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Abstract
Recently, neural networks with deep architecture have been
widely applied to acoustic scene classification. Both Convo-
lutional Neural Networks (CNNs) and Long Short-Term Mem-
ory Networks (LSTMs) have shown improvements over fully
connected Deep Neural Networks (DNNs). Motivated by the
fact that CNNs, LSTMs and DNNs are complimentary in their
modeling capability, we apply the CLDNNs (Convolutional,
Long Short-Term Memory, Deep Neural Networks) framework
to short-duration acoustic scene classification in a unified archi-
tecture. The CLDNNs take advantage of frequency modeling
with CNNs, temporal modeling with LSTM, and discrimina-
tive training with DNNs. Based on the CLDNN architecture,
several novel attention-based mechanisms are proposed and ap-
plied on the LSTM layer to predict the importance of each time
step. We evaluate the proposed method on the truncated ver-
sion of the 2016 TUT acoustic scenes dataset which consists of
recordings from 15 different scenes. By using CLDNNs with
bidirectional LSTM, we achieve higher performance compared
to the conventional neural network architectures. Moreover, by
combining the attention-weighted output with LSTM final time
step output, significant improvement can be further achieved.
Index Terms: acoustic scene classification, short-duration,
CLDNNs, attention mechanisms

1. Introduction
Acoustic scene classification (ASC) aims to recognize the cate-
gory of environmental sounds, which is very useful for applica-
tions like multimedia content retrieval [1] and audio and video
classification and segmentation [2]. Motivated by the success of
deep neural networks, a variety of deep architectures have been
recently proposed for acoustic scene and event recognition. In
[3], the authors apply a fully connected DNNs to this task,
which is initialized using unsupervised training with deep belief
neural networks (DBNs). Recently, both CNNs and recurrent
neural networks (RNNs) (especially LSTMs) have shown im-
provements over DNNs. Various deep CNN architectures with
multiple convolutional and pooling layers are employed for hi-
erarchical feature extraction from audio signals [4, 5, 6, 7], and
CNNs also show robustness for audio event detection [8]. In
[9], the authors propose multi-label RNNs in the form of bidi-
rectional LSTMs for polyphonic audio event detection, which
outperform DNN-based methods by a large margin. Besides
neural network based systems (NNs), i-vector based systems
also show effectiveness for long-duration ASC, and can provide
complementary information to NNs [10].

In this paper, we are interested in short-duration ASC (e.g
around 6s), since in many real applications, like video and audio
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classification using the data from social media networks, only
short-duration audio segments are available. In addition, the in-
formative audio signals might not span the entire duration of the
segments. Therefore, we propose and apply a novel attention-
based CLDNN framework for this task.

Motivated by the complementary modeling capabilities of
CNNs, LSTMs and DNNs, we first apply the CLDNNs with
bidirectional LSTM to ASC in a unified architecture. CLDNNs
can take advantages of CNNs for frequency variation reduction,
LSTMs for sequence modeling, and DNNs for discriminative
training, which we believe are all suitable for ASC. CLDNNs
were first introduced in [11] for speech recognition and obtain
better performance than any of the other architectures individ-
ually. Recently, CLDNNs were also successfully applied to
voice activity detection (VAD) and resulted in large improve-
ments compared to DNN-based system [12].

Based on the CLDNN architecture, we further propose a
novel attention mechanism in the LSTM layer, to predict the
importance of each LSTM time step. The weighted LSTM out-
put using attention scores is propagated to next layer. Atten-
tion mechanisms have been widely applied in speech recogni-
tion [13], handwriting synthesis [14], machine translation [15],
and image caption generation [16]. In this paper, we would like
to find out whether and how the attention framework can help
for short-duration ASC and what the attention model can learn
in the end-to-end training framework.

2. Neural network based systems for
acoustic scene classification

In this section, we first introduce the audio processing and fea-
ture extraction procedures before training, and then two neural
network architectures are described. Finally, a novel attention
mechanism is proposed with different configurations, and three
methods to combine the attention output with the LSTM final
time step output are discussed.

2.1. Audio processing and feature extraction

All audio files are first segmented into 6s segments for both
training and testing, because our goal is focused on short-
duration audio scene classification and 6s is a common length
for short video and audio files. 40 log mel-filterbank coeffi-
cients are extracted at 20ms intervals using a 40 ms Hamming
window. All features are normalized to zero mean and unit vari-
ance. Therefore for each 6s segment, we will have 300 feature
vectors and each of them is of 40 dimensions. We combine the
300 vectors into a 40*300 2-D feature map, which represents
the mel-filterbank features distributed along both frequency (us-
ing filterbank index) and time (using the frame number). The
2-D feature map is the input we use for neural network training.



