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Automatic speech recognition (ASR) systems have improved significantly in the last decade

due to advances in deep learning algorithms and easier access to very large databases. ASR

systems, however, face two major challenges. The first challenge is in low-resource situations,

such as child speech, where the accuracy degrades significantly, and the second challenge con-

cerns low inference efficiency due to the autoregressive mechanism and size of ASR models.

In this dissertation, we address these challenges by introducing novel techniques to improve

the accuracy and the inference efficiency for ASR tasks, especially child ASR.

To address the accuracy challenge, we introduce novel self-supervised learning (SSL)

methods using un-annotated adult speech data and explore how these methods can im-

prove the downstream child ASR tasks. Specifically, a bidirectional autoregressive predictive

coding (Bi-APC) method is proposed for non-causal models pretraining with the usage of

adult speech data. The pretrained model is then finetuned on supervised child speech-text

pairs. We also propose a novel framework, domain responsible adaptation and finetuning

(DRAFT), to reduce the domain shifting in pretrained speech models. The DRAFT frame-

work is effective for APC that uses a causal transformer as the backbone, and for Bi-APC,

Wav2vec2.0 and HuBERT methods, which use a non-causal transformer as the backbone.
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To address the inference efficiency challenge, we introduce a novel Connectionist Tem-

poral Classification (CTC) Alignment-based Single-Step Non-Autoregressive Transformer

(CASS-NAT) for end-to-end ASR. A comprehensive evaluation of CASS-NAT is performed

in this dissertation. In CASS-NAT, the word embeddings in an autoregressive transformer

(AT) are substituted with token-level acoustic embeddings (TAE) that are extracted based

on the encoder outputs and CTC alignments. TAE can be obtained simultaneously without

recurrent operations, leading to a parallel generation of output sequences. In addition, an

error-based alignment sampling method is proposed to reduce alignment mismatch between

the training and inference. CASS-NAT achieves ∼20x speed up during inference without

significant performance degradation compared to AT. We also propose a CASS-NAT variant

(UniEnc-CASSNAT) that consists of only an encoder module. Together with the proposed

multi-pass CTC training and iterative decoding, UniEnc-CASSNAT can perform as well as

CASS-NAT with fewer model parameters.

Beyond these two challenges, and in order to facilitate the development of better child

ASR, we build the first child ASR benchmark for the research community. The benchmark

includes comparisons of widely-used techniques for ASR such as data augmentation, pa-

rameter efficient finetuning (PEFT), self-supervised (HuBERT and WavLM) and supervised

models (such as Whisper). All codes developed in this dissertation will be available.
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CHAPTER 1

Introduction

1.1 Motivation

In the last decade, automatic speech recognition (ASR) systems have evolved rapidly from

hybrid to end-to-end models1. The technical evolution largely benefits from the increase in

computational power and the collection of large-scale supervised databases. For example,

end-to-end models typically require tens of thousands of hours of speech-text pairs to perform

better than hybrid models [CSW18]. In other words, when large amounts of speech databases

are not available, the performance of end-to-end ASR models might degrade significantly.

Child speech falls into this category because of the difficulty of collecting speech-text pair

data due to privacy and logistical issues. Additionally, the attention-based encoder decoder

model (AED) [CSW18], one of the most popular end-to-end models, adopts an autoregressive

mechanism for transcription generation, where each generated token is conditioned on all

previous tokens, following the Markov assumption. However, such a mechanism slows down

the inference speed, aka. real time factor (RTF), which is an essential metric for designing

efficient ASR systems.

With the increasing use of voice-based educational technology, better child ASR systems

are needed because speech is one of the only mechanisms young children have to interact with

such devices due to their limited reading, writing, and typing abilities. However, child ASR

is difficult due to, in part, the lack of large child speech databases, and can be treated as a

low-resource task. The larger inter- and intra-speaker variability in child speech, compared to

1Hybrid models indicate the combination of a deep neural network-based acoustic model and Hidden
Markov Model (HMM). End-to-end models are one single neural network to jointly optimize the acoustic,
pronunciation, and language models.

1



adults, makes child ASR even more challenging and unique compared to other low-resource

tasks. In addition, on-device deployment of an ASR system is becoming necessary for children

because of privacy issues and accessibility. Decoding efficiency is one of the most important

factors to make system deployment on chips feasible. The AED model might not be suitable

in this case because of the autoregressive generation mechanism.

In this dissertation, we aim to address the above issues from two directions: a) improving

the accuracy of a child ASR system by mitigating the data scarcity issue; and b) improv-

ing the inference efficiency of a child ASR system by proposing a novel non-autoregressive

transformer framework. The proposed methods are eventually combined to achieve a good-

performing ASR system for child speech in terms of both accuracy and efficiency. Moreover,

child ASR is always lacking a benchmark for fair comparisons with different methods. To

reduce this gap, we benchmark the widely used open-sourced speech foundation models to

date and compare their performance on multiple child speech datasets. Other topics such as

data augmentation and parameter efficient finetuning are also discussed in the benchmark.

We hope the benchmark and the released code can facilitate the development of robust child

ASR.

We will briefly introduce the related techniques in this chapter, including ASR models

overview, self-supervised learning methods and non-autoregressive mechanisms.

1.2 Automatic Speech Recognition

Automatic Speech Recognition (ASR) transcribes human speech waveform with word se-

quences. Suppose the input speech is represented by X = {x1, x2, ..., xT}, ASR systems

attempt to find the most probable word sequence Y for P (Y |X).

Ŷ = argmax
Y

P (Y |X) (1.1)

The pipeline of widely used ASR systems is shown in Figure 1.1. Typically, the input speech is

first passed through a feature extractor to generate acoustic features, such as MFCC and log-

mel filter-bank. The extracted features are used by ASR models for sequence classification.
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Acoustic
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Language
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(CTC, AED, Transducer)

Output
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Figure 1.1: The pipeline of widely used ASR systems including hybrid model, Connectionist

Temporal Classification (CTC), Attention-based Encoder Decoder(AED), and Transducer

Model.

We will briefly introduce the relevant techniques to this section.

1.2.1 Hybrid and End-to-end Models

The earliest large-scale continuous ASR system is the HMM-GMM system [JR85]. In HMM-

GMM, acoustic statistics of the input speech features are modelled by a Gaussian Mixture

Model (GMM) conditioned on the spoken sound units, which are usually represented by

states in the Hidden Markov Model (HMM). This statistical model is also known as the

acoustic model (AM). After acoustic modeling, the HMM states are merged to a phoneme

sequence through the decision tree and then to a word sequence through the lexicon (also

known as pronunciation model, PM) that contains the mapping between word and phoneme

sequence. The language model (LM) (typically n-gram models in the HMM system) is finally

integrated into a decoding graph (known as Weighted Finite State Transducer, WFST)

with the acoustic model score. The most probable word sequence is obtained by searching

the WFST using dynamic programming algorithms. Formally, the posterior probability

P (Y |X) can be decomposed into two terms using Bayes Rule, represented by the acoustic

and language model, respectively.
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Ŷ = argmax
Y

PAM(X|Y )PLM(Y ) (1.2)

In HMM-GMM systems, GMM outputs frame-level conditional probability P (xt|st) and

the HMM maintains sequential properties of the speech signal by constructing transition

probabilities between HMM states P (st|st−1). This process can be described as follows:

PX|Y =
∑
S

P (X,S|Y )

=
∑
S

P (X|S,Y )P (S|Y )

=
∑
S

∏
t

P (xt|st)P (st|st−1)P (S|Y )

(1.3)

where P (S|Y ) indicates the relations between the word sequence and the HMM state se-

quence , and is represented by the pronunciation model and decision tree.

With the development of deep neural networks, the acoustic model is found to perform

better by using neural network models, e.g. a Deep Neural Network (DNN), Convolutional

Neural Network (CNN), or Recurrent Neural Network (RNN). Such systems are known

as hybrid models. Mathematically, the statistical modeling of P (xt|st) is replaced with a

discriminative model that directly output the categorical distribution across all HMM states

given the speech features as input, described as:

P (xt|st) =
P (st|xt)P (xt)

P (st)
(1.4)

where P (st|xt) = NN(xt), which is the neural network output.

More recently, it is shown that with enough training data, the components (AM, PM,

and LM) in the hybrid model can be reduced to an end-to-end model, which directly models

the posterior probability P (Y |X). There are three major methods for end-to-end model-

ing, including Connectionist Temporal Classification (CTC) [GFG06], Attention-based En-

coder Decoder (AED) [CSW18] and Transducer models [Gra12]. Overall, AED is the best-

performing end-to-end model. However, CTC has the advantages of fast generation of the

entire sentence and the Transducer is suitable for the streaming use cases. We introduce

CTC and AED because they are closely related to Chapter 4.1.
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Figure 1.2: The model architecture of CTC and Attention-based Encoder Decoder (AED).

1.2.2 Connectionist Temporal Classification

End-to-end models are typically neural networks for sequential modeling such as long short-

term memory (LSTM) and the transformer, where the length of an output sequence is the

same as that of the input, as show in in Figure 1.2a. In CTC, the posterior probability

of Y given X can be computed using the output probability at each frame. Let Z =

{z1, ..., zt, ..., zT} be the output of the model, where zt stands for the output at time step

t corresponding to the input xt. The length of Z, however, is always longer than that of

Y for a speech recognition task. To compute the loss, a special blank token b is added in

the vocabulary; b can be predicted as an output of Z at any time step. During inference, b

and repeated tokens are removed to obtain a shorter sequence Y , where this process can be

defined as a mapping rule β. During training, there exist multiple Zs that can be mapped

to Y using the rule β. As a consequence, CTC loss is a summation of all such Zs, which is
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formulated as follows [GFG06]:

LCTC = − log P (Y |X) = − log
∑

Z∈β−1(Y )

P (Z|X)

= − log
∑

Z∈β−1(Y )

T∏
t=1

P (zt|X)

(1.5)

where β−1 is the inverse of the mapping rule. Note that output tokens are independent to

each other in CTC, requiring external language model to be as competitive as the hybrid

model.

1.2.3 Attention-based Encoder Decoder

To remove the output independent constraint in a CTC model, an attention-based encoder

decoder (AED) is proposed, shown in Figure 1.2b. AED [CSW18] consists of three modules:

encoder, decoder and attention. The AED encoder behaves the same as a CTC encoder

for extracting high-level acoustic representations denoted as henc. The attention module se-

lects the most relevant acoustic information in henc at each generation step u and generates

content information cu. The relevance is calculated through the similarities between the hid-

den token state hu−1 and acoustic representations. Finally, the AED decoder generates the

output sequence token by token, where each token is generated conditioned on all previous

tokens and the content information cu. This architecture design achieves sequence mod-

elling by a chain of conditional probabilities, where each conditional probability constructs a

classification problem. The AED model is trained through an objective function as follows:

LAT = − log P (Y |X) = − log
U∏
i=1

P (yi|y<i, X)

= −
U∑
i=1

log P (yi|y<i, X)

(1.6)

where P is the probability distribution of the AED model and y<i are all previous tokens

before the ith token. The alignment between input speech features and the text sequence

is implicitly modeled in the attention module. The encoder and decoder are similar to the

acoustic and language model, respectively in the hybrid systems.
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The most popular AED models are transformers [VSP17], where self-attention layers are

used in the encoder and decoder module. The attention module is achieved by cross-attention

layers where the query is token embedding and the key-value pairs are high-level acoustic

representations. Please refer [VSP17] for more details of the transformer. The query, key

and value are also introduced in Section 3.1.1.

1.2.4 Challenges for Child Speech and Corpus

Despite impressive advancement in developing automatic speech recognition (ASR) tech-

niques in the last decade, children’s ASR remains difficult. Challenges arise, in part, from

difficulties in acoustic and language modeling of child speech. Due to different growth pat-

terns of children and motor control issues, child speech has a higher degree of intra-speaker

and inter-speaker acoustic variability than adult speech [LPN99]. Additionally, child speech

is characterized by significant mispronunciations and disfluencies [YNF99,TTY20].

Another challenge is the lack of large-scale publicly-available child speech databases.

However, some smaller-scale child speech databases are available to the public. The most

common style of speech in these databases is read speech with single-word, phrase, or sentence

transcripts such as in the OGI Kids Corpus [SHC00]. While databases of spontaneous styles

of speech also exist, mispronunciations by children often make transcription unreliable or

inconsistent, both within and across databases. Databases for English speakers include

the OGI Kids’ Speech Corpus (5-16 years old) [SHC00], CMU Kids Corpus (6-11 years

old) [MJD21], PF-STAR Children’s Speech Corpus (4-13 years old) [AMS05], and My Science

Tutor (MYST, 8-10 years old) [WCP19]. However, unlike adult speech databases that have

thousands of hours of speech data, child speech databases generally have at most tens or

hundreds (less than three hundreds) of hours of speech data. Additionally, due to the lack

of child speech data, when training ASR systems using child speech databases, it is usually

necessary to consider specific tasks or applications, such as using speech data from children

in educational settings to train ASR for classroom appropriate speech technology and thus

child ASR can be treated as a low-resource task [WZF21].
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1.3 Self-supervised Learning for Speech Recognition

Recently, self-supervised learning (SSL) from speech data has been investigated [CW21,

ZPH22, WW21, CZ21, AWZ21, JL21, WTL20, LY20, LLL21] because of its great potential

of improving low-resource tasks through learning prior knowledge from large amounts of

data without annotations. SSL models can be used in two manners: 1) feature extrac-

tion to replace human-designed features [YC21, EN21, CM21]; and 2) model initialization

for finetuning downstream tasks [VMB21, MH21]. The idea of SSL is to design pseudo

tasks (with self-supervision) for training deep neural networks (DNN) and then transfer the

learned knowledge to a downstream supervised task. For example, autoregressive predic-

tive coding (APC) uses temporally-shifted sequences to perform prediction such that the

model predicts future frames from previous frames [CH19, CG20a, RF20]. Wav2vec-based

methods are implemented to include negative samples, and a contrastive loss is utilized to

increase the distance from the output to negative samples and decrease that distance to

the positive sample [OLV18, SBC19, BZM20, BSA19]. The positive sample is the frame

being masked (to be predicted), and negative samples are the unmasked frames in the

utterance. A more recent SSL framework, HuBERT [HT21, HBT21], creates the pseudo-

label of each speech frame using clustering techniques like K-means. Other variants such as

W2vBERT [CZ21], WavLM [CW21], BESTRQ [CQZ22] are proposed for learning better self-

supervised representations. These methods have been shown to be effective for low-resource

ASR tasks such as low-resource languages [RJM20, YWC20], noisy speech [WLW22] and

accented speech [LMC21].

However, a weakness of SSL training is domain shifting that happens when the domain of

the finetuning data is different than that of the pretraining data [MCL22,HS21]. Although

a performance improvement can be observed when the magnitude of the pretraining data is

large enough, previous work has shown that additional gains can be obtained by including

target domain data in the ASR pretraining stage [HS21, HMH22]. But including target

domain data would be impractical if we are not aware of the finetuning task at the pretraining

stage. In addition, retraining a large-scale SSL model with both the source and target domain
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data to address domain shifting may not always be possible or computationally efficient.

Hence, investigating adaptation methods for SSL is gaining attention for work involving out-

of-domain low-resource tasks. Previous studies proposed to perform adaptation of supervised

models either during or after the finetuning stage [KLG22,HHS21]. No additional adaptation

stage of self-supervised models has been investigated before for domain shifting in SSL

methods. We propose a novel method to the reduce the domain mismatch between the

pretraining and finetuning stage in Section 2.1.3.

