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Abstract: This letter investigates the use of subglottal resonances (SGRs) for
noise-robust speaker identification (SID). It is motivated by the speaker speci-
ficity and stationarity of subglottal acoustics, and the development of noise-
robust SGR estimation algorithms which are reliable at low SNRs for large
datasets. A two-stage framework is proposed which combines the SGRs with
different cepstral features. The cepstral features are used in the first stage to
reduce the number of target speakers for a test utterance, and then SGRs are
used as complementary second-stage features to conduct identification. Exper-
iments with the TIMIT and NIST 2008 databases show that SGRs, when used
in conjunction with PNCCs and LPCCs, can improve the performance signif-
icantly (2-6% absolute accuracy improvement) across all noise conditions in
mismatched situations.

PACS numbers: xxxxxx

1. Introduction

Robustness of automatic speaker identification (SID) is important for real-world situations. Re-
search has shown that SID systems achieve high accuracy in clean matched conditions, but the per-
formance decreases dramatically for noisy and mismatched conditions (clean training) Reynolds
(1994); Zhao (2012); Liu (2012). Mel-frequency cepstral coefficients (MFCCs), which are com-
puted by using a mel-scaled filter-bank, are commonly used features for clean speech SID. However
MFCCs are sensitive to noise and the performance degrades significantly in noisy conditions.

In this letter, we investigate the utility of noise-robust subglottal features (capturing the
acoustics of the trachea-bronchial airways) for noise robust SID. Since MFCCs are not reliable
for SID under noisy conditions, two noise-robust features: high order linear prediction cepstral
coefficients (LPCCs) Reynolds (1994) and power-normalized cepstral coefficients (PNCCs) Kim
(2012) are used as the SID baseline. High order LPCCs represent the smoothed spectrum which is
more robust to noise and also keeps speaker specific information; PNCCs use a power-law nonlin-
earity to suppress small signals, a noise-suppression algorithm based on asymmetric filtering that
suppresses background excitation, and a module that models temporal masking. The utility of the
noise robust subglottal features SGRs in conjunction with PNCCs and LPCCs for SID are studied for
two models: Gaussian mixture models adapted from universal background models (UBM-GMM)
Reynolds (1995) and i-vector/probabilistic linear discriminate analysis (PLDA) framework Dehak
(2011); Prince (2007).

We studied the characteristics of SGRs by manually analyzing accelerometer recordings of
subglottal acoustics. An automatic algorithm was developed to estimate SGRs from speech signals
based on the property that SGRs form the boundary for the front/back and high/low vowel space
relative to their relationship with the formant frequencies Lulich (2010).

The reasons for the interest in using SGRs as noise robust SID features are as follows. First,
the subglottal acoustics are speaker specific owing to some extent to their dependence on body
height. We found speech-based SGRs estimates to be effective for speaker height estimation Ar-
sikere (2013a) and adaptation Arsikere (2013b); Guo (2015). Secondly, the spectral character-
istics of subglottal acoustics are much less variable than the spectral characteristics of the corre-
sponding speech signal for a given speaker. The stationary nature can be beneficial especially for
limited data and short utterances, which can alleviate the mismatch between training and test-
ing utterances Guo (2016). Thirdly, previous research has shown that the estimation algorithm
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of the SGRs is reliable down to 0dB SNR Arsikere (2013a). Finally, while the majority of front-
end features are related to the supraglottal acoustics, the subglottal features can complement the
supraglottal features for SID.

In this letter, we propose a two-stage framework, using LPCCs or PNCCs to reduce the num-
ber of target speakers to top N for a given test utterance first and then using SGRs as the comple-
mentary features to conduct identification within these N speakers. We evaluate our approach on
TIMIT and NIST 2008 databases and show that SGRs offer great complementary information to
the baseline systems.

2. Proposed Framework

We propose a two-stage framework to fuse the information provided by SGRs and cepstral features.

Fig. 1. System Flow Chart.

During the first stage of the proposed system, we use the cepstral features (PNCC&LPCC)
as the front-end feature to find the top N most likely speaker models for a test utterance. Within
these N speakers, the SGRs are used as new features in the second stage. A multilayer perception
(MLP) model (feedforward neural network) is used as the classifier to generate new scores for
these N speakers with respect to the corresponding test utterance. The cepstral and SGRs scores
of the N speakers are then combined in a weighted fashion and the combined scores are used to
make the final decision. An overview of the proposed framework is presented in Figure 1 and the
implementation details are provided in Section 4.