Figure 1: The CLDNN framework

2.2. Neural network architectures

2.2.1. CNNs

The CNN model used in this paper is an Alexnet-like [17] struc-
ture, which comprises 3 stacked pairs of convolution and max-
pooling layers, and one fully connected layer with a softmax
layer on the top. The first convolutional layer uses 16 filters of
size 5*5, the second and third layers use 32 and 64 filters of size
3*3 respectively. All the strides for the convolutional layer are
set to 1. The kernel size 2*2 and stride 2 are used for all pooling
layers. After the third pooling layer, the output is flattened and
passed into the fully connected layer with 256 nodes.

2.2.2. CLDNNs

In order to have a fair comparison with CNNs, the CLDNN ar-
chitecture proposed in this paper uses the same configuration as
the CNN model described above, except that the third convo-
lution and max-pooling layers are replaced by a LSTM layer.
A diagram of the proposed CLDNN architecture is shown in
Figure 1. For the LSTM layer, we propose 3 different lay-
ers, which are forward layer (denoted as FWLSTM), backward
layer (denoted as BWLSTM), and bidirectional layer (denoted
as BLSTM). In the forward layer, each hidden layer connects
to the following time period, while the backward layer’s hidden
layer connects to the previous time period. The bidirectional
layer combines both backward and forward layers, propagating
information not only from the past but also from the future.

The output from the last convolution layer is reshaped to
a sequence of vectors before feeding into the LSTM layer and
each vector represents the feature extracted for the correspond-
ing time step. For FWLSTM and BWLSTM, 256 hidden nodes
are used and the output of the final time step is passed to the
fully connected layer. BLSTM concatenates the outputs of the
final steps for both forward and backward directions and passes
it to the next layer, as illustrated in Figure 2 (left).

2.3. Attention-based neural network model

For the proposed CLDNN model, the LSTM layer only passes
the output of the final time step to the fully connected layer for
classification, which summarizes all the previous time steps’

Figure 2: Standard BLSTM layer (Left), attention-based
BLSTM layer (right)

information. However, humans usually discriminate acoustic
scenes by some specific events which correspond to certain im-
portant time steps. For example, when we need to tell whether a
scene is in a restaurant or not, the impact sound between dishes
and people chatting play an important role; when we recognize
a scene in a park, we may focus more on bird sounds. Therefore,
in this paper, we introduce a novel attention mechanism, which
can automatically predict the importance of each time step and
improve acoustic scene classification.

2.3.1. Mathematical representation of attention mechanism

Let h(t) denotes the hidden state of each LSTM time step
with length T and we design a mapping function f(.), which
uses the hidden states to predict an attention score/weight watt

for each time step; the final output Oatt is the normalized
weighted sum of all the hidden states as shown in Figure 2
(right). Equations.1-3 show the mathematical implementation
of the attention mechanism. The softmax function is used to
normalize the score, and it also presents a probabilistic inter-
pretation of the attention scores.

watt = f(h(t)) (1)
wattnorm = softmax(watt) (2)

Oatt =

T∑
t=1

h(t) ∗ wattnorm(t) (3)

The key of this attention mechanism is to train a proper
mapping function f(.), such that we can get reasonable atten-
tion scores from the hidden states. In this paper, we investigate
two mapping strategies with a specific mapping function. For
mapping strategies, firstly, we use each hidden state to predict
its own weight, which is a one-to-one mapping; secondly, all
the hidden states are used together to predict all the weights for
each time step, which is an all-to-all mapping. For the choice of
mapping function, a shallow neural network with a single fully
connected layer and a linear output layer is adopted.

Note that, in the BLSTM condition, the hidden states of
the same time step from both forward and backward directions,
need to be concatenated to represent h(t).

2.4. Combination of the attention model and standard
LSTM models

The LSTM model uses the output from the final time step as a
summary information of the whole sequence, which has a long
memory for previous time steps. The attention model tries to
find the most important time steps in the sequence. Both the



LSTM and attention models have advantages for specific scenes
and they get information from different views of the sequence.
Therefore, we also want to investigate the combination of these
two models.