1.3.1 A General Self-supervised Learning Framework

Self-supervised learning (SSL) learns useful speech representations for downstream tasks

without explicit supervision. After pretraining, the model can be used for model initialization

for downstream tasks. We summarize a general framework for various SSL methods, which

is illustrated in Figure 1.3.

Let X = (x1, ..., xi, ..., xn) denote the raw waveform of an utterance, where each xi

is a sampled data point. Self-supervised learning methods first extract representations

Z = (z1, ..., zt, ..., zT ) for each frame t using a function h, which in general can be either

a human-designed function, like an MFCC extractor [Har78], or a learned deep network,

like a convolution neural network [LB95]. There may be a special case when X represents

human-designed spectral features. Then h is the module that maps the spectral features to

latent representations for prediction. A backbone model f , parameterized with θ, is then

used to build contextualized representations. A generator g finally converts the contex-

tualized representations into a prediction space with a pre-defined dimension and outputs

Y = (y1, ..., yt, ..., yT ). An operation O over speech representation Z is designed to obtain a

pseudo-label for the task. The key idea of SSL is to construct a loss function L between O(Z)

and model output Y , ensuring that no information leaking appears in the forward compu-

tation so that trivial solutions are ignored during the optimization process. As a result, the

SSL objective function is:

LSSL = L(f(h(X)), O(h(X))) (1.7)
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Feature Extractor  

Backbone Model  

L

Generator  

Figure 1.3: Proposed self-supervised learning framework. h is a function to extract speech

representation Z. O is an operation over Z. f is the backbone model for pretraining. g is a

generator that maps the output of the backbone model to have the same dimension as O(Z)

and outputs Y . L computes the SSL loss using Y and O(Z).

We omit g for simplicity because it can be regarded as a part of f . The main differences

between various SSL methods are the definition of O for obtaining a supervision and of L

as an optimization objective.

In this section, we discuss how SSL methods can be used in our proposed framework.

These methods include autoregressive predictive coding [CH19,CG20a], Wav2vec2.0 [BZM20]

and hidden unit BERT (HuBERT) [HT21, HBT21]. Other variants are developed based on

the three models and can be adapted to the framework accordingly.

1.3.2 Autoregressive Predictive Coding

Autoregressive predictive coding (APC) uses human-designed features as model input (Z =

h(X)). Typically, 80-dimensional log-mel filter-bank features are used as Z. APC utilizes a

temporally-shifted sequence to predict the frame n steps ahead of the current frame given

all previous frames. As a consequence, the operation O with a temporal lag of n up to the

time step T − n satisfies On({z1, z2, ..., zT−n}) = {z1+n, z2+n, ..., zT}. Since Z vectors are not

latent representations in APC, the Lp norm distance can be used as the loss function. The
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final objective function is formulated as follows:

LAPC = Lp(f(Z), On(Z)) =
T−n∑
t=1

(|yt − zt+n|p) (1.8)

where n is fixed as a hyper-parameter. APC essentially adopts neural language model style

training using speech features instead of word embeddings. The mechanism is suitable for

online speech recognition model pretraining because APC considers information from only

one direction. It is, however, not suitable for bidirectional model pretraining. In this paper,

we conduct experiments to explore whether APC can be extended to bidirectional model

pretraining.

1.3.3 Wav2vec2.0

Wav2vec2.0 has evolved from contrastive predictive coding (CPC) [OLV18], Wav2vec [SBC19],

and Vq-Wav2vec [BSA19,BAM20]. We only study Wav2vec2.0 because of its better perfor-

mance.

Wav2vec2.0 uses raw waveforms as model inputs, which means h is a parameterized model

for learning feature extraction. h consists of multiple blocks of temporal convolution layers

with a total stride that decreases the sequence length from the number of sampled points

to the number of frames. Different from APC, Wav2vec2.0 adopts masked language model

(MLM) [DCL19] style training, where the backbone model f tries to reconstruct masked

speech representations. Let M be the mask operation onto speech representation Z. We

define Z1 as the original tokens that will be masked by M , and Z2 as the original tokens that

will not be masked. Then, when applying M to Z, we obtain Zmask and Zobs as the masked

and unmasked tokens. The corresponding outputs are referred to as Ymask and Yobs. Only

Ymask contributes to the loss computation. Hence, the forward computation of f could be

formulated as Ymask = f(Zmask ⊕Zobs) − Yobs. Suppose the length of the masked proportion

is U , we write Ymask as {y1mask, y
2
mask, ..., y

U
mask}. Since Z are latent representations, the

contrastive loss is preferred so that the true latent is distinguished from distractors. A vector-

quantization (vq) layer is also inserted after Z to obtain more compact representations for

supervision so that the model can learn more efficiently. The operation O can be summarized
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as O(Z) = vq(Z1) ⊕ Sample(vq(Z2)) = {(q1pos, Q
1
neg), (q

1
pos, Q

1
neg), ..., (q

U
pos, Q

U
neg)}, where qpos

is a positive sample after vq layers, and Qneg is a set for negative samples as distractors in

the contrastive loss. The objective function is formulated as:

Lwav2vec2.0 = Lctras(Ymask, O(Z))

= −
∑
u

log
exp(sim(yumask, q

u
pos))∑

quneg∈Qu
neg

exp(sim(yumask, q
u
neg))

(1.9)

where sim(a, b) is the cosine similarity between context representation Ymask and quan-

tized latent representations O(Z). There is also an additional diversity loss in Wav2vec2.0.

Since the observed sequence has information from both directions for most masked frames,

Wav2vec2.0 is suitable for bidirectional model pretraining. However, Wav2vec2.0 always

requires more training iterations than APC [HMH22]. This is because only a portion of the

frames are masked for prediction in Wav2vec2.0 and the mask regions are different each time

the sequence is trained.

1.3.4 HuBERT

Hidden unit BERT (HuBERT) uses the same masked language model style training as

Wav2vec2.0. Differently, HuBERT does not require negative samples. Instead, it intro-

duces an acoustic unit discovery process before the pretraining stage. For example, the most

useful strategy in HuBERT [HBT21] is performing K-means on MFCC features or interme-

diate model outputs to obtain a pseudo-label category for each frame. HuBERT creates a

learned embedding for each category. The embedding of the true category is equivalent to

the positive sample in Wav2vec2.0 and all other embeddings are essentially negative samples.

Thus, the operation O is an unit discovery process for HuBERT. The loss computation is

similar to the fine-tuning task. If we define O(Z) = (c1, c2, ..., cT ), where ct is the pseudo-

category for each frame, the objective function is computed as a weighted sum of both the

masked and observed output sequences.
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LHuBERT = L(Y,O(Z))

= αL(Ymask, O(Zmask)) + (1 − α)L(Yobs, O(Zobs))

= −α
∑

ct∈O(Zmask)

logP (ct|Z)−

(1 − α)
∑

ct∈O(Zobs)

logP (ct|Z)

(1.10)

where α is the task ratio. Similar to [HT21, HBT21], we use α = 1 because we directly use

the open-sourced pretrained HuBERT model [OEB19] as initialization for children’s ASR

training. More importantly, we apply the proposed domain adaptation technique on these

models to show its general effectiveness.

1.4 Non-autoregressive Transformer for Speech Recognition

End-to-end models have proven successful for speech recognition because of their ability to

include implicitly the role of the acoustic, pronunciation, and language models into one sin-

gle neural network [LWG20, Li21]. Training the above components together leads to fewer

intermediate errors and thus a lower word error rate (WER) for ASR systems. This training

mechanism also requires fewer model parameters, which is suitable for on-device deployment.

As we introduced earlier, CTC, AED and Transducers are the most widely used end-to-end

models. CTC has a high decoding efficiency when using the best path decoding strategy, but

it is restricted by its assumption of conditionally independent outputs. AED, such as the au-

toregressive transformer (AT) [VSP17,DXX18], models output dependencies by incorporat-

ing a language-model-style decoder. However, the decoding in AT adopts an autoregressive

mechanism for joint probability factorization, leading to a step-by-step generation of output

tokens as shown in Figure 1.4. Such a mechanism lowers the inference speed for ASR, which

is an essential factor when designing an efficient ASR system. Recently, non-autoregressive

mechanisms have received increasing attention for their decoding efficiency, enabled by gen-

erating output tokens in parallel [GBX18,LMC20,SCS20,QGJ21,CWV20,HWC20], as shown

in Figure 1.4.
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Autoregressive Generation

Non-autoregressive Generation

Figure 1.4: An illustration of autoregressive and non-autoregressive generation conditioned

on acoustic features X. t0 : t1 indicates the first segment of the sequence X

More formally, non-autoregressive models have no strict dependencies between tokens.

For example, CTC has a conditional independence assumption, while Mask-CTC [HWC20]

trains the decoder as a masked language model to build a weak dependency between masked

and unmasked tokens. By relaxing the dependency assumption, it is possible to generate

all tokens in parallel, and thus increase inference speed. Single-step NATs use the encoder-

decoder structure, making the output the same length as Y . The output tokens are still

conditionally independent of each other, just like the CTC. But there is an implicit assump-

tion that language semantics can be captured by high-level acoustic representations, which

are similar to word embeddings. The model is updated using a cross entropy loss for each

token, which can be formulated as:

LNAT = − log P (Y |X) = −
U∑
i=1

log P (yi|X) (1.11)

Because of the strict output dependency modeling, the performance of the autoregressive

models are theoretically the upper bound of the performance of their non-autoregressive

counterparts.
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There are two major types of non-autoregressive methods for the encoder-decoder-based

Transformers (NAT): (i) iterative NATs, and (ii) single-step NATs or one-shot NATs. The

prevailing iterative NATs relax the strict non-autoregressive condition and iteratively gener-

ate outputs with K decoding passes. Thus, iterative NATs are sometimes called “semi-NAT”.

Single-step NATs, however, can generate the output sequence in one iteration. Different from

the methods in neural machine translation that extend encoder input as the decoder input,

single-step NATs for speech recognition extract high-level acoustic representations as the

decoder input, assuming that language semantics can be captured by the acoustic represen-

tations [BYT21, TYT20, YLG21]. As shown in Figure 1.4, the frame-level acoustic features

are processed into higher level token-level acoustic representations using additional segment

information. However, the acoustic representations in previous works are either implicit,

extracted by an attention mechanism [BYT21] or incomplete usage of CTC spikes [TYT20],

which make learning language semantics difficult. In Chapter 3, we propose a novel CTC-

alignment based NAT model (CASS-NAT) to extract more accurate token-level acoustic

representations and reduce the gap between the autoregressive and non-autoregressive mod-

els.

In addition to the encoder-decoder-based NAT models, non-autoregressive methods con-

tinue to be proposed based on encoder-based CTC models. Chi et al. proposed to train

a refiner to iteratively improve CTC alignment based on the previous outputs of the re-

finer [CSK20]. In [CSH20], CTC alignment is enhanced with a mask token as a prior in-

formation for the decoder in each iteration. Nozaki et al. alleviate the output-independent

problem of CTC by using intermediate predictions as additional inputs [NK21]. The advan-

tages of the CTC models are their simplicity when using greedy search decoding [CZM21]

and their convenience to be integrated with SSL pretraining. For example, [NCZ21] improves

the WER performance of a pure CTC model by a large margin using Wav2vec2.0 pretraining

techniques. We design an encoder-only CASS-NAT model to combine the advantage of the

CTC and encoder-decoder NAT models in Chapter 4.
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1.5 Other Related Works

1.5.1 Convolution-augmented self-attention

The self-attention module in transformers captures global information by a weighted summa-

tion of the whole sequence. However, local information is also important for sequence mod-

elling. Taking speech features as an example, frequency details in each vowel or consonant

helps the recognition of these sounds. In computer vision, convolution layers have proved

to be successful at capturing local details within a kernel [BZV19]. Recent works adopt this

idea and augment transformers with a convolution module [YDL18,GQC20,HZZ20] in ASR.

Relative positional encoding is also used in each self-attention module. The convolution-

augmented self-attention block can effectively improve performance, but the improvement is

only significant if applied in the AT encoder. The AT decoder, on the other hand, adopts a

causal structure (upper triangular mask matrix for attention) that captures less local details

with a convolution module, and thus the improvement would not be significant.

1.5.2 Intermediate Loss

Deep transformers always suffer from gradient vanishing, especially for parameters that are

distant from the output layers. Intermediate loss has previously been proposed to add

additional loss functions after each layer to boost the gradient update [SLJ15, TLZ20]. It

has been proven useful to use intermediate CTC loss for improving the performance of the

CTC model [LW21, LKW21]. In [WML20], intermediate CE loss is used for training deep

transformer-based acoustic models for an HMM-based hybrid ASR system.

1.6 Dissertation Overview

This dissertation makes several contributions to the development of child ASR systems.

First, we explore the effectiveness of the self-supervised learning methods in child ASR with

un-annotated adult speech data. Specifically, we propose a novel SSL pretraining method
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(Bi-APC) and a better finetuning framework (DRAFT) to improve the accuracy of child

ASR systems. Second, we propose a novel non-autoregressive transformer model (CASS-

NAT) and its variant with a single encoder (Unienc-CASSNAT) to improve the inference

efficiency for the ASR systems. The improved inference efficiency is especially important to

child ASR for on-device deployment. Lastly, a child ASR benchmark on the widely used

child speech databases, OGI [SHC00] and MyST [WCP19], is created with the comparisons

of different data augmentation techniques, parameter efficient tuning methods, and various

open-sourced large speech foundation models. The benchmark will facilitate broader child

ASR research and show the potential directions in the future.

The remainder of the dissertation is organized as follows. Chapter 2 describes the pro-

posed SSL methods for improving the accuracy of child ASR including Bi-APC pretrain-

ing and DRAFT. Chapter 3 introduces the novel CTC-alignement based single step non-

autoregressive transformer (CASS-NAT) to improve the inference efficiency for the child

ASR. Chapter 4 further introduces an uni-encoder variant of CASS-NAT, which can better

integrate the SSL pretraining and the non-autoregressive generation. Chapter 5 includes the

child ASR benchmark we created and insights we obtained from the benchmark. Finally,

Chapter 6 concludes the dissertation with a brief summary, and directions for future work.

17



CHAPTER 2

Improving the Accuracy with SSL Pretraining

Due to low-resource limitations, the word error rate (WER) of child ASR systems is usually

higher than that of adult ASR systems. In this chapter, we introduce novel self-supervised

learning (SSL) techniques to improve the accuracy of child ASR systems. The SSL models

are typically trained on adult speech and then finetuned on child speech. Specifically, we

explore methods to improve SSL models in both the pretraining and finetuning stages.

In the pretraining stage, a well-known method, autoregressive predictive coding (APC),

predicts the speech features of the next frame given previous frames (left-to-right prediction).

Considering the contextual property of a speech sequence, a bidirectional APC (Bi-APC)

method is proposed to also include a right-to-left prediction with multiple temporally-shifted

sequences as targets for multi-task training. To examine the effectiveness of the proposed

method, the Bi-APC is applied on both the Bi-LSTM and non-causal transformer models

because of their different organization of parameters in the forward and reversed paths. We

investigate whether parameter organization in the forward and reversed computations affect

Bi-APC performance.

In the finetuning stage, we propose a domain responsible adaptation and finetuning

(DRAFT) framework to address the domain shifting problem in SSL models that are pre-

trained on adult speech data. In DRAFT, residual adapters are placed between transformer

blocks and are responsible for learning domain-related information at an additional adap-

tation stage with the child speech data. Only residual adapters are updated during the

adaptation stage so that the knowledge learned from source domain data can be retained.