This two-stage method is adopted here for several reasons. First, since SGRs have negative
correlation with speaker height, speakers similar in height might have similar SGRs. Using SGRs to
perform identification tasks among a large number of speakers may not be discriminative enough.
Pilot experiments showed that, when combining two systems trained using PNCC/LPCC and SGRs
individually for all speakers, performance improvement is not significant. However, reducing the
number of target speakers to a small number, N, may help SGRs to better discriminate speakers
and give useful complimentary information. Furthermore, compared with the traditional single
stage combination of two individual systems, the proposed two-stage framework can reduce the
latency by limiting the number of evaluation targets in the second stage.

3. SGR Estimation

3.1. Estimation Algorithm
The SGR estimation algorithm follows the algorithm proposed in Arsikere (2013a). The algorithm
is based on the following idea: Sg1 acts as a boundary between high and low vowels so that
two acoustic features characterizing vowel frontness - the Bark difference between F3 and F1
(denoted as B31 ) and the Bark difference between F1 and Sg1 (denoted as B1,s1 ) - are correlated.
Similarly, for Sg2 estimation, the Bark difference between F3 and F2 (denoted as B32 ) was found
to be related to the bark difference between F2 and Sg2 (denoted as B2,s2), since both measures
characterize vowel backness. Two empirical equations were derived to predict B1,s1 and B2,s2

using regression models as in Eq.1 and Eq.2. Sg3 is estimated based on its correlation with Sg2
using a first-order linear regression, as in Eq.3.

B1,s1 = 0.011(B31)
3 − 0.269(B31)

2 + 1.322(B31) + 2.455. (1)

B2,s2 = −0.004(B32)
3 + 0.134(B32)

2 − 1.958(B32) + 6.182. (2)

Sg3 = 1.079 ∗ Sg2 + 763.676 (3)
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Fig. 2. SGR Estimation for Speaker 160 (left) and Speaker 600 (right) (The x-axis indicates noise
conditions: 1, clean; 2- 5, Babble 5/10/15/20dB; 6-9, Factory1 5/10/15/20dB; and 10-13, Pink
5/10/15/20dB.)

Given a speech utterance, the first 3 formants of the voiced frames are estimated using S-
NACK and voiced activity detection. The three SGRs can then be estimated using the above empir-
ical relations. Note that formant values used in the equations are in the Bark scale. Since Sg1 and
Sg2 act as boundaries in the vowel space, estimation results are expected to be largely phoneme
independent Arsikere (2013a). For noise-robust SGR estimation, what we need is to make the esti-
mation of noisy-speech formants be reasonably close to the corresponding clean-speech formants,
even though the absolute values of the estimated formants are not very accurate. In general, S-
NACK’s estimates of formants between clean and noisy speech were found to be close in voiced
regions even for low local SNRs Sjolander (2004). Therefore, the proposed SGR estimation algo-
rithm is expected to be noise robust.

3.2. Results
Three additive noises (i.e., babble, factory, and pink) collected from the NOISEX-92 database were
used for representing different noise conditions. The speech segment was degraded by adding a
specific type of noise at SNRs of 5, 10, 15, 20 dB, respectively, using FaNT Hirsch (2005).

SGRs for all 630 Speakers in TIMIT are estimated based on one clean utterance per speaker,
as well as the same utterance with additive noise of different SNRs. Two speakers (denoted as
Speaker 160 and 600) are selected to show the effectiveness of the estimation algorithm. Figure
2 illustrates the comparison of estimated SGRs across all the frames for a selected clean utterance
and 12 different noise/SNR combinations for two speakers(1 female and 1 male). The x-axis in-
dicates noise conditions: 1, clean; 2-5, Babble 5/10/15/20dB; 6-9, Factory1 5/10/15/20dB; and
10-13, Pink 5/10/15/20dB. Each symbol represents the mean value of each SGR estimate given a
noise condition. The bars correspond to the standard deviation (STD) of each estimate. The mean-
s of the estimated SGRs for different conditions are similar, and this implies that the estimated
SGRs are fairly constant across all test noise conditions. The narrow STD intervals indicate that,
given a noise condition, the estimation algorithm is quite noise robust. Moreover, comparing the 2
speakers in Figure 2, it is clear that their estimated SGRs are distinctly different.