We propose three-stage ensemble methods, which are early
stage, middle stage, and late fusion. For early stage combina-
tion, we concatenate the LSTM output of the final time step
with the attention output, then the combined output is passed to
the fully connected layer. For the middle stage combination, the
outputs of the fully connected layer from both models are con-
catenated, and then the combined output is passed to the soft-
max layer. For late fusion, the output of the softmax layer from
both models are linearly combined to make a final decision and
the combination weights are jointly train with neural networks.
For the combined model training, the weights and biases be-
fore the concatenation layer are initialized with the pre-trained
LSTM and attention models.

3. Evaluation setup
3.1. Dataset and evaluation protocol

To evaluate the performance of the proposed methods, we use
the TUT acoustic scenes classification 2016 dataset (DCASE)
which consists of recordings from 15 different acoustic scenes
[18]. There are 78 audio segments for each scene, which are
30s-long each and recorded with a 44100Hz sampling rate. The
organizer provided a 4-fold cross validation setting to test the
generalization of the algorithm, which guarantees that all audio
files recorded in the same location are on the same side of eval-
uation. For each fold, around 880 segments are used for training
and 290 are used for testing, and classes are evenly distributed in
both the training and testing data. Since our goal is to improve
scene classification accuracy using short-duration segments, we
truncate each of the 30s-segment into 6s continuous audio files.
In order to get more training data, we apply small shifts to the
recordings. In the end, in each fold we have around 1 million
6s-segments for training and 340k 6s-segments for testing.

3.2. Neural network training

The proposed CNNs, CLDNNs, and attention models are eval-
uated and compared. All neural networks are trained using the
Adam optimization strategy [19] with cross-entropy criterion
and a scheduled learning rate starting from 0.005. The networks
are initialized with Gaussian random normal distributed weights
with std equaling 0.05. The sigmoid activation function is used
for all the layers. The shuffling mechanism is applied on each
epoch. CNN and CLDNN models are trained from scratch. The
attention model is initialized using the pre-trained CLDNN pa-
rameters of the first 3 layers (2 conv and 1 LSTM), and only
the attention, fully-connected and softmax layers are trained.
The shallow attention neural network is jointly trained with
the whole network structures. For the combined models, the
weights of the pre-trained CLDNNs and attention models are
used to initialize the layers before the concatenation layer, and
only the layers after the concatenation layer are trained. The
Tensorflow toolkit is used here for neural network training [20].

4. Results and analysis
4.1. Comparison of CNNs and CLDNNs

First, we establish a comparison of the CNNs and proposed
CLDNN model. For the CLDNNs, we compare FWLSTM,

Table 1: Classification accuracy (%) of CNNs and CLDNNs

Neural Networks Architectures Accuracy
CNNs 73.95

CLDNNs (FWLSTM) 73.86
CLDNNs (BWLSTM) 72.48
CLDNNs (BLSTM) 74.48

Table 2: Classification accuracy (%) of CBLDNNs and
different attention models

Neural Networks Architectures Accuracy
CBLDNNs 74.48

CBLDNNs, attfc, attone 73.31
CBLDNNs, attfc, attall 74.90

BWLSTM, and BLSTM layers. Table 1 shows the results of the
four different neural network structures. From the results we
can see that CNNs and CLDNNs with the FWLSTM layer have
similar performance, which is much better than CLDNNs with
the BWLSTM layer. This may indicate that when modeling the
audio sequence for an acoustic scene using LSTM, the direc-
tion of the sequence is important. Moreover, the convolution
layers are reasonably good for frequency and time feature ex-
traction and modeling. The combination of the final outputs of
the forward and backward LSTMs, which is the BLSTM case,
gives performance improvement compared with CNNs. The
combined information from both directions give complemen-
tary and more complete information about the audio sequence.
From now on, we use CLDNNs with the BLSTM layer (de-
noted as CBLDNNs) as our new strong baseline to investigate
the attention mechanism.

4.2. Comparison of CBLDNNs and attention model

In this section, we apply the attention mechanism on the
BLSTM layer. Note that, for CBLDNNs, the BLSTM layer
concatenates the final outputs from both forward and backward
directions. However, as mentioned in Section 2.3.1, the hidden
states h(t) of the BLSTM layer used for the attention mecha-
nism, is the concatenation of the hidden states from both direc-
tions for the same time step. Therefore, h(t) will have informa-
tion passed from both directions and also show more informa-
tion of the current time step.