The effectiveness of the proposed DRAFT are examined on Bi-APC, and the widely used

Wav2vec2.0 [BZM20] and HuBERT [HT21] models. The works in this chapter were published

18



in [FAA21,FA22,FZW22].

2.1 Methods

In this section, we first review the basics of APC and then introduce the proposed Bi-

APC and their extended versions with multiple temporally-shifted target sequences. We end

the section by introducing DRAFT, the proposed adaptation framework for self-supervised

pretrained models.

2.1.1 Bi-APC: Bidirectional Autoregressive Predictive Coding

As introduced in Section 1.3.2, APC adopts a left-to-right prediction from Z1 to ZT , and

hence is well suited for uni-directional structures such as uni-LSTM or causal transformers.

However, bidirectional models usually provide better WER performance than their unidi-

rectional counterparts because they learn from both directions [ZDV17,GJM13]. Therefore,

we propose a bidirectional APC (Bi-APC), which extends APC to exploit its potential for

bidirectional pretraining. The idea of Bi-APC is to add a reversed version (right-to-left pre-

diction) of APC, where we predict the frame n steps behind the current frame given all future

frames. However, the mechanism and the applications of BiAPC on LSTM and transformer

for bidirectional models are different.

Figure 2.1 shows how to use Bi-APC for BLSTM pretraining. To prevent equivalent

mapping in the network, the outputs of the BLSTM should not contain information about

the corresponding supervisions. We, therefore, split the BLSTM into forward-related and

reverse-related parts as shown in red parts and blue parts in Figure 2.1, respectively, including

the parameters (arrows) and outputs (rectangles) at each layer. When computing the outputs

Y fwd = {yfwd
1 , yfwd

2 , . . . , yfwd
T } in the forward direction, the values of the blue rectangles are

set to zero to exclude the information that are extracted from the frames on the right

side. The reversed-related parameters are also not updated. The same strategies are used

in the computation of outputs Y rev = {yrev1 , yrev2 , . . . , yrevT } in the reversed direction. The

parameters represented by black arrows are not used in pretraining since they allow for
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Figure 2.1: Illustration of Bi-APC pretraining for BLSTM. Red and blue parts are the

forward-related and reversed-related parameters and computations, respectively. fh and rh

indicate the hidden states of the forward and reversed calculations, respectively. Green boxes

are model input and outputs, respectively. Black arrows represent the forward computations

in a BLSTM model but are not used in the pretraining.

an illegal information exchange from different directions. The green arrows are the shared

parameters which are not used in finetuning. The BLSTM is then pretrained by optimizing

the APC from both directions as:

LBi-APC = 0.5 ·
T−n∑
t=1

|ht+n − yfwd
t | + 0.5 ·

T∑
t=n+1

|xt−n − yrevt | (2.1)

where task ratios are set to 0.5 as both directions have the same importance. Note that we

can also train an APC with uni-LSTM and only initialize the parameters of the red parts in

Figure 2.1 for BLSTM. We still denote such pretraining as APC in the experimental results.

The parameters in non-causal transformers, however, are not separated for contextual

modeling from both directions. It is unknown whether the parameters would affect the

learning of individual APC loss in two directions. In the widely-used pretrained transformer

model [HT21, BZM20], there are three major modules: convolution block, encoder, and

generator. We can assume each module to have two copies, where one trains a causal

transformer using a left-to-right APC and the other trains a causal transformer using a

20



Encoder

Convolution Block

 

Encoder

Convolution Block

 

(a) No Sharing

Encoder

 

Encoder

Convolution BlockConvolution Block

(b) Share Generator g

Encoder

Convolution Block

 

Convolution Block

(c) Share g and Encoder

Encoder

Convolution Block

 

(d) Share All

Figure 2.2: Various solutions for training non-causal transformers with Bi-APC. Notations

and blocks are consistent with those described in Section 1.3.1.

right-to-left APC. The trained modules are then averaged to be the final model initialization

for the finetuning task. Parameters of the two copies could also be shared so that averaging

is not needed after pretraining. As a result, we explore four various Bi-APC pretraining

schemes for non-causal transformers as shown in Figure 2.2: 1) no modules are shared;

2) only the generator is shared; 3) only the convolution block is not shared and 4) all

modules are shared, which is similar to [CZS20]. The four solutions are selected based on

the number of modules shared from top to bottom during Bi-APC pretraining. By exploring

the four Bi-APC pretraining schemes, we can understand how the shared parameters affect

APC pretraining in two directions and whether Bi-APC framework is suitable for models

with shared parameters for bidirectional contextual modelling. Note that we use causal

convolution layers in the convolution block and a causal mask in each self-attention layer in

the encoder.

Another way of incorporating bidirectional contextual information from pretraining could
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be averaging or concatenating outputs from two pretrained causal transformers as investi-

gated in [LLS20]. However, averaging or concatenating outputs will result in doubling model

parameters with the goal of finding good speech representations for downstream tasks. In

our case, we aim to find a good initialization of non-causal transformers for finetuning.

2.1.2 Extensions to APC and Bi-APC

The original APC technique [CH19] uses one temporally-shifted sequence Zt+n during pre-

training, as shown in Eq.1.8. A model may learn differently with different temporal lags,

aka. different values of n. For example, the model learns to exploit local smoothness of

the signal with a small value of n, while it learns a global structure with a large value of

n. Hence, it is intuitive to include multiple temporally shifted sequences with different lags

during pretraining and reformulate APC as a multi-task training loss. If we regard Eq.1.8

as Ln
APC, the extension of APC (E-APC) has the following objective function:

LE-APC =
s+k∑
n=s

Ln
APC =

s+k∑
n=s

T−n∑
t=1

(|yt − zt+n|p) (2.2)

where s is the temporally-shifted sequence with the smallest value of n and k is the number

of consecutive temporally-shifted sequences used in pretraining. During implementation, the

backbone model f is shared across different tasks while each task has its own generator g.

A recent paper also considered multiple targets for better APC pretraining [CG20b] where

the auxiliary predictive loss with the same temporal lag as the original APC loss is proposed

based on an additional RNN for regularization. In our work, however, only one model (an

RNN or transformer) is used to learn various temporal lags.

The parameters of BLSTM are designed to be separated into a left-to-right and right-to-

left context modelling LSTMs. When the extension of APC is also applied to Bi-APC, we

can re-write the objective function of the Bi-APC in Eq. 2.1 as follows:

LE-BiAPC = 0.5 ·
s+k∑
n=s

Ln
APC + 0.5 ·

s+k∑
n=s

L−n
APC

= 0.5 ·
s+k∑
n=s

T−n∑
t=1

(|yt − zt+n|p) + 0.5 ·
s+k∑
n=s

T∑
t=n+1

(|yt − zt−n|p)
(2.3)
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2.1.3 DRAFT: Reducing Domain Shifting in SSL Pretrained Models

Finetuning a well-pretrained self-supervised model can provide good WER performance for

low-resource speech recognition, e.g. child ASR. Howeve, performance improvement could

potentially be limited due to domain mismatch between the pretraining (adult speech) and

finetuning (child speech) data. Previous work [HS21] has shown that including data from

the target domain in the pretraining stage can improve the performance of the target task.

However, that approach requires the knowledge of the target domain and then re-training

the self-supervised model with a larger amount of data, which is time-consuming and compu-

tationally expensive. It would be more practical to adapt the pretrained models with target

data only when the target domain is unknown in the pretraining stage. In this section,

we propose DRAFT, a domain responsible adaptation and finetuning framework, to allevi-

ate domain shifting in the conventional self-supervised pretraining and finetuning paradigm.

DRAFT is a three-stage training paradigm with residual adapters inserted in the backbone

model f . The residual adapters are designed to learn knowledge from the target domain

data.

2.1.3.1 Simple Adaptation for Finetuning (SAFT)

Before introducing DRAFT, we would like to discuss the most direct way of doing adap-

tation by re-training the pretrained models, which we refer to as simple adaptation and

finetuning (SAFT). In SAFT, an adaptation stage is inserted between the pretraining and

finetuning stage, and the model is adapted with an SSL loss and with the finetuning data.

All model parameters are updated at the adaptation stage with a smaller learning rate than

the pretraining stage to prevent overfitting. The model after the adaptation stage is used as

initialization for the finetuning stage with an ASR loss.

2.1.3.2 Domain Responsible Adapters for Finetuning (DRAFT)

SAFT updates the parameters of the entire model, and thus overfitting might occur, leading

to a catastrophic forgetting for the self-supervised model [Fre99,KTK21,CLL21]. Knowledge
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Figure 2.3: Structure of the backbone model f with residual adapters inserted after each

block. Nx indicates that the module can be repeated N times (proportional to the number

of encoder blocks). X, h, Z, f, g and Y are the same as those in Figure 1.3. The right side of

the figure shows the components in a residual adapter.

learned at the pretraining stage may diminish because of an aggressive learning strategy. Not

only does the domain shifting problem remain unsolved, but also it leads to performance

degradation. To address this issue, we propose domain responsible adapters for finetuning

(DRAFT) framework that uses residual adapters in the backbone model to learn from target

domain data while retaining the source domain knowledge.

We start with a description of residual adapters (RAs) (shown in Figure 2.3) since they

are the most important modules in DRAFT. Specifically, an RA consists of two feed-forward

layers with a residual connection. The activation function between the two feed-forward

layers makes the adapter non-linear. A layer normalization is inserted at the beginning,

which is similar to a self-attention block. We define the dimension of the first feed-forward

layer output as dada, which determines the number of parameters of the RA. The effect of dada

on performance will be analysed in Section 2.2.3.2. Note that RA can be placed anywhere

in the model. In our case, we insert one residual adapter after the convolution block and one
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after each encoder block as shown in Figure 2.3 and Figure 2.4. We assume that the output

of each block needs to be transformed to be similar to that of the target domain data so that

the model can easily converge.

Convolution Block

Nx Encoder Block

SSL Loss

1  Pretraining Stage Adaptation Stage2 Finetuning Stage3

RA

Nx

Convolution Block

Encoder Block

RA

ASR Loss

RA: Residual Adapter

RA

Nx

Convolution Block

Encoder Block

RA

SSL Loss

: Fixed parameters : Unfixed parameters : pretraining data,   : operation to obtain self-supervison 
: finetuning speech data, : annotated transcription

Linear

LayerNorm

Linear

ReLU

Nx: repeated N times.

Figure 2.4: An overview of DRAFT. dada is the output dimension of the first linear layer in

the residual adapter (RA).

Residual adapters have been previously used for domain adaptation of supervised models

[TZ21, HGJ19]. However, we develop a way of using residual adapters for adaptation of

self-supervised models via a three-stage training paradigm as shonw in Figure 2.4. The

motivation is to prevent catastrophic forgetting that happens when finetuning the entire

pretrained model, and to address the domain shifting problem in self-supervised learning.

We also do not learn different residual adapters for different domains. Our goal is to find

a better model initialization of the downstream low-resource tasks. In [KSS21], residual

adapters are used to re-pretrain and finetune the target domain data with the purpose

of parameter efficiency in a natural language processing application. Hence, only residual

adapters are updated at the finetuning stage, while we update the entire model, and the

adaptation stage uses only finetuning data.

To better understand the algorithm, we detail the novel three training stages of DRAFT

as shown in Figure 2.4. Let θada be the parameters in residual adapters, θf the parameters in
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the backbone model (without residual adapters), θg the parameters in the generator for the

self-supervised task, and θ′g the parameters in the generator for the ASR task. Suppose source

domain data are Ssrc and target domain data are Stgt, the three-stage training paradigm can

be described as:

• Stage 1: Initialize a model {θ0f , θ0g}, update the parameters using data Ssrc and self-

supervised loss Lssl, and obtain a pretrained model {θ1f , θ1g}.

• Stage 2: From model {θ1f , θ1g}, insert residual adapters after each block initialized with

θ0ada, freeze {θ1f , θ1g} and update θ0ada using data Stgt and the same self-supervised loss

Lssl, and obtain an adapted model {θ1f , θ1ada, θ1g}.

• Stage 3: From model {θ1f , θ1ada, θ1g}, replace θ1g with a new generator that can map the

embedding space to the token space as θ0g′ , update the entire model with data Stgt and

an ASR loss such as connectionist temporal classification (CTC), to obtain the final

ASR model {θ2f , θ2ada, θ1g′}.

Note that the superscript in each θ is the number of times the parameters are updated. For

example, θ2f means that the backbone model has been updated twice, once in stage one and

the other in stage three. DRAFT is universal to all self-supervised pretrained models. We

verify the effectiveness of DRAFT on E-APC, Bi-APC, Wav2vec2.0 and HuBERT models.

A similar concurrent work to the proposed approach is [KTK21] where residual adapters

are also used to prevent catastrophic forgetting, but for continually learning representations

from various languages. Different from [KTK21], finetuning data are used in an additional

stage with the purpose of adapting SSL-pretrained models in our method. Furthermore, we

update all the parameters during the finetuning stage instead of fixing the backbone model

parameters because fixing the parameter does not perform well in pilot experiments.

26



2.2 Experimental Results

2.2.1 Datasets

Because of the availability of large databases of adult speech, we explore how SSL methods

trained on adult speech data can help the development of child ASR systems. In this

section, we introduce the data and the experimental settings for the pretraining, adaptation

and finetuning stages.

2.2.1.1 Librispeech 960-hour adult speech corpus

Librispeech is a widely-used adult speech corpus [PCP15]. It contains 960 hours of read

speech extracted from audio books. We use this dataset during the pretraining stage. A

10h subset of the data introduced in [KR20] is often used for evaluating SSL methods on

low-resource tasks, and is referred to as Libri-10h.

2.2.1.2 OGI 50-hour child speech corpus

For the finetuning experiments, the scripted part of the OGI Kids’ Speech Corpus [SHC00]

is used. It contains speech from approximately 100 speakers per grade (from kindergarten

to grade 10) saying single words, sentences and digit strings. The utterances are randomly

split into train (70%), development (15%) and test (15%) sets without speaker overlap. As

a result, nearly 50 hours of child data are used to train the child ASR system.

2.2.1.3 My Science Tutor (MyST) 240-hour child speech corpus

Another corpus used for finetuning is the MyST children speech corpus [WC11, WCP19].

MyST consists of 499 hours with 244,069 utterances of conversational speech between chil-

dren and a virtual tutor from 1,372 students between third and fifth grades. However, only

42% of the corpus (240 hours) is annotated for ASR. We use the annotated part of the corpus

to verify the effectiveness of our proposed methods. The corpus also contains a development

set and test set for evaluation.
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2.2.2 Bi-APC for BLSTM Pretraining

2.2.2.1 Acoustic Model Settings

We use the HMM-based hybrid system for the BLSTM experiments, where the acoustic

model is the BLSTM. The initial experiments are HMM-GMM model training with the

usage of Librispeech and JHU OGI recipes [WGK19] in Kaldi for pretraining and finetuning.

The GMM models are then used to obtain frame-level alignment for BLSTM-based acoustic

model training. The HMM states are 5776 and 1360 for adult and child models, respectively.

Uni-LSTM and BLSTM are chosen as acoustic models to compare pretraining methods.

80-dimensional Mel-filter bank features are extracted from each 25ms window with a 10ms

frame shift as the input. No frame stacking or skipping is applied. Hence, the output

dimension for the unsupervised pretraining task is 80. The uni-LSTM model consists of

4 uni-LSTM layers with 800 hidden units, while the BLSTM model has 4 BLSTM layers

with 512 hidden units in each direction. Batch normalization and dropout layers with a

0.2 dropout rate are applied after each LSTM layer. The outputs of the LSTMs are then

transferred into either the state space for classification or the feature space for prediction

with a single feed-forward layer.

