of 0.3472 is reasonable since the model
hasn’t been tuned for the depression task. The accuracy in-
creases to 72.16% after fine-tuning. This improvement can be
explained by in-domain dataset adaptation through the down-
stream task. As a comparison, IDL (RS) only achieves 59.45%
speaker classification accuracy. The relative speaker classifi-
cation accuracy degradation of 17.61% from DS to RS proves
that speaker information are better preserved using DS. Addi-
tionally, using PIS achieves a comparable speaker classification
accuracy and an improved F1-score on depression classification
compared with DS. This observation reveals that depression-
specific characteristics can be preserved in embeddings trained
using PIS, along with some speaker information.

5. Conclusion and Future Work
In this paper, a modified UPT approach, IDL, is proposed
to learn augment-invariant and instance-spread-out embed-
dings for depression detection tasks on DAIC-WOZ and CON-
VERGE datasets. Different augmentation techniques are com-
pared in terms of augment-invariant characteristics. Results
show that TM yields the best performance among all augmen-
tation methods. For learning instance-spread-out embeddings,
different sampling strategies, DS and RS are investigated and
compared. Results show that preserving speaker information
in the embedding using DS might help with depression clas-
sification. We also propose a new sampling strategy, PIS, to
generate pseudo labels based on clustering, to reveal a deeper
correlation between embeddings and depression status. Com-
pared with the baseline without pre-training, the proposed ap-
proach, PIS, achieves significant improvements in the detection
of MDD on DAIC-WOZ and CONVERGE datasets, with p-
value 0.0015 and 0.05, respectively. In future work, we will in-
vestigate context-based, in addition to speaker-based, sampling
strategies and apply IDL and PIS to other low-resource tasks.
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