We use a shallow fully connected neural network with one
hidden layer (denoted at attfc ) to represent the mapping func-
tion f(.). There are 1024 units for the hidden layer. We de-
note the one-to-one mapping between hidden states and atten-
tion weights as attone, and the all-to-all mapping as attall. The
results can be seen in Table 2. The one-to-one mapping gives
worse performance compared with standard CBLDNNs, which
indicates that it’s difficult to learn the mapping using only local
information due to large variations. As expected the att-to-all
mapping gives improvement compared with the strong baseline,
and it shows that using global information to predict the atten-
tion scores is feasible.

Moreover, for the performances of each class, the attention
model and standard CBLDNN model have quite different be-
haviors. For some scene classes, like restaurants, the attention
model is more useful since certain time steps are more impor-
tant than others; while for some other scenes, it is better to use



Table 3: Classification accuracy (%) of CBLDNNs, attention
model and 3 combined models

Neural Networks Architectures Accuracy
CBLDNNs 74.48

CBLDNNs, attfc, attall 74.90
combinationearly stage 76.19
combinationmid stage 75.33
combinationlate fusion 75.52

the overall information of the whole time sequence to make de-
cisions. Therefore, it is natural to expect that by combining the
attention-based information with the LSTM final summariza-
tion information, we should get better performance due to the
complementary nature of the two models.

4.3. Comparison of different combination methods for
standard CBLDNNs and attention models

In this section, we will combine the attention model with
the CBLDNNs. We denote the three combination meth-
ods described in Section 2.4 as combinationearly stage,
combinationmid stage and combinationlate fusion respec-
tively. The performances of the different combined models are
summarized in Table 3. The results show significant improve-
ment using the combined models compared with the standard
CBLDNNs and attention model, which proves the complemen-
tary information provided by the two models. Moreover, the
early stage concatenation of the BLSTM and attention outputs
gives the best performance compared with the combination of
the outputs from the fully connected layer and the score level
fusion. The reason may be that by combining the two models
in the early stage, the joint fully connected layer and softmax
layer can better transform the combined features into a space
that makes the output easier to classify.

4.4. Analysis of learned attention weights

It is interesting to investigate the attention scores predicted by
the proposed attention model under the CBLDNN architecture.
We select several 6s audio segments from the test dataset, which
are recorded in a cafe/restaurant and a park respectively. We
show the 2D feature maps with the time aligned attention scores
for each of the segment in Figures 3 and 4.

Figure 3 shows an audio segment recorded in
cafe/restaurant condition. The bottom figure is the mel-
filterbank features along time stamps, and the upper figure is
the predicted attention scores from the attention model. Since
we have 75 attention scores corresponding to each LSTM
hidden state, we stretch the upper figure to align with the 300
frames of the mel-filterbank features in the bottom. We can see
from the figures that there are 2 significant high scores at time
stamps around #10 and #150 frames. Based on what we listen
to in the audio file and observe from the feature map, there are
clear impact sounds of dishes around those two time stamps. It
appears that the attention model is trained to pay more attention
to the impact sounds for the cafe/restaurant scene. Moreover,
we can see that the attention model only gives higher scores
when acoustic events occur, like when people are talking.

We then show an audio segment recorded in a park in Figure
4. Despite the relative strong constant noise in this segment, a
significant high score is predicted around frame #55, where a
clear bird sound can be observed.

Figure 3: The mel-filterbank features with time-aligned
attention scores for the sample segment recorded in a

cafe/restaurant

Figure 4: The mel-filterbank features with time-aligned
attention scores for the sample segment recorded in a park

Another interesting phenomenon we observed is that, when
we compare attention scores generated by attention-based
CLDNNs with forward LSTM layer and bidirectional LSTM
layer, the scores sometimes tend to be higher for the last sev-
eral time steps for forward LSTM condition and more balanced
for the bidirectional LSTM condition. This may be because
each concatenated hidden state for BLSTM contains summaries
for both previous and future information, which makes each
time stamp more balanced and helps to predict better attention
weights.

5. Conclusions
In this paper, we present a unified neural network struc-
ture CLDNNs for short-duration acoustic scene classification.
Based-on the CLDNN framework, a novel attention mechanism
is proposed and applied to the LSTM layer in order to predict
the importance of each time stamp. We show that CLDNNs
with a bidirectional LSTM perform better than conventional
neural network structures. By combining the attention model
output with the BLSTM final output, significant improvement
can be achieved, due to the complementary information pro-
vided by the two models.
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