All models are trained with a multi-step schedule, where the learning rate is held in the

first 2 epochs and then is exponentially decayed to a factor (λ) of the initial learning rate

in the remaining epochs. For pretraining tasks, 8 epochs are used with the initial learning

rate of 0.001 and λ = 0.1. For the finetuning tasks, we train the models with 15 epochs.

The learning rate starts from 2e-4 to 2e-6. The last three model checkpoints are averaged

as the final model for evaluation. For both APC and Bi-APC training, the time shift n is

heuristically set to 2. Sequence discriminative training is not applied in our experiments

since our goal is to compare different pretraining methods. Results on the OGI dataset are

reported. Note that the development and test sets are merged and named as OGI-test for

the BLSTM experiments.
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2.2.2.2 Language Model Setup

All experiments use the same lexicon and language models from the original Librispeech

corpus. Specifically, the 14M tri-gram (tgsmall) language model is used for first pass decod-

ing, and the 725M tri-gram (tglarge) language model is used for second-pass rescoring. We

report the results after the rescoring.

2.2.2.3 Results and Discussion

Table 2.1: WERs of baseline systems, including uni-LSTM, BLSTM and TDNN-F trained

with Librispeech and OGI data, respectively.

WERs(%)
Libri-adult Children

test-clean test-other OGI-test

Adult Model - Librispeech

uni-LSTM 5.71 15.15 65.90

BLSTM 4.90 12.59 59.12

Child Model - OGI Corpus

TDNN-F [WGK19] - - 10.71

uni-LSTM 95.77 97.28 12.58

BLSTM 86.82 92.15 9.16

Baseline: We first show the results of the baseline models in Table 2.1. Here we compare

two models–(a) adult model trained using Librispeech and (b) child model trained using the

OGI speech corpus. We evaluate these models on test-clean and test-other from Librispeech

and also on the OGI test. We compare uni-LSTM and BLSTM acoustic model architectures

for both setups. For the adult model, we obtain performances similar to previously published

results [PCP15]. Adult models are also used to test on ogi-test that has an acoustic domain

mismatch resulting in high WERs for LSTM models.
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For child models, the performance on Librispeech degrades drastically with both uni-

LSTM and BLSTM models. To compare with existing results in the literature, we evaluate

the TDNN-F acoustic model trained with the OGI corpus [WGK19]. We see that the uni-

LSTM performed worse than TDNN-F but BLSTM outperformed TDNN-F, thus motivating

us to explore model pretraining for the BLSTM system.

Table 2.2: Performance comparison of supervised pretraining (SPT) and unsupervised pre-

training (UPT) in terms of WER (%) for both LSTM and BLSTM acoustic model archi-

tectures. The results are for OGI-test. We also provide word error rate reduction (WERR)

compared to the baseline.

WERs(%) uni-LSTM WERR BLSTM WERR

Baseline 12.58 - 9.16 -

SPT 11.85 5.8% 8.46 7.6%

UPT

MPC [JLL19] - - 9.02 1.5%

APC 11.76 6.5% 8.85 3.4%

Bi-APC - - 8.57 6.5%

Comparison of Pretraining Methods for Child ASR: Next, we aim to explore the

performance of supervised (SPT) and unsupervised pretraining (UPT)1 for children’s ASR.

As mentioned in Section 2.2.1, we use Librispeech data for pretraining and OGI data for

finetuning. Table 2.2 presents results of finetuning on both uni-LSTM and BLSTM archi-

tectures, evaluated on the OGI test data. Note that, different from [SG20], all layers are

updated during finetuning since this is the best setting for our experiments. Table 2.2 shows

that SPT improved the performance of the uni-LSTM model to 11.85% and was better than

the baseline without pretraining. Interestingly, unsupervised pretraining using APC also

provides improvement (11.76%) similar to that of SPT with the uni-LSTM model.

1Here we use the terminology of unsupervised pretraining as opposed to the supervised pretraining for a
better understanding
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As mentioned earlier, BLSTM has better performance than uni-LSTM. SPT results in

the best performance (WER, 8.46%) among the pretraining methods applied to BLSTM.

Note that, to perform UPT, we first use APC to pretrain only the forward path parameters

of BLSTM, resulting in a WER of 8.85%. We then compare it to a widely used bidirectional

pretraining method, the masked predictive coding (MPC) [JLL19] and show that MPC

(9.02%) performs worse than APC (8.85%). The reason may be that MPC has fewer frames

to be predicted (only 15% of the frames were randomly masked) although MPC can learn

from both directions. The proposed Bi-APC achieves a WER of 8.57% that is comparable to

the SPT. This can be valuable when there is a large amount of data without transcriptions.

Since the pretraining task is a 960-hour dataset, UPT could possibly benefit from more

unlabeled data.

Table 2.3: BLSTM-based ASR performance breakdown based on age groups of kindergarten

to grade 2, grade 3-6 and grade 7-10.

WERs(%) K0-G2 G3-G6 G7-G10

Baseline 18.87 7.24 5.51

+SPT 17.43 6.66 5.11

+APC 18.07 7.03 5.40

+Bi-APC 17.23 6.91 5.26

Performance Breakdown based on Age Groups: To obtain an insight into the in-

fluence of the speaker’s age on the performance of pretraining methods, in Table 2.3, we

present results based on age groups in the OGI dataset. Similar to [SNH16], three different

age groups are selected–kindergarten to grade 2, grade 3-6, and grade 7-10. We present the

results using the BLSTM model. For younger children (kindergarten- grade 2), the Bi-APC

provides slightly better results compared to SPT. In contrast, we do not observe any such

improvement in the older age groups for children. This trend could mean that UPT may

be capturing a representation crucial to the performance of very young child speech, whose

speech is more variable and difficult to recognize than older children [YA18]. Further research
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is required to explore the usage of the approach more effectively for children’s ASR.

2.2.3 Bi-APC for Transformer Pretraining and DRAFT Finetuning

More recently, transformers have shown better performance than the LSTM-based ASR

models. Hence, investigating the application of Bi-APC for transformer models is important.

This section also includes the proposed DRAFT experiments on widely used transformer-

based SSL models in addition to the Bi-APC.

2.2.3.1 Experimental Settings

Pretraining Stage Settings: Four self-supervised learning algorithms are investigated:

E-APC, Bi-APC, Wav2vec2.0 and HuBERT. All models at this stage are trained with the

Librispeech dataset.

For E-APC and Bi-APC, we use 80-dimensional log-mel filter-bank features (Z in Fig-

ure 1.3) without any concatenation or frame skipping. The features are extracted using a

25ms Hamming window and a frame rate of 10ms. Padding is used for the shorter utterances

to make the length be the maximum length of the utterances in a batch. The backbone model

f consists of a two-layer convolution block with a sub-sampling of four along the time axis,

12 transformer encoder blocks and a generator for each temporally-shifted sequence. We

predict four consecutive frames at each step because of the sub-sampling in the convolution

block, resulting in a 320-dimensional output of the generator. Adam optimizer is used with

a noam-based scheduler, where the noam factor is 5 and the warmup step is 15k. The model

is updated for 130k steps with a batch size of 256. Various starting temporal lags (s) and

various numbers of consecutive temporally-shifted sequences (k) in the E-APC are compared

and the best settings in the E-APC are used for the subsequent Bi-APC pretraining.

For Wav2vec2.0 and HuBERT, we directly use the open-sourced pretrained models in

the Fairseq1 toolkit [OEB19]. We choose the base model that has about 95M parameters

1Our code modified on Fairseq is available at https://github.com/Diamondfan/fairseq.
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to evaluate the effectiveness of the proposed DRAFT framework. Note that the number of

parameters in the E-APC and Bi-APC pretraining models is about 39M.

Adaptation Stage Settings: Residual adapters are added to the pretrained model at

this stage and only the parameters of residual adapters are updated. We use Xavier uniform

initialization [GB10] for all RA parameters.

For E-APC and Bi-APC, we adapt the model from the pretraining stage with either the

OGI or MyST datasets according to the finetuning task. For the OGI data, residual adapters

are updated in 55k steps with a noam factor of 8, warmup steps of 10k. For the MyST data,

residual adapters are updated in 74k steps with a noam factor 4 and a warmup step of 15k.

The batch size is set to 64 for both datasets.

For Wav2vec2.0 and HuBERT, the residual adapters of Wav2vec2.0/HuBERT are up-

dated in 200k/100k steps with learning rate ramping up from 0 to the peak learning rate in

32k/8k steps, and then decays linearly back to 0, where the peak learning rate is 5e-4. The

batch size is set to 16.

We also run experiments using SAFT with the above configurations but all the parameters

are updated. The learning rate is lower than the one used in the pretraining stage (e.g.

peak learning rate of 1e-4 on Wav2vec2.0 and HuBERT). The learning rate is determined

empirically.

Finetuning Stage Settings: The CTC loss function is used for the finetuning ASR task

training. We train two types of models: 1) a causal transformer with a causal convolution

block and encoder blocks with upper-triangular matrices for attention. 2) a non-causal

transformer with a regular convolution block and encoder blocks with all-one matrices for

attention. The causal transformer is initialized with E-APC pretrained models, while Bi-

APC, Wav2vec2.0 and HuBERT use the non-causal transformer.

In E-APC and Bi-APC, we finetune the model from the pretraining stage or the adapta-

tion stage. The model is updated in 240k steps with a batch size of 32, a noam factor is 2,

and a warmup step of 10k steps for the OGI data. For the MyST data, the model is updated
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in 340k steps with a batch size of 64, a noam factor of 2, and a warmup step of 15k steps.

In Wav2vec2.0/HuBERT, the model is updated with a batch size of 64 in 40k steps with

a multi-step scheduler where the warmup steps are set to 4k. The peak learning rate of

3e-5/7e-5 holds for the next 16k steps, then exponentially decays to a factor (λ) of the initial

learning rate, where λ is set to 0.05.

The data augmentation methods, speed perturbation [KPP15] and SpecAug [PCZ19], are

used for all the experiments at the finetuning stage. Greedy search decoding is used during

evaluation. We conduct experiments to decide empirically on the final hyper-parameters.

We start the training with a large training epoch (e.g. 100 epochs). Then, if the WER on

the validation set does not decrease for several epochs, we stop the training and decide the

number of training steps based on the convergence of the training phase.

2.2.3.2 Results and Discussion

The base model (95M) that was pretrained on Librispeech 960 hours data using the Wav2vec2.0

method in the Fairseq toolkit [OEB19] achieves a WER of 3.4% on Librispeech test-clean

data [BZM20]. However, the model results in WERs of 41.67% and 30.77% for the OGI and

MyST test data, respectively, showing a large mismatch between the adult and child speech.

In this section, we present experimental results of the proposed methods.

APC for Causal Transformers and Its Extension: Figure 2.5 and Table 2.4 show

ASR results using APC and its extension on the OGI, MyST, and Librispeech 10h [KR20]

datasets. We experimented with the Libri-10h data to show that our methods are not limited

to children’s speech. The results for the Libri-10h data are similar to those in [KR20]. The

reason for its poor performance compared to finetuning on child speech is because of the

amount of finetuning data (10 hours for Librispeech, 50 hours for OGI, and 240 hours for

MyST). In addition, OGI is an easier task because of similar distributions for the train and

test sets. In Figure 2.5, we use only one temporally-shifted sequence (k = 1) and explore the

effect of the starting temporal lag s. A baseline that does not use any pretraining methods
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(a) OGI (b) MyST (c) Libri-10h

Figure 2.5: WER results on the OGI, MyST, and Libri-10h datasets for different temporal

lags s in APC. Only one temporally-shifted sequence (k = 1) is used in these experiments.

Baseline is the causal transformer trained from scratch. Note that we use adult speech in

the pretraining stage. Therefore, (a) and (b) are domain mismatched case, while (c) is the

domain matched case.

is also included in Figure 2.5. We can see from the figure that when the prediction lag

is more than 4 (16 frames), the WERs increase for all tasks. This result is similar to the

results in [CG20a] when considering the sub-sampling in the convolution block. The best

choice of s is 3 (12 frames) for OGI, and 2 (8 frames) for MyST and Libri-10h. The lags

are approximately the duration of an acoustic unit (a vowel or a short syllable). Hence,

the model can learn local smoothness of the spectral features by predicting frames within an

acoustic unit, and acoustic unit transitions (global structure) by predicting frames in the next

acoustic unit, resulting in learning more meaningful speech representations. Then, multiple

temporally-shifted sequences are combined to construct E-APC. Based on the results in

Figure 2.5, we experiment with two settings: s1k4, combining four consecutive temporally-

shifted sequences starting from 1, and s2k2, combining two consecutive temporally-shifted

sequences starting from 2, because they yielded better results than other settings. The results

are shown in Table 2.4. From the table, the performance of s2k2 has a ∼ 1.8% relative WER

improvement on both tasks compared to the best setting in APC. We also experimented

with L1, L2, and a combination of L1 and L2 distance measures as the basic loss function

for APC, and found that L1 performs the best.
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Table 2.4: WER results of APC with s2k1 and E-APC with settings of s1k4 and s2k2. s1k4

stands for using four consecutive temporally-shifted sequences starting with a temporal lag

of one. A similar meaning applies to s2k1 and s2k2. Lp norm is the basic loss function used

as shown in Eq.1.8. Baseline is the causal transformer trained from scratch.

APC Lp

OGI MyST Libri-10h

dev test dev test clean other

Baseline - 5.9 7.0 36.7 36.3 56.0 74.9

APC-s2k1 L1 5.1 6.2 32.8 32.2 47.6 67.2

EAPC-s1k4 L1 5.1 6.0 35.5 34.8 45.7 65.1

EAPC-s2k2

L1 5.0 6.1 32.2 31.6 45.6 65.1

L2 5.4 6.3 32.9 32.2 48.5 67.1

L1 + L2 5.2 6.3 32.4 31.7 45.6 65.1

Table 2.5: WER results of four solutions (shown in Figure 2.2) for using Bi-APC for a

non-causal transformer. Baseline is the non-causal transformer trained from scratch.

Share? OGI MyST Libri-10h

Conv. Enc. G. dev test dev test clean other

Baseline - - - 2.9 3.3 28.0 27.8 51.9 70.2

Bi-APC

3.2 3.9 27.8 27.3 60.7 77.0

! 3.3 4.1 32.1 31.8 58.6 75.7

! ! 2.8 3.4 26.2 25.7 40.1 58.9

! ! ! 2.8 3.3 25.5 25.0 40.3 58.9

Bi-APC with A Non-causal Transformer: Using the best settings of E-APC (s2k2

with L1 distance), we discuss the four solutions of applying Bi-APC to the non-causal trans-

former mentioned in Section 2.1.1. Results are shown in Table 2.5. As can be seen from the

table, with more modules shared, the performance tends to be better except that sharing

only the generator causes an increase in WERs. However, there is only a 0.1% absolute

WER improvement on the OGI development set when sharing all parameters. The reason

may be because the used OGI data (the scripted part) contains shorter utterances (3.5s for

OGI, 8.3s for MyST, and 12.8s for Libri-10h), and thus benefit less from Bi-APC. We note

a larger improvement with the MyST and Libri-10h data. For example, the WER for MyST

test data using the sharing-all solution is decreased from 27.8% to 25.0%, and the WER is
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Table 2.6: WER results of different values of dada in residual adapters. SAFT is the sample

adaptation for finetuning that updates the entire model at the adaptation stage. DRAFT is

the proposed domain responsible adapter for finetuning that updates only residual adapters

at the adaptation stage. The number of updated parameters are also shown in absolute and

relative values (compared to the baseline of a causal transformer).

dada
OGI MyST Updated Params

dev test dev test total relative

Baseline 0 5.9 7.0 36.7 36.3 39.2M 100%

+EAPC 0 5.0 6.1 32.2 31.6 39.2M 100%

+SAFT 0 5.0 5.9 33.4 32.9 39.2M 100%

+DRAFT

64 4.9 5.7 31.9 31.0 0.9M 2%

128 4.7 5.6 31.6 30.9 1.7M 4%

256 4.6 5.3 31.1 30.4 3.4M 9%

512 4.4 5.2 30.9 30.2 6.8M 17%

1024 4.4 4.9 30.1 29.4 13.7M 35%

2048 4.4 4.9 30.0 29.3 27.3M 70%

decrease from 51.9% to 40.3% on Librispeech test clean data. The parameters in the sep-

arated modules learn very different distributions when they are not shared during Bi-APC

pretraining. Averaged parameters may lose information from both sides. As a result, the

sharing-all solution outperforms other solutions for Bi-APC pretraining. However, Bi-APC

is still worse than methods like Wav2vec2.0 and HuBERT as shown in the next section.