To further quantify the SGR estimation accuracy for all speakers, the average root mean
square error (denoted as RMSEavg) is used, which measures the differences between the SGRs
estimated from the clean and corresponding noisy utterances. Table 1 shows the RMSEavg of the
averaged SGR estimates under all noise types compared to clean for a given SNR. As expected,
the RMSE of SGRs is fairly small even for low SNRs. Table 2 also demonstrates that the overall
RMSEavg across all SNRs is small for a given noise type and the estimation error for the babble
noise case is smaller than factory and pink noise. The results confirm the robustness of the SGR
estimation algorithm on a large SID data set. Similarly, the experiment on NIST SRE08 yields sim-
ilar results, which shows relatively small estimation errors between clean and corresponding noisy
conditions. Thus, it is beneficial to incorporate the SGRs for noise robust speaker identification
tasks.

J. Acoust. Soc. Am, March 2017 Jinxi Guo et al.: Robust speaker identification using subglottal resonances



Jinxi Guo et al.: JASA Express Letters page 4 of 6 Jinxi Guo, JASA-EL

Table 1. Overall RMSE (in Hz) of SGRs under several SNRs (TIMIT).

5dB 10dB 15dB 20dB

SGR1 41.0753 30.0358 20.3100 11.6578
SGR2 77.8863 58.1728 40.9838 25.5018
SGR3 83.7503 62.4795 42.8535 27.2275

Table 2. Overall RMSE (in Hz) of SGRs under several noise types (TIMIT).

Babble Factory1 Pink

SGR1 19.3118 25.4771 31.9324
SGR2 37.5271 49.8199 63.0521
SGR3 40.4917 53.7557 68.0332

4. SID Experiments and Results

All experiments were conducted under mismatched conditions with clean training utterances eval-
uated against noisy test utterances.

The TIMIT SID acoustic models are UBM GMMs Reynolds (1995). Since TIMIT only has files
with very short utterances, the UBM GMM framework is used here. On the other hand, the state
of the art i-vector/PLDA model is used on the NIST08 dataset. Given the enrollment data, speech
segments are first detected using a statistic-based voiced activity detection (VAD) algorithm Sohn
(1999) to discard non-speech frames. In total four front-end features are extracted: LPCCs, PNCCs,
SGRs, and MFCCs. For MFCCs and PNCCs, we use the first 20 coefficients and their first- and
second- order derivatives, resulting in 60-dimensional features. For LPCCs, the first 24 coefficients
are used for our experiment (adding derivatives did not result in improvement). Note that all
the cepstral features are computed for all speech frames whereas SGRs are computed for voiced
frames, only.

Given a test utterance, the cepstral features and SGRs are computed as described above.
The cepstral features are scored with their respective models. The scores are log likelihoods and
are normalized using Sinorm = Si−Smin

Smax−Smin
. The top N highest scoring speakers are selected for the

test utterance. The selected top N scores are further normalized to a score between 0 and 1(by
dividing by the sum of the scores). For these N speakers, SGRs are used as the new features and
MLP as the new classifier. One hidden layer with sigmoid activation function is used for training,
and the softmax function is adopted to get the normalized scores from the output layer. The scores
from the two stages are combined in a weighted fashion, and the weights are two positive scalars
and summed up to one. Weights are determined empirically across the whole test set such that the
highest accuracy is achieved. The combined scores are used to make a decision. Note that, since
the training of the shallow neural network model (MLP) for the selected N speakers using 3 SGRs
is very time-efficient, for online testing in real applications, the MLP can be trained online after the
top N candidates are selected from the pre-trained first-stage model.

4.1. SID on TIMIT database
TIMIT consists of 10 utterances spoken by 630 speakers, with a sampling rate 16kHz Garofolo
(1988). The average utterance length is around 3 seconds. One of the 10 utterances is used as the
test trial for each speaker and the remaining 9 sentences are used for acoustic modeling. Cepstral
features are modeled with 128-component GMMs. SID performance is evaluated in 12 different
SNR conditions. The number of speakers, N, chosen for the second stage is set to 3, 5 and 10. Pilot
results indicated that there is no significant advantage using a larger N. Therefore we set N to 3 for
fast training and testing; evaluation results are shown in Table 3. Table 3 shows the SID results for
the MFCC, PNCC, LPCC baseline systems and PNCC+SGRs, LPCC+SGRs combined systems with
best weights. The percentage of the predication accuracy for SID is used as the metric. Since the
MFCC baseline was low in noisy conditions, we didn’t evaluate it with SGRs. The combined feature
systems perform the best across all noise conditions, and gives relatively bigger improvement for
pink, factory and low-SNR babble noise. Figure 3 shows the weight ratios of SGRs across SNRs for
pink noise, when combining with LPCCs. SGR weights increase as SNR decreases, which indicates
that SGRs are more effective in low-SNR.
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Table 3. SID accuracies(%) under different noise and SNR combinations for TIMIT (boldface
numbers indicate best results).