When compared to our previous Bi-APC for LSTMs study [FAA21], Bi-APC for transform-

ers performs worse for the child speech databases in terms of relative WERs. We assume

that Bi-APC may not be suitable for bidirectional pretraining of models that have only one

set of parameters. From this perspective, it is interesting to see whether the transformer can

be reformulated as a model that has forward-related and reverse-related parameters.

Effect of dada in DRAFT: We conducted experiments with different values of dada in the

residual adapters to examine the impact of the number of adapter parameters, because this

number influences both WERs and adaptation efficiency. The experiments are conducted on

the OGI and MyST datasets using the E-APC method. Specifically, dada values are selected
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from 64 to 2048 and the results are shown in Table 2.6. For reference, we also include the

results for the baseline, pretraining from E-APC and SAFT. Both WER results and the

number of parameters that need to be updated during the adaptation stage are shown in the

table. First, when compared to SAFT, DRAFT achieves a better performance with fewer

parameters to be updated. In addition, we observe that the WER drops when we increase

the number of parameters in the residual adapters. However, the cost is increased training

time at the adaptation stage because more parameters need to be updated. We can even

achieve an improvement from a WER of 5.9% to 5.7% on the OGI test set with only 2% of

the parameters being updated. As a result, the choice of dada in DRAFT can be adjusted

according to different scenarios. For example, one can use a small value of dada to achieve

a fast adaptation of the self-supervised model when computational resources are limited. A

large value of dada can be used to achieve a better performance for the finetuning task. All

subsequent DRAFT experiments will use 1024 for dada since it results in a good trade-off

between performance and efficiency.

Results of DRAFT with Non-causal Transformers: DRAFT is shown to be effective

for E-APC with a causal transformer. Here, we continue to evaluate the DRAFT frame-

work for Bi-APC and other two widely used SSL methods: Wav2vec2.0 and HuBERT. Both

the models are adopting a non-causal transformer architecture. We conduct DRAFT ex-

periments on the OGI and MyST datasets for E-APC, Bi-APC, Wav2vec2.0 and HuBERT.

Results are shown in Table 2.7. The table shows that SAFT yields a small improvement or

even a negative effect on the WERs compared to the pretraining baselines (without adap-

tation). The reason may be that updating the entire model causes a catastrophic forgetting

of the knowledge learned from adult speech. However, when the proposed DRAFT frame-

work is used, the WERs of the four SSL methods have an improvement on the OGI dataset

compared to the pretraining baselines (without adaptation). Specifically, we achieve relative

WER improvements of 19.7%, 3.0%, 7.4%, and 16.0% on the OGI test set for E-APC, Bi-

APC, Wav2vec2.0, and HuBERT, respectively. HuBERT achieves the best WER of 2.1% on

the OGI test data. WER improvements are even larger when compared to the baselines with-
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out using pretraining methods. For example, we achieve 30% and 19% WER improvements

on the OGI and MyST data for the E-APC method, respectively. We also observe similar

improvements on the MyST dataset, although the relative improvements are smaller than

those using the OGI data (child read speech). The reason could be the mismatch in style

between MyST data (child spontaneous speech) and pretraining data (adult read speech).

Note that we do not try SAFT for Bi-APC because we have already shown its overfitting

behaviour in E-APC. For Wav2vec2.0 and HuBERT, the baselines without pretraining are

not available because their convergence is difficult to achieve without pretrained models.

Note that the results of using HuBERT and Wav2vec2.0 are much better than those of E-

APC is because of a better performance of non-causal transformers than causal transformers.

However, improving and examining APC with our proposed framework is valuable for causal

transformers (streaming models).

We also examine the cross knowledge transfer ability of the residual adapters (RAs)

learned from one dataset to another as they learn domain-related information. Specifically,

the RAs trained with OGI data during the adaptation stage are used for training MyST

data at the finetuning stage and vice versa. The results are shown in Table 2.7 under

cross transfer row. Results show that when using the redisual adapters learned from MyST

data, DRAFT can improve the WER performance on the OGI dataset consistently with the

three SSL methods. This shows that DRAFT can be used for efficiently learning knowledge

from one domain (child spontaneous speech), and then achieve better finetuning for another

related domain (child read speech). However, the use of RAs learned from OGI data does

not help the performance for MyST data. It might be because OGI has only 50-hour speech

data, which is not large enough for adapting to the MyST data (240 hours). However,

DRAFT always performs better than SAFT in cross knowledge transfer settings, which

again shows DRAFT’s ability at preventing catastrophic forgetting. We are also interested

in determining whether the learned residual adapters from different domains can be fused

together to further improve the performance. However, preliminary experiments did not

show performance improvements.

Experimental results using the adapter finetuning method [TKK22] are also presented
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Table 2.8: Experiments showing the behaviour of residual adapters in DRAFT in terms of

WER. “RA Initialization” and “Update RA?” are describing the finetuning stage. “+ RA”

indicates adding randomly initialized RA at the finetuning stage for a fair comparison to

DRAFT. θ1ada indicates the RA learned in the adaptation stage and θ0ada is the RA with

random initialization.

E-APC RA Initialization Update RA?
OGI

dev test

Baseline None No 5.9 7.0

+ RA θ0ada Yes 5.5 6.4

DRAFT

θ0ada Yes 4.8 5.6

θ1ada Yes 4.4 4.9

θ1ada No 4.7 5.4

in Table 2.7. Although adapter finetuning has been shown effective in [TKK22], it does not

perform well in child ASR tasks, maybe because fixing the backbone model (pretrained on

adult speech) is not appropriate when the domain mismatch (finetuning on child speech)

exists. The results of adapter finetuning also show the importance and effectiveness of

DRAFT in reducing domain mismatch. Note that the results of adapter finetuning on

Wav2vec2.0 and HuBERT are 100% because of a slow convergence during training. We may

get a reasonable WER for the adapter finetuning method with a longer training schedule.

However, the results of adapter finetuning and DRAFT are comparable because they use

the same amount of training steps.

What do Residual Adapters Learn? Finally, we explore the behaviour of residual

adapters (RA) by using a random initialization of RA or freezing RA parameters during the

finetuning stage. By initializing RA parameters randomly (θ0ada), the WERs in comparison

to that of DRAFT which has pretrained RA (θ1ada), can give us an insight into whether the
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RA learn the knowledge from the target domain data as expected. Results for E-APC on the

OGI data are shown in Table 2.8. As shown in the table, the performance of DRAFT with

learned RA is much better than that when RA are randomly initialized (4.9% v.s. 5.6%),

showing the successful learning of the target domain knowledge. The table also shows the

result when RA parameters are frozen during the finetuning stage. We can see from the table

that the performance of freezing RA (5.4%) is better than the experiment with randomly

initialized and updated RA (5.6%, third row in the table). The results imply that the RA

may learn a domain-related transformation from adult to child speech after each block in the

transformer. The learned transformation ability from the SSL task might be directly used

in the ASR task without further finetuning. One might argue that WER improvements are

the results of increasing model parameters. Hence, we conduct an experiment that directly

adds residual adapters (“+RA” in the table) in the same way they are added to DRAFT but

without any pretrained parameters. The results in Table 2.8 show that DRAFT outperforms

the new baseline as well, which could address the concern that the improvements are from

increased model capacity.

2.3 Chapter Summary

In this chapter, we developed self-supervised learning (SSL) based techniques to improve the

accuracy of children’s ASR using adult speech data in the pretraining stage. In the context of

autoregressive predictive coding (APC), which is a neural language model style pretraining

method for causal transformers, we proposed an extension to APC (E-APC) by learning from

multiple temporally-shifted sequences because they contain different levels of information in

the structured data. E-APC had a ∼ 1.8% relative WER improvement on the OGI and

MyST data compared to APC. Furthermore, a bidirectional APC (Bi-APC) framework was

proposed for BLSTM pretraining, which addressed the problem that APC is not suitable for

bidirectional model pretraining. In addition, we discussed the possibility of using Bi-APC for

non-causal transformers. Various solutions were investigated and results showed that Bi-APC

framework can have a slight improvement over the transformer baseline without pretraining,
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but the results are worse than other bidirectional pretraining methods like Wav2vec2.0 and

HuBERT. Finally, a domain responsible adaptation and finetuning (DRAFT) framework

was proposed to alleviate the domain shifting problem between adult and child speech. The

DRAFT framework performed well on E-APC, Bi-APC, Wav2vec2.0 and HuBERT methods,

showing that it can improve the performance of pretraining methods for both causal (E-APC)

and non-causal transformers (the other techniques). When compared to the conventional

pretraining baselines without adaptation, we achieved relative WER improvements of up

to 19.7% on the two child ASR tasks. The relative WER improvements are even larger

(30% and 19% for E-APC on the OGI and MyST data, respectively) when compared to the

models without using pretraining methods. In the cross transfer experiments, we observe

the potential that residual adapters learned from one dataset could benefit for the other

dataset. As a result, a future direction of research could be to investigate the fusion of

residual adapters learned from various domains for greater WER improvements on child and

other low-resource ASR tasks.
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CHAPTER 3

Improving the Inference Efficiency with

Non-autoregressive Models

Besides the WER (accuracy) performance, the real time factor (RTF) is another important

metric for ASR systems, especially when the system is required to be deployed on a de-

vice. As mentioned in Section 1.2.3, Autoregressive Encoder Decoder (AED) models, e.g.

transformers, achieve good WER performance, but they adopt an autoregressive generation

mechanism, slowing down the inference speed. In this chapter, we propose a novel CTC-

alignment based Single Step Non-Autoregressive Transformer (CASS-NAT) that can gener-

ate the output sequence simultaneously in one step, greatly reducing the inference time for

ASR. The trade-off is that non-autoregressive models perform worse than their autoregres-

sive counterparts because of the weakened dependencies between output tokens. To reduce

the gap between the autoregressive and non-autoregressive models, an Error-based Sampling

Alignment method (ESA) is further proposed. Additionally, We improve the performance

of CASS-NAT by applying various training strategies and conduct a comprehensive study

of the proposed CASS-NAT. For example, we examine the effect of decoder structures on

the WER and investigate the impact of the hyper-parameters on the proposed error-based

sampling alignment (ESA) method, such as the sampling threshold, the number of sampled

alignments, and the scoring model for ranking the sampled alignments. Various encoder

initialization schemes (including AT encoder, CTC encoder, and random initialization) for

CASS-NAT training are explored with an analysis of why the proposed CASSN-NAT works

with ESA decoding. This work was published in [FCC21a,FCC21b,FCC23].
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3.1 Method: CTC-alignment based Single-Step Non-autoregressive

Transformer

We present a comprehensive study of a non-autoregressive transformer (NAT) framework by

utilizing alignments over the CTC output space. The framework can generate the output

sequence within one iteration, so we refer to it as CTC Alignment-based Single Step NAT

(CASS-NAT). In CASS-NAT, there are four major modules: encoder, token-level acoustic

embedding extractor (TAEE), self-attention decoder (SAD), and mixed-attention decoder

(MAD). The encoder is used to extract a high-level acoustic representation for each frame.

The TAEE extracts a more meaningful token-level acoustic embedding (TAE) using the

information given by alignments over the CTC output space. The SAD and MAD model the

dependencies between TAEs, where MAD considers encoder outputs directly for the purpose

of source-attention while SAD does not. However, SAD indirectly uses the information from

the encoder through the TAEs for self-attention. Since TAEs can be obtained in parallel, no

recurrence in output sequence generation exists. Meanwhile, the two decoder modules can

model the dependencies between TAEs in the latent space.

3.1.1 System Overview

In this section, we introduce the proposed CTC Alignment-based Single Step Non-autoregressive

Transformer (CASS-NAT) in detail.

The proposed CASS-NAT system architecture builds upon the CTC/Attention hybrid

architecture [WHK17] to be non-autoregressive using CTC alignments. Figure 3.1 shows the

four major modules in CASS-NAT: encoder, token acoustic embedding extractor (TAEE),

self-attention decoder (SAD) and mixed-attention decoder (MAD).

3.1.1.1 Mask in attention

The attention mechanism is important for a transformer. The most basic computation

in the attention mechanism is scaled dot-product self-attention using a sequence as input.
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Figure 3.1: An overview of the proposed CASS-NAT architecture. CM and NCM represent

a causal and non-causal mask, respectively. TM stands for trigger mask.

Conventional self-attention utilizes information across the whole sequence. But each output

of the self-attention mechanism is not necessarily dependent on all of the input sequence. For

example, a neural language model uses an upper triangular matrix (mask matrix) to gather

information from only past tokens in a sequence. In Figure 3.1, we show three mask matrices

for different purposes in the four major modules. Since we do not consider a streaming ASR

model at this moment, non-causal mask (NCM) is used in the encoder. The NCM is a matrix

where the paddings are zeros to prevent the padded tokens or padded frames from attention

computation. In TAEE, a trigger mask (TM) is used to extract accurate token-level acoustic

embeddings. TM masks the triggered frames, such that the positions of used frames are

marked as ones, while other positions are marked as zeros. Examples of TM can be found

in Section 3.1.1.3. MAD contains both self-attention and cross-attention layers, which are

similar to an AT decoder. In such cases, either a causal mask (CM) or NCM can be used for

the self-attention layer, and either an NCM or TM can be used for the cross-attention layer.

The different choices of the mask matrices in MAD are explored experimentally in Section

3.3.1. Eventually, the self-attention computation can be augmented with a mask matrix as

46



follows:

Attention(Q,K, V,M) =

(
Softmax

(
QKT

√
dk

)
⊗M

)
V (3.1)

where Q ∈ Rnq×dq , K ∈ Rnk×dk , V ∈ Rnv×dv , and M ∈ Rnq×nk are the query, key, value and

mask matrices, respectively.

3.1.1.2 Encoder

The encoder extracts high-level acoustic representations H from speech features X. A linear

layer with a CTC loss function is added after the encoder as shown in Figure 3.1. The role of

CTC is to obtain an alignment over the CTC output space to offer auxiliary information for

the token acoustic embedding extractor (TAEE). During training, Viterbi-alignment is used.

During inference, various methods for sampling from the CTC output space are explored

experimentally.

3.1.1.3 Token Acoustic Embedding Extractor

The token acoustic embedding extractor is designed to extract token-level acoustic embed-

ding (TAE) with the auxiliary information offered by the CTC alignment. For example,

given an alignment Z = {z1, ..., zt, ..., zT}, we can estimate an acoustic segment for each

token u as {tu−1 + 1, ..., tu} (note that 1 here refers to one frame), and the number of tokens

in Z.

First, CTC alignments offer an acoustic boundary for each token yu, which is then trans-

formed into the trigger mask. Specifically, we define a mapping rule from alignment to

trigger mask, and fix the rule in both the training and inference phases. We regard the

first non-blank index of each token in the alignment as its end boundary. The intuition is

our assumption that the model will not output a token until it observes all the acoustic

information.of the token. Using the first non-blank index is for simplicity and consistency

in training and decoding. For example, if an alignment is Z = { , C, C, , A, , , T, } for the

ground truth Y = {C,A, T}, where is the blank symbol, the end boundary for C and A

is Z2 and Z5, respectively, and thus the trigger mask for token A is [0, 0, 1, 1, 1, 0, 0, 0, 0].
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The mapping rule might not be accurate for acoustic segmentations, but it should be con-

sistent during the training and decoding. The trigger mask here is different from that used

in [MHL20] for streaming purposes. In [MHL20], previous acoustic representations could

be reused for each token, and thus the trigger mask in the previous example for token A is

[1, 1, 1, 1, 1, 0, 0, 0, 0].

Second, CTC alignments provide the number of tokens for the decoder input. After

removing blank symbols and repetitions, the number of tokens in an alignment Z is used as

the predicted length of sinusoidal positional encoding (decoder input length). As shown in

Figure 3.1, TAE for each token is then extracted with the trigger mask and the sinusoidal

positional encoding using a one-layer source-attention block. The TAEs replace the word

embeddings in AT to achieve parallel generation of each sequence.

3.1.1.4 Self-attention Decoder

TAEs extracted from TAEE (see Section 3.1.1.3) have the desirable property of parallel

generation and thus are used as a substitution of word embeddings for the decoder input.

Since there is no need to create recurrence in the decoder, we use a non-causal mask (NCM)

in the self-attention decoder (SAD) to model the relationships between TAEs.

3.1.1.5 Mixed-attention Decoder

We assume that TAEs have a similar capability of learning language semantics compared to

word embeddings. Hence, we design a mixed-attention decoder (MAD) to retrace the encoder

information for better decision making at the output layer. Similar to an AT decoder, MAD

has a self-attention layer that uses either CM or NCM, and a source-attention layer that

uses either TM or NCM. A linear layer is added after MAD, followed by a cross-entropy loss.

Since we use the Viterbi-alignement during training, the output has the same length as the

ground truth Y .
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3.1.2 Training Details

The training criterion is presented in this section, followed by various training strategies used

to improve the performance of CASS-NAT.

3.1.2.1 Training Criterion

In our framework, CTC alignments Z are introduced as latent variables. Given X and Y in

Section 1.4, the log-posterior probability can be decomposed into:

log P (Y |X) = log EZ|X [P (Y |Z,X)], Z ∈ q. (3.2)

where q is the set of alignments that can be mapped to Y . For those alignments that do not

belong to q, we assume that P (Y |Z,X) is equal to zero. To reduce computational cost, the

maximum approximation [ZMS20] is applied:

log P (Y |X) ≥ EZ|X [log P (Y |Z,X)]

≈ max
Z

log
U∏

u=1

P (yu|ztu−1+1:tu , x1:T )
(3.3)

where E represents the expectation and tu is the end boundary of token u (t0 = 0). All tus

can be estimated from the alignment Z. We expect that TAEs can capture language seman-

tics to a certain degree (see Section 3.3.5 for analysis), which helps alleviate performance

degradation caused by the independence of the output tokens.

The framework is trained by jointly optimizing a CTC loss function on the encoder side

(LCTC) and a cross entropy (CE) loss function on the decoder side (Ldec) with a task ratio

λ [WHK17], and thus the final loss function (Ljoint) is defined as:

Ljoint = −λ · log
∑
Z∈q

T∏
i=1

P (zi|X) − log
U∏

u=1

P (yu|z∗tu−1+1:tu , X) (3.4)

where P is the probability distribution, Z∗ is the most probable alignment (Viterbi-alignment).

The second term is a maximum approximation for the log-posterior probability as computed

by Eq. 3.3.
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3.1.2.2 Convolution Augmented Self-attention Block

The self-attention computation in Eq.3.1 considers global information across the sequence,

but ignores local details. To alleviate this problem, convolution augmented self-attention

blocks are proposed to emphasise the modelling of local dependencies of the input sequence

in the encoder [GQC20, YWW19]. Different from previous work, we apply the convolution

augmented self-attention blocks in the SAD and MAD as well. Specifically, the feed-forward

layer is decomposed into two sub-layers to be placed at the beginning and the end of the

block. A convolution layer similar to that in [GQC20] is inserted after the self-attention

layer except that we empirically use layer normalization instead of batch normalization. The

final computation in the ith MAD can be formulated as:

ŝi = si +
1

2
FFN(si) (3.5)

s
′

i = ŝi + LN(Attn(ŝi, ŝi, ŝi,NCM)) (3.6)

s
′′

i = s
′

i + Conv(s
′

i) (3.7)

s
′′′

i = s
′′

i + LN(Attn(s
′′

i , H,H,NCM)) (3.8)

oi = LN(s
′′′

i +
1

2
FFN(s

′′′

i )) (3.9)

where LN indicates layer normalization and FFN is the feed-forward network. NCM is non-

causal mask. si and oi are the input and output of block i, respectively. The convolution-

augmented self-attention block can be used for other NAT models.

Different from the usage of relative positional encoding in [DYY19,GQC20], we consider

a maximum length of the relative position k as in [ZFC19]. Therefore, 2k + 1 position

embedding are learned to represent the relative position between [−k, k].

3.1.2.3 Intermediate Loss

Since CTC and CE loss functions are jointly optimized in the CASS-NAT framework, we

incorporate intermediate CTC and intermediate CE loss functions into Eq.3.4 so that the

parameters in different layers can be updated at the same scale.
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Let Ldec = − log
∏U

u=1 P (yu|z∗tu−1+1:tu , X) and LCTC = − log
∑

Z∈q
∏T

i=1 P (zi|X), the

objective function is re-written as:

Ljoint = λCEL
final
dec + (1 − λCE)Lmid

dec

+ λCTCL
final
CTC + (1 − λCTC)Lmid

CTC

(3.10)

where λCE and λCTC are task ratios. mid and final indicate the layer position of the

inserted loss functions. We found intermediate loss to be more effective for CASS-NAT than

AT models [FCC21b]. The intermediate loss can be added to other NAT models as well.

3.1.2.4 Trigger Mask Expansion

The quality of TAE relies on the accuracy of the trigger mask (TM), which is mapped from

the CTC alignment. Although the CTC loss function is used to optimize the alignment,

there are still errors when doing forced alignment over the CTC output space, leading to

an inaccurate TM. To address this issue, we expand TM to include contextual frames for

each token. For example, suppose the contextual frame size is one, the acoustic boundary

of token U becomes {ztu−1 , ..., ztu+1}. The trigger mask will then be expanded by one in the

subsequent acoustic embedding extraction. Note that trigger mask expansion is used only

for CASS-NAT.

3.1.3 Inference: Error-based Sampling Decoding

During decoding, it is essential to obtain a CTC alignment that is close to the hypothetical

Viterbi-alignment used in training. The transcription, however, is not available. We propose

to use three different alignment generation methods for inference: (1) best path alignment

(BPA); (2) beam search alignment (BSA); and (3) error-based sampling alignment (ESA).

We also present the results of using Viterbi-alignment as an upper bound of WER, assuming

that transcriptions are available during decoding, which is referred to as oracle alignment.

BPA is similar to CTC greedy decoding that selects the token with the highest probability

at each time step, but without removing blank and repetitive tokens in the final sequence.

BSA is similar to beam search decoding over the CTC output space, which is the most
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Best Path Alignment (BPA):  

CTC Output

Error-based Sampling Alignment (ESA):

CTC Alignments

 

Scoring Model for decoder output

Figure 3.2: Illustration of obtaining CTC alignments from CTC outputs, including best

path alignment (BPA) and error-based sampling alignment (ESA). C(0.90) indicates P (zi =

C|X) = 0.90. “ ” is a blank token. The threshold τ for sampling is set to 0.9.

probable alignment during decoding. Compared to BPA, BSA is supposed to generate an

alignment that is closer to the oracle alignment, which could lead to a lower WER, but the

parallelism of the CASS-NAT would be destroyed, resulting in a significant increase of the

real time factor (RTF).

Considering the expectation in Eq. 3.3, we propose a third alignment generation approach

by sampling based on the potential errors in BPA. The method is referred to as error-based

sampling alignment (ESA). To generate ESA, a threshold τ determines whether sampling

is required at each time step. If the highest probability of the output distribution is larger

than τ , the rule of BPA holds. Otherwise, we randomly sample from the tokens with the

first two largest probabilities. As shown in shaded blue in Figure 3.2, CTC outputs at z3,

z5, z6, and z7 need a sampling because of their low top-1 probability. According to the

proposed sampling rule, four sampled alignments are shown as examples on the right side

of Figure 3.2. The reason for sampling within the top-2 tokens is that the trigger mask

is sensitive to blank tokens and most mistaken outputs in BPA contain blanks in the top-2
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tokens. In addition, sampling within 2 tokens is efficient because of the small sampling space.

ESA aims at correcting the output which is prone to errors. Sampling in the decoding stage

will not affect much inference speed because it can be done in parallel. It is possible that

ESA-generated alignments are closer to the oracle alignment than BPA. Compared to BSA,

ESA can be implemented in parallel, avoiding any increase in the RTF. Finally, either an

AT baseline or language model can be used to score and identify the best overall alignment.

Note that ESA can have different lengths for decoder input compared to BPA. As shown

in Figure 3.2, the decoder length is 4 for BPA (including an EOS token), while the lengths

are 3, 5, 4, and 5 in the case of ESA. This fluctuation of the token numbers allows ESA to

possibly sample an alignment that is of the same length as the oracle alignment, which is

important for the performance of NAT models as will be shown experimentally. Note that

ESA decoding is proposed specifically for CASS-NAT.

3.2 Experimental Setups

3.2.1 Data Preparation

To examine the effectiveness of the proposed framework, we conduct several ASR tasks,

including read and spontaneous speech, English and Mandarin speech, and adult and child

speech. Four datasets are selected: (1) the 960-hour LibriSpeech English corpus [PCP15]

with read speech, (2) the 178-hour Aishell1 Mandarin corpus [BDN17] with adult read speech,

(3) the 210-hour TEDLIUM2 (TED2) English corpus [RDE14] with TED talk speech, and

(4) My Science Tutor (MyST) Kids English corpus [WC11] with spontaneous speech. We

use the annotated part of MyST, which accounts for 42% (240 hours) of the corpus.

All experiments use 80-dim log-Mel filter-bank features, computed every 10ms with a

25ms Hamming window. Features of every 3 consecutive frames are concatenated to form a

240-dim feature vector as the input. The sets of output labels consist of 5k word pieces for

LibriSpeech, and 500 word pieces for TED2 and for MyST. All sub-words are obtained by

SentencePiece [KR18] using the training set of each dataset. 4230 Chinese characters are used
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as vocabulary for the Aishell1 dataset. To avoid overfitting, we applied speed perturbation

[KPP15] and SpecAugment [PCZ19] to the filter-bank features from TED2, Aishell1 and

MyST. Speed perturbation is not used for LibriSpeech because of limited computational

resources.

3.2.2 Network Architecture

3.2.2.1 Autoregressive Models

A CTC/Attention AT baseline is first trained with the architecture (Ne = 12, Nd = 6,

dff = 2048, nh = 8, datt = 512) for LibriSpeech, and (Ne = 12, Nd = 6, dff = 2048, nh = 4,

datt = 256) for the other three datasets, where dff is the dimension of the FFN module, datt

stands for the dimension of the attention module, nh is the number of attention heads, Ne

and Nd are the number of encoder and decoder blocks, respectively. Prior to the encoder,

two convolution layers with 64 filters, a kernel size of 3, and a stride of 2 is adopted, leading

to a 4x frame-rate reduction. When using a conformer structure to the AT encoder, we

reduce the dff to be 1024 to keep the number of parameters in the model the same as in the

transformer baseline, and the maximum length of relative position k is set to 20. The kernel

size in the convolution module is 31 for LibriSpeech and 15 for the other three datasets.

3.2.2.2 CASS-NAT

During training, CASS-NAT encoder is initialized with an AT encoder for faster convergence

as in [FZC19]. The decoder in AT baseline is replaced by 1-block TAEE, m-block SAD and

n-block MAD. m and n are investigated using the LibriSpeech dataset, and the best setting

is applied to the other three datasets. For convolution-augmented decoder, the dimension

of feed-forward layers is also halved and the maximum length of relative position is set to

8 for the tasks with word piece units and 4 for the Aishell1 data. The contextual frame of

trigger mask expansion is set to 1 because we do not see further improvements with a larger

expansion. The intermediate loss functions are inserted in the middle layer of the encoder

and MAD with λCE of 0.99 and λCTC of 0.5. The inserted projection layers are discarded
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during inference. These settings were chosen empirically.

3.2.2.3 Training and Decoding Setup

All experiments are implemented with Pytorch [PGM19] 1. The Double schedule in [PCZ19]

is adopted as the learning schedule for the LibriSpeech and Aishell datasets, where the

learning rate is ramped up to and held at 0.001, then be exponentially decayed to 1e-5.

The transformer-based scheduler in [VSP17] with warm-up steps of 25k and noam factor

of 5 is used for the TED2 and MyST datasets. Layer normalization, dropout with rate

of 0.1 and label smoothing with a penalty of 0.1 are all applied as the common strategies

for training a transformer. We compute WERs of development sets for early stopping (no

improvement for 11 epochs). The last 12 epochs are averaged for final evaluation. Most

experiments end within 90 epochs. In order to investigate the impact of different models for

scoring alignments in ESA, a transformer-based language model is trained with the provided

text in LibriSpeech. The provided n-gram models in the dataset are also compared in the

experiments. In terms of the pretrained HuBERT encoders, we use the Fairseq model that

is trained from LibriSpeech 960-hour corpus for finetuning the English data model and the

Tencent model that is trained from 10000-hour WenetSpeech [ZLG22] for finetuning the

Mandarin data model.

During AT decoding, the beam size is set to 20 for LibriSpeech, and 10 for the other

three datasets. No external language models are used during beam search decoding. The

evaluation of the real time factor (RTF) is conducted using a V100 GPU with a batch size

of one. For CASS-NAT decoding with ESA, the threshold, number of sampled alignments

and scoring models are investigated in Section 3.3.2.

1Our code is available at https://github.com/Diamondfan/cassnat asr
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Table 3.1: WERs for different block numbers (m and n) of the self-attention decoder (SAD)

and mixed-attention decoder (MAD) using LibriSpeech, shown as mSAD+nMAD. Various

mask matrices used in MAD are also explored, where CM, NCM and TM represent causal

mask, non-causal mask and trigger mask, respectively. For example, NCM + TM indicates

that NCM is used for self-attention in MAD and TM is used for source-attention in MAD.

Bold numbers represent the best results.