MFCC PNCC LPCC PNCC+SGRs LPCC+SGRs

Babble
5dB 46.7 53.5 64.7 56.4 70.8
10dB 85.2 80.6 93 82.4 94.1
15dB 95.7 89.8 98 92.0 98.4
20dB 97.7 91.7 99.2 92.4 99.3

Factory
5dB 14.3 24 23.1 30 27.8
10dB 41.9 59.3 56.6 63.4 60.5
15dB 73.8 83.6 81.9 84.7 86.9
20dB 92.5 91.4 95.8 92.4 97.3
Pink
5dB 4.6 18.9 7.4 22.1 10.9
10dB 17 34.7 26.1 39.9 31.6
15dB 42.4 57.9 52.8 61.3 59.7
20dB 71.9 80.6 78.8 83.2 85.2

Fig. 3. SGR ratio across SNRs for pink noise.

4.2. SID on NIST 2008 database
NIST 2008 data is widely used for evaluating speaker verification (SV) algorithms Martin (2009).
Compared with TIMIT, it has higher speaker and channel variability. Note that unlike the standard
SV task, in this letter we only focus on the SID task and demonstrate the efficacy of the SGRs in
the presence of larger speaker and channel variability. Therefore, we randomly chose 947 speakers
from the evaluation dataset (3conv part of the training set). Each speaker participates in three
telephone conversations. For each utterance in the telephone conversations (approximately 5 min-
utes long), a 10sec segment is extracted as the test utterance and the remaining part is used for
training the speaker model.

Since our experiment is only concerned with the closed-set SID task, the training data can
be used to set up the i-vector/PLDA system. A gender independent UBM of 1024 GMM components
was built. A total variability matrix T of 400 factors was used and the dimension of the resultant
i-vector was further reduced via PLDA modeling with 200 latent components.

Table 4 summarizes the results for the performance of the proposed combined features
system and the baselines. The baseline for 20 dB SNR and matched clean conditions are above
98% and the improvement is small; we show results for 5/10/15dB here. Similar to the TIMIT
experiment, the combined features system outperforms the other baselines in all noise conditions,
which shows the significant complementary effect for SGRs to the baseline cepstral features. The
best SGR weights for the combined systems also increase for low-SNR condition.

To further analyze how SGRs help improve the SID accuracy, we check the top 3 cepstral
scores for the clean test utterances and the corresponding noisy utterances. As expected, the scores
for noisy data are not prominent for certain speaker, since cepstral features tend to be suboptimal
in the presence of noise, which leads to greater confusion among acoustically-similar speakers.
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Since the SGRs are more noise robust and speaker specific, when we fuse the cepstral score with
scores from SGRs, the fused scores become more prominent for the target speaker, which indicates
that the SGRs actually help the decision making.

Another reason why using SGRs give improvement to the SID system is that, since SGRs are
more stationary compared with standard cepstral features which represent the vocal tract infor-
mation, it can help to alleviate the phoneme mismatch problem between train and test utterances
when only short utterances are available (e.g. 10 seconds).

Table 4. SID accuracies (%) under different noise and SNR combinations for NIST SRE 08
(boldface numbers indicate best results).

MFCC PNCC LPCC PNCC+SGRs LPCC+SGRs

Babble
5dB 16.6 46.2 37.9 50.6 43.6
10dB 45.7 76.1 70.3 80.5 76.5
15dB 75.0 89.8 90.5 92.0 92.8

Factory
5dB 20.5 44.5 40.5 49.6 46.1
10dB 54.9 75.2 74.3 79.4 78.2
15dB 84.3 89.6 93.9 91.4 95.2
Pink
5dB 17.6 47.7 24.0 53.2 30
10dB 53.7 77.8 63.3 81.4 68.2
15dB 85.2 90.7 89.5 92.8 91.1

5. Conclusions

In this letter, a two-stage noise robust speaker identification system is proposed to demonstrate the
efficacy of the SGRs as complementary noise-robust features. SID experiments on TIMIT and NIST
2008 database demonstrates that SGRs can provide complimentary speaker information to noise
robust features, such as PNCCs and LPCCs.
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