Decoder
Structure

Mask in
MAD

dev- dev- test- test-

clean other clean other

7SAD + 0MAD - 5.3 11.1 5.4 11.1

5SAD + 2MAD

NCM + NCM 4.7 10.4 4.8 10.3

NCM + TM 4.7 10.5 4.9 10.5

CM + NCM 4.8 10.7 4.9 10.6

3SAD + 4MAD NCM + NCM 4.7 10.4 4.8 10.4

1SAD + 6MAD NCM + NCM 4.6 10.5 4.7 10.4

3.3 Results and Discussion

The first set of ASR experiments used the LibriSpeech dataset to explore various decoder

structures, impact factors in ESA decoding, CTC alignment behaviour, and the effectiveness

of the proposed training strategies. Using the best settings found with the LibriSpeech task,

experiments are run with the other three datasets.

3.3.1 The Structure of CASS-NAT Decoder

To investigate the structure of the CASS-NAT decoder, we use various combinations of m

SAD blocks and n MAD blocks (m + n = 7) in the decoder to keep the number of model

parameters similar to that of the AT baseline. We use best path alignment during inference

and discuss other decoding strategies in the next section. Results are shown in Table 3.1.

As shown in the table, not using MAD (0 MAD in the first row) causes a big performance
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degradation compared to other configurations, indicating that token-level speech represen-

tations might have to retrace the fine-grained frame-level information (encoder outputs) for

better contextual modelling. The best performance is achieved when using 5 SADs and 2

MADs (WER of 10.3% on the test-other set).

Because there are two attention layers (self-attention and source-attention) in each MAD,

we try different mask matrices for the two layers. For the self-attention layer, either a causal

mask (CM) or non-causal mask (NCM) is considered. For the source-attention layer, either a

trigger mask (TM) or NCM is used. The results in Table 3.1 show that using NCM on both

attention layers results in the best WER. Although TAE is regarded as a substitution of word

embedding, CM seems not necessarily required in the CASS-NAT decoder for contextual

modelling of token-level acoustic embeddings. The settings that achieve the best performance

in this section (5 SADs and 2 MADs with NCM in both attention layers) are selected as

default for subsequent experiments.

3.3.2 Error-based Sampling Alignment (ESA) Decoding

Viterbi alignment is used in training, but not available during inference. To reduce the align-

ment mismatch between training and inference, we propose error-based sampling alignment

(ESA). There are three important factors that can affect the WER performance of ESA:

sampling threshold P , the number of sampled alignments S and scoring model for ranking

alignments. We use the best decoder structure in the previous section (5SAD + 2MAD) to

evaluate the performance of ESA decoding with different configurations.

Figures 3.3a and 3.3b show the results when the threshold P varies from 0.10 to 0.95

using the LibriSpeech test-clean and test-other data, respectively. The number of sampled

alignments here is 10 and the scoring model is the AT baseline. We also include the WERs of

the AT baseline and CASS-NAT decoding with best path alignment (BPA) as comparisons.

As shown in the figures, ESA reaches the best performance when P = 0.9. A higher threshold

indicates fewer sampled alignments, and thus no further improvement is observed. The

threshold P is set to 0.9 in subsequent experiments.
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Figure 3.3: WER performance of different values of the threshold P and the number of

sampled alignments S in error-based sampling alignment (ESA) decoding. Real time factor

(RTF) is evaluated using a V100 GPU with a batch size of one.

Figure 3.3c shows the effect of the number of sampled alignments S in terms of WER

and RTF on the test-clean and test-other data. As observed in the figure, by increasing the

number of sampled alignments, the WER of ESA decoding improves but the improvement

is small when S is greater than 50. Meanwhile, the RTF increases rapidly as S increases.

Overall, S = 50 might be the most appropriate value to use as default in subsequent exper-

iments.

Finally, various scoring models are compared. We consider using the AT baseline, neural

language model (NLM) and n-gram language model for ranking the sampled alignments.

NLM is a transformer-based model trained with the provided text in the LibriSpeech corpus.

The n-gram models are also the ones provided in the LibriSpeech corpus. The results of ESA
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Table 3.2: Comparisons, in terms of WER and GPU speedup, of BPA, BSA, and ESA

decoding. NLM is the transformer-based neural language model. 3-gram and 4-gram models

are the ones offered in LibriSpeech. Bold numbers are the best WER performance other

than the Oracle and AT baseline.

Scoring

Model
dev- dev- test- test- GPU

Speedup
clean other clean other

AT baseline - 3.4 8.1 3.6 8.0 1.00x

Oracle - 2.1 5.5 2.2 5.3 39.6x

BPA - 4.7 10.4 4.8 10.3 90.0x

BSA - 3.8 8.8 3.9 8.8 0.90x

ESA+

AT baseline 3.6 8.8 3.8 8.6 28.4x

NLM 3.6 8.9 3.9 8.7 31.6x

3-gram 5.4 11.4 5.8 11.4 32.6x

4-gram 5.4 11.3 5.7 11.3 31.5x

decoding together with that of BPA and ESA decoding are shown in Table 3.2. As analyzed

in Section 3.1.3, BPA has an impressive speedup but the WER is much worse than the AT

baseline, and BSA can obtain a better WER but it is even slower than the AT baseline.

By using neural network based scoring models, ESA can retain both the advantages of BPA

and BSA. For example, using NLM as a scoring model, ESA can achieve a WER of 8.7% on

the LibriSpeech test-other data and 31.6x speedup. The degradation in speedup compared

to BPA originates from the ranking process. Using n-gram models for ranking alignments

leads to worse WER compared to NLM in ESA because n-gram models are worse than NLM

for language modelling. Another possible reason might be that the probability distribution

of n-gram models is different from that of CASS-NAT decoder outputs, while for NLM it

is similar. The reason why n-gram models have similar GPU speedup compared to NLM

is that the scores of the sampled alignments cannot be obtained simultaneously. The best

performing scoring model is the AT baseline, and thus the AT baseline is used in ESA

decoding as default in the following experiments.

Note that because of the sampling process in ESA decoding, WER may be slightly

different for different seeds of the random number generator. Fortunately, the randomness

is small with a variance of around 0.5% relatively in our experiments.
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Table 3.3: Comparisons of different decoding methods for CASS-NAT decoding. Oracle:

Viterbi alignment with ground truth. MR: mismatch rate; LPER: length prediction error

rate (using word-piece as the modeling unit). S: the number of alignments sampled in ESA.

Bold numbers are the best performance other than the Oracle.

Decoding S
WER (%) MR (%) LPER (%)

Method test- test- test- test- test- test-

clean other clean other clean other

Oracle 1 2.2 5.3 - - - -

BSA 1 4.0 9.2 2.5 6.0 28.09 48.83

BPA 1 4.8 10.3 2.4 5.2 34.92 51.68

ESA

10 4.0 9.0 3.6 6.0 26.41 44.91

50 3.8 8.6 3.8 6.3 25.46 43.08

100 3.8 8.5 3.8 6.2 25.61 42.70

300 3.7 8.5 3.8 6.3 25.53 42.67

3.3.3 Why does ESA Work? - An Analysis of the CTC Alignments

In this section, we analyze the CTC alignments obtained from different decoding strategies

to understand why ESA can improve the performance of CASS-NAT. Two metrics are eval-

uated on the LibriSpeech test sets: mismatch rate (MR) and length prediction error rate

(LPER). MR and LPER are measured between the alignments used in decoding and the

oracle alignment, in which the blank and repetitive tokens are removed. The MR is the ratio

of deletion and insertion errors compared to the oracle alignment, and substitution errors

are not included because they do not change either the acoustic boundary for each token or

the number of predicted tokens. If the number of tokens in an alignment is different from

that in the oracle alignment, this alignment is considered as a case of length prediction error.

LPER is the percentage of the utterances with length prediction errors.

Results of MR and LPER are presented in Table 3.3. Note that the lower bound of WER

(using oracle alignment) is 2.2% on the test-clean data assuming the transcriptions are

available during decoding; this indicates that the framework is promising. When comparing
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Figure 3.4: The length prediction error distribution and their corresponding WERs using

ESA(s=50) decoding on the test-clean dataset.

the two metrics for different decoding strategies, we observe that the WER is more correlated

with LPER than MR. This suggests that a correct estimation of the output length (the length

of decoder input) is very important for NAT, which is also mentioned in [CWV20]. The

reason may be because CASS-NAT decoders have a stronger ability of correcting mistakes in

CTC alignment by contextual token-level acoustic modelling when the length prediction is

accurate. To further validate this assumption, we plot the length prediction error distribution

and their corresponding WERs in Figure 3.4. As seen from the figure, CASS-NAT achieves

WERs that are lower than 2% when the length of the decoder input is estimated correctly,

while the WERs are higher than 10% for those utterances with an absolute difference in

length of more than 3 compared to the oracle alignment.

3.3.4 Improving the Training of CASS-NAT

Despite the use of ESA decoding method, the WER performance of CASS-NAT (8.6%) is still

worse than that of the AT baseline (8.0%). In this section, we attempt to improve the WER

performance of CASS-NAT by using various training strategies that include convolution-
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Table 3.4: WERs of using the proposed training strategies on the LibriSpeech data. SpecAug

is used in all configurations. WERR is the relative WER improvement compared to their

corresponding baselines on the test-other data. KD represents using knowledge distillation

from AT decoder outputs. Other strategies are the ones introduced in Section 3.1.2. Bold

faced numbers indicate the best WER results.

Model w/o LM ConvEnc. InterCTC ConvDec. InterCE Mask Exp. KD
dev- dev- test- test-

WERR
clean other clean other

AT

3.4 8.1 3.6 8.0 -

! 2.7 6.9 2.9 6.9 13.8%

! ! 2.7 6.8 2.8 6.7 16.3%

CASS-NAT

3.6 8.8 3.8 8.6 -

! 3.0 7.3 3.2 7.5 12.8%

! ! 2.9 7.4 3.1 7.3 15.1%

! 3.4 8.3 3.6 8.4 2.3%

! ! 3.3 8.2 3.6 8.3 3.5%

! ! ! ! 2.8 7.1 2.9 7.1 17.4%

! 3.6 8.9 3.8 8.7 -1.2%

! ! ! 3.3 8.3 3.6 8.1 5.8%

! ! ! ! ! 2.7 7.1 2.9 7.0 18.6%

! 3.6 8.8 3.8 8.5 1.2%

augmented encoder (ConvEnc.), intermediate CTC loss (InterCTC), convolution augmented

decoder (ConvDec.), intermediate CE loss (InterCE) and trigger mask expansion (Mask

Exp.). The results of various combinations of the training strategies are shown in Table 3.4.

First, we apply ConvEnc. and InterCTC to the autoregressive transformer to create a

new AT baseline for fair comparisons. Note that, we have applied ConvDec. and InterCE

to the AT baseline as well, but no improvements are observed, and thus their results are not

included. When ConvEnc. and InterCTC are applied to CASS-NAT, similar improvements

compared to their use for AT are observed. The improvements stem from their ability

of capturing local details in the acoustic representations, and thus a stronger encoder is

learned and it offers an accurate CTC alignment for implicit token-level acoustic embedding

modelling in the decoder.

Second, when using ConvDec. and InterCE, the WER of CASS-NAT drops further to

7.1% on the test-other data, which is a 17.4% relative WER improvement over the CASS-

NAT baseline. The use of ConvDec. and InterCE, however, is not as effective as ConvEnc

and InterCTC, indicating that a stronger modelling of frame-level acoustic representations is
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more important than that of token-level acoustic representations (TAEs) in CASS-NAT. This

is reasonable because TAEs are extracted from frame-level acoustic representations from the

encoder. Interestingly, we observe a -1.2% relative WER reduction when the trigger mask

expansion method is applied by itself. However, the method leads to WER improvements

when it is used together with ConvDec. related strategies. The reason could be that ex-

panding the acoustic boundary for each token might cause confusion for the decoder when

the contextual modelling is not strong enough.

In addition, as shown in the last line of Table 3.4, applying knowledge distillation, which

takes the AT output as a target for NAT training, does not result in WER improvements.

Although knowledge distillation has been proven useful in non-autoregressive neural machine

translation in [ZGN20], it does not seem to work for speech recognition possibly because there

are no different outputs corresponding to the same input, while multiple translations of the

source language exist in the target language for machine translation.

Finally, using all the training strategies, we achieve an 18% relative WER improvement

compared to CASS-NAT baseline; this is only a 3% WER degradation compared to the best

version of the AT baseline. In summary, we obtain a non-autoregressive speech transformer

that performs close to its autoregressive counterpart with a significant GPU speedup.

3.3.5 Why does CASS-NAT Work? - An Analysis of the Decoder

In this section, we explain why CASS-NAT can achieve a good performance that is close to

its autoregressive counterpart by analysing the following elements in CASS-NAT decoder:

(1) attention weight distribution; and (2) acoustic-level acoustic representations.

First, to analyse the behaviour of the attention mechanism in CASS-NAT decoder, we

choose the first utterance in the LibriSpeech train-clean-100 subset and plot the attention

weight distribution in the last SAD and MAD blocks. The weights of the last 4 heads (8

heads in total) are shown in Figure 3.5. For self-attention weight distributions in SAD, we

notice from the figure that most of the heads learn a monotonic alignment between token-

level acoustic representations, indicating that each token relies on adjacent tokens. This is

63



0 50
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

1.00
0 50

Token position
0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

1.00
0 50

Token position
0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

1.00
0 50

Token position
0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

1.00

(a) The 5th ∼ 8th head of self-attention in the last SAD

0 50
Token position

0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

1.00
0 50

Token position
0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

1.00
0 50

Token position
0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

1.00
0 50

Token position
0

20

40To
ke

n 
po

sit
io

n

0.00

0.25

0.50

0.75

1.00

(b) The 5th ∼ 8th head of self-attention in the last MAD

Figure 3.5: Attention weight distributions of the 5th − 8th head in the last self-attention

decoder (SAD) and mixed-attention decoder (MAD). The first utterance in the LiriSpeech

train-clean-100 subset is used. The y-axis represents output tokens
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Figure 3.6: Visualization of token-level acoustic embeddings of three word pieces from out-

puts of TAEE, SAD and MAD, respectively. The embeddings are plotted using principle

component analysis (PCA).

similar to the idea of word embedding using a continuous bag of words (CBOW) and skip-

gram [MCC13]. The monotonic alignment also shows the usefulness of the relative positional

encoding because distant tokens with close semantic similarity have low attention weights.

For the attention weights in MAD, there exists a different behaviour in several subspaces
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of the attention computation, where outputs may rely on the same input (vertical line in

Figure 3.5b).

As discussed in Section 3.1.2.1, we assume that language semantics can be captured by

CASS-NAT decoder using token-level acoustic embeddings. To validate this assumption,

we calculate three different token-level acoustic embeddings from TAEE, SAD and MAD for

each token (word piece in our case). Specifically, token-level acoustic representations are first

extracted from the first 5000 utterances in the train-clean-100 Librspeech subset, where each

representation has its label in the form of a word piece. The embedding of each word piece

is the average of the corresponding representations. After that, we randomly choose three

word pieces and find the four closest ones (measured with cosine similarity distance) for each

word piece. Using the same idea of visualizing word embeddings, the 12 selected embeddings

are reduced to a 2-dimensional space using principal component analyses (PCA) and are

then plotted. Examples of embeddings at different levels of the CASS-NAT decoder are

shown in Figure 3.6. The figure suggests that the token-level acoustic embeddings learn not

only acoustic similarities ( BEAR vs. BARE), but also token-level semantic similarities

( BENEATH vs. BELOW). This occurs, even though embeddings at different levels of

the decoder provide different information. For example, higher layer (MAD) embeddings

focus more on grammatical similarities (e.g. FIRMLY and FINALLY), which is similar

to word embedding. This finding suggests the possibility of learning a joint speech and text

embeddings in a common space. Even though there is no explicit language modelling, the

CASS-NAT decoder is able to learn meaningful embeddings, which may explain why it has

a similar performance to its AT counterpart.

3.3.6 Results on other datasets

Finally, we apply the proposed CASS-NAT to the other three datasets: Aishell (Mandarin

speech), TED2 (English spontaneous speech), and MyST (child speech), to show the gener-

alization ability of CASS-NAT. In addition, we explore the effect of different initialization

schemes for the CASS-NAT encoder and measure the speedup given by CASS-NAT com-
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pared to AT baselines. All results are summarized in Table 3.5. As can be observed from the

table, a randomly initialized encoder for CASS-NAT achieves the best performance on the

Aishell1, TED2 and MyST datasets, while the LibriSpeech dataset performs better with a

pretrained encoder. The reason could be that we force the training iterations of CASS-NAT

to be the same as the AT baseline for time considerations, as well as for a fair comparison,

but LibriSpeech, as a large database compared to the others, needs more training iterations

to obtain accurate alignments for the decoder. Hence, we suggest using a pretrained encoder

for training CASS-NAT on large datasets.

With an appropriate encoder initialization, we now compare the results of CASS-NAT to

the AT baselines and SOTA results using NATs. First, when compared to the AT baseline

with greedy search decoding, CASS-NAT achieves better (on Aishell1, TED2, and MyST) or

similar (on LibriSpeech) WERs performance, and has a 2.89x RTF speedup. When compared

to the AT baseline with beam search decoding, the WERs performance on Aisehll and TED2

are still better, while the WERs on LibriSpeech and MyST are close to the baseline but with

a 24x RTF speedup. Second, when compared to other NAT methods in the literature, we

observe from the table that the proposed CASS-NAT achieves new state-of-the-art results

on LibriSpeech, TED2, and MyST when no pretrained acoustic (e.g. Wav2vec2.0 [BZM20])

or language models (e.g. BERT [DCL19]) are used. To compare with the results that used

extra training data (e.g. SSL with un-annotated data), we use the self-supervised pretrained

models as the encoder for CASS-NAT to see whether it can outperform the SOTA results in

Table 3.5. Due to time and computational constraints, we obtain only the results on Aishell1

and MyST datasets. The results show that CASS-NAT can achieve comparable results to

the best NATs in the literature [DYW22,FA22] with SSL pretraining.

3.4 Chapter Summary

In this chapter, we presented a novel non-autoregressive transformer (CASS-NAT) that can

increase the inference efficiency for an ASR system. The foundation behind CASS-NAT is

that it utilizes the alignments obtained from CTC output for token-level acoustic embed-
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dings (TAEs) extraction, and regard the TAEs as substitutions of the word embeddings in

autoregressive transformers (AT) to achieve parallel forward computation. During training,

Viterbi-alignment was used to estimate the posterior probability, and various training strate-

gies were applied to improve the WER performance of the CASS-NAT. During inference, we

investigated in depth an error-based sampling alignment (ESA) method that we introduced

to reduce the alignment mismatch between training and inference.

The extensive experiments on CASS-NAT have shown that: (1) a mixed-attention de-

coder (MAD) in CASS-NAT was important for reducing the WER; (2) the reason why ESA

decoding works well was because it has a lower length prediction error rate; (3) convolution

augmented encoder and decoder, intermediate loss and mask expansion can improve the

WER of CASS-NAT, while knowledge distillation can not; and (4) TAEs had similar func-

tionality to word embeddings, such as representing grammatical structures, indicating the

possibility of learning semantics without a language model. As a result, CASS-NAT achieved

new state-of-the-art results for NAT models on several ASR tasks with and without SSL pre-

training. The datasets included English and Mandarin speech, read and spontaneous speech,

and child and adult speech, showing the generaliztion ability of the proposed method. The

performances of CASS-NAT were comparable, in relative terms, to AT with beam search

decoding, but maintain a ∼20x speed up. Future work includes model compression and

distillation to further reduce the parameters and improve the efficiency.
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CHAPTER 4

Integration of SSL Pretraining with

Non-autoregressive Models

Previously, we have shown that self-supervised learning pretraining and proposed non-

autoregressive models are effective for improving the accuracy and inference efficiency, re-

spectively. However, the challenge of applying SSL to CASS-NAT is the model discrepancy

between SSL and CASS-NAT (encoder for SSL versus encoder-decoder structure for CASS-

NAT). This motivates us to propose an encoder-only CASS-NAT model that can benefit from

SSL pretraining. Hence, in this chapter, we present a new encoder-only non-autoregressive

model, UniEnc-CASSNAT, that can function in a way that is similar to CASS-NAT en-

coder and decoder. Additionally, we propose a multi-pass CTC (MP-CTC) training and

iterative decoding method to improve the WER performance. Experiments on Librispeech

100-hour [PCP15], MyST [WC11], and Aishell1 [BDN17] datasets show that the proposed

methods can achieve better or comparable WERs to CASS-NAT, and contain fewer param-

eters. This work was published in [FSA24].

4.1 An Encoder-only Non-autoregressive ASR for Speech SSL

Models

In this section, we describe the newly proposed encoder-only NASR (UniEnc-CASSNAT).

Like CTC, UniEnc-CASSNAT can be initialized from speech foundation models (HuBERT

base model [HBT21] is used). To behave as both the CASS-NAT encoder and decoder,

UniEnc-CASSNAT has two forward passes and accepts two types of inputs for each. In

the first pass, speech features (output of HuBERT Conv. encoder) are fed into the contex-
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Figure 4.1: (a) Diagram of CASS-NAT. (b) Proposed UniEnc-CASSNAT with HuBERT

conv. and contextual encoders. The TAE extractor is a self-attention module that transforms

the acoustic representations with length T to TAEs with length U. The generation of TAEs

and second pass forward computation are repeated during iterative decoding.

tual encoder to generate token-level acoustic embeddings (TAEs). In the second pass, the

concatenation of speech features and the TAEs (along the time dimension) are used as the

contextual encoder inputs. The TAE corresponding outputs are selected for ASR loss com-

putation. The outputs in the second pass can generate better quality TAEs than those in the

first pass and hence lead to better ASR performance. We, therefore, propose a multi-pass

CTC (MP-CTC) training and iterative decoding method to improve performance.

4.1.1 Proposed Framework: UniEnc-CASSNAT

CASS-NAT Review: CASS-NAT consists of an encoder, a token-level embedding ex-

tractor (TAEE), and a decoder as shown in Figure 4.1(a). The connectionist temporal

classification (CTC) [GFG06] loss is added to learn the alignment between the acoustic and

token sequences. The alignment can provide segmentation information for each token. TAEE

extracts an embedding for each token from encoder outputs (with a shape of [T, d], where

T is the frame length and d is the hidden dimension) using the segmentation information.

The extracted token-level acoustic embeddings (TAEs) (with a shape of [U, d], where U is
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the token sequence length) are fed into the decoder which models the relationship between

tokens. During decoding, we use error-based sampled alignments (ESA) (see details in 3.1.3),

where the multiple alignments Z are sampled based on the CTC greedy search output with

low confidence scores. The TAEs computed from the sampled alignments are fed into the

decoder to obtain multiple ASR outputs. The autoregressive transformer provides a ranking

score for each ASR output (one ASR output corresponds to one alignment).

An Encoder-only CASS-NAT (UniEnc-CASSNAT): Speech foundation models are

proven to be useful in downstream ASR tasks. The CASS-NAT encoder can be initialized

from a speech foundation model and extracts better acoustic representations [FCC23] when

compared to training from scratch. However, the CASS-NAT decoder has to be trained from

scratch. Inspired by the success of recent work of speech-text joint pre-training [TGD22,

WKB23] with a shared encoder, we rethought the necessity of the CASS-NAT decoder and

propose an encoder-only CASS-NAT, denoted as UniEnc-CASSNAT to match the size of

speech foundation models.

The UniEnc-CASSNAT is shown in Figure 4.1(b) with two forward passes. In the first

pass, the hidden features extracted from the conv. encoder are fed into the contextual encoder

for CTC modeling and the token-level acoustic embeddings (TAEs) are extracted using the

alignment information from CTC outputs. In the second pass, the extracted TAEs ([U, d])

are concatenated with the hidden features ([T, d]) (along the time dimension) to be the

input to the contextual encoder. The self-attention layer in the contextual encoder enables

frame-frame, frame-token, and token-token interactions between hidden features and TAEs.

Note that the goal of the first pass is to obtain TAEs, whose quality is highly related to the

ASR performance. The better the speech foundation model, the better the quality of the

TAEs extracted by UniEnc-CASSNAT. The second pass is similar to the role of the CASS-

NAT decoder for modeling the relationships between TAEs and frame-level hidden features.

We investigate whether the encoder is capable of both frame-level acoustic representation

learning and contextual modeling between tokens.
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4.1.2 MP-CTC Training and Iterative Decoding

The output of the second pass is a sequence of T + U vectors, where the first T vectors

correspond to hidden features, and the U vectors correspond to TAEs. Since the quality of

TAEs is essential to the performance of the CASS-NAT decoder, we propose to add another

CTC loss to the first T outputs of the second pass and formulate a multi-pass CTC (MP-

CTC) training. With the CE loss used on the U outputs, the final objective function of

UniEnc-CASSNAT can be written as:

Lunienc-cassnat = Ldec + λ1 · LCTC−1pass + λ2 · LCTC−2pass (4.1)

We share the final feed-forward layer for the two CTC losses. Theoretically, the second-

pass CTC loss would have better performance than the first pass because it accepts additional

input information (TAEs). An intuitive idea is to iteratively improve the quality of TAEs

by repeating the second pass with newly extracted TAEs. Hence, we propose an iterative

decoding method for UniEnc-CASSNAT. Specifically, we define the hidden features as H,

and the first pass of UniEnc-CASSNAT encoder as Iter0. Iter0 would generate TAE0. The

second pass uses H+TAE0 as input and generates TAE1, which we define as Iter1. Generally,

for iteration n, the contextual encoder accepts H and TAEn−1 as input and generates TAEn

for the iteration n+1. In each iteration, ESA generates multiple TAEs for the next iteration.

We define the number of sampled alignments in each iteration as Sn. The total number of

the sampled alignments would be
∏N−1

n=0 Sn, where N is the number of iterations used in the

decoding. We empirically found that two iterations are sufficient for a desirable word error

rate (WER).

4.2 Experimental Setup

4.2.1 Data Settings

The experiments were conducted with three datasets: the 100-hour subset of LibriSpeech En-

glish corpus [PCP15], the 240-hour (annotated section) My Science Tutor (MyST) children’s
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speech corpus [WC11], and 170-hour Aishell1 Mandarian corpus [BDN17]. We chose the 100-

hour subset of Librispeech to enable comparisons with previous work on non-autoregressive

automatic speech recognition (NASR). We conducted pre-processing on MyST dataset to get

a better baseline compared to [FCC23]. For example, we mapped filling pauses, non-speech

events, and truncated words to ⟨UNK⟩. The ⟨UNK⟩ is not considered when computing

WER.

The sets of output labels consist of 1024 word-pieces for Librispeech 100h and 500 word-

pieces for the MyST, obtained by the SentencePiece method [KR18]. For Aishell, 4230

characters are used as the vocabulary.

4.2.2 Model Settings

A CTC/Attention autoregressive transformer (AT) baseline was first trained with an archi-

tecture of a 12-block encoder and a 6-block decoder. Suppose the tuple of a transformer

setting is represented by (model dimension, feed-forward layer dimension, number of heads

in self-attention), we define three settings: d512 for (512, 2048, 8), d768 for (768, 3072, 12),

and d256 for (256, 2048, 4). d512 is used for the two English datasets, and d256 is used for

the Aishell1 dataset. Later on, we follow the same setting as in [FCC23] for CASS-NAT

training. For a fair comparison, we also include a CTC baseline as an encoder-only NASR

architecture. When training with the speech foundation models, the 12-block encoder was

replaced with a HuBERT-base model, either the English1 version for Librispeech and MyST,

or the Chinese version2 for Aishell1. We also conducted experiments on the TAE extractor

in UniEnc-CASSNAT to examine the trade-off between performance and model size.

All models are optimized using a noam scheduler [VSP17] with warmup steps of 15k (10k

for Librispeech 100h), a peak learning rate of 5e-5 for the encoder, and 1e-3 (5e-4 for MyST)

for uninitialized modules. The models were trained using a batch size of 80s audio samples

(40s for MyST because it contains longer utterances). The training either stops when the

1https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt

2https://huggingface.co/TencentGameMate/chinese-hubert-base
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WER of the valid set doesn’t improve for 10 epochs or is terminated at 30 epochs. For

MP-CTC training, the task ratio of CTC loss in the second pass is set to one.

All results are decoded without the usage of the external language model. For the AT

baseline, the beam search decoding is applied with a beam size of 20 for Librispeech and

MyST, and 10 for Aishell1. For CASS-NAT, the number of sampled alignments is 50 and

the threshold is 0.9. We explore the effects of the number of sampled alignments in two

iterations, and the threshold for each iteration is set to 0.9 as well.

4.3 Results and Discussion

4.3.1 Main Results

The main WER results of UniEnc-CASSNAT on the Librispeech 100h, MyST, and Aishell1

datasets are shown in Table 4.1. We first train two autoregressive transformer baselines

with or without the usage of self-supervised learning. The results in the table again show

the effectiveness of the speech foundation models. CASS-NAT achieves close performance

to their AT counterpart, which is consistent with previous work. We also present the results

of CTC on the three datasets. Due to the output-independent assumption, CTC is worse

than the AT baseline and CASS-NAT although it requires fewer parameters. Note that the

motivation of UniEnc-CASSNAT is to investigate whether the encoder can jointly model the

frame-level and token-level acoustic embedding without the use of the decoder and thus has

fewer model parameters. We expect to obtain a model with similar parameters compared to

CTC but close performance to CASS-NAT. As shown in Table 4.1, the proposed UniEnc-

CASSNAT achieves comparable results than CASS-NAT, for example, a WER of 11.0%

for UniEnc-CASSNAT vs. 11.2% for CASS-NAT on the Librispeech test-other set, but

is superior to CASS-NAT in terms of model size (99.3M vs. 130.5M). A smaller model

size can be helpful for on-device deployment. Compared to CTC, the UniEnc-CASSNAT

achieves much better performance than CTC with a similar model size. The additional

3M parameters compared to CTC (95.7M) are from the TAE extractor. The limitation of
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UniEnc-CASSNAT could be its slower inference than CTC and CASSNAT because of the

multiple forward computations of the encoder with a longer input sequence (concatenation

of frames and tokens). The RTF values in Table 4.1 show that the UniEnc-CASSNAT is

still 3-5x faster than the AT models although it is 6x slower than CASS-NAT.

The proposed UniEnc-CASSNAT achieves the best-performing NASR results so far in

the literature [FWG23, FCC23] on Librispeech 100h and MyST. One can find better WER

performance on the Librispeech 100h data, for example, in [ZZA22, WKW23]. However,

in that work, the authors either use a larger model trained with Libri60k hours of data

or extra text data. We compare the UniEnc-CASSNAT results to a similar work BERT-

CTC [HYA22], which also uses an encoder-only structure. Differently, UniEnc-CASSNAT

generates ASR outputs with CE loss instead of CTC loss in BERT-CTC and does not

require a pre-trained BERT module (smaller in size than BERT-CTC). In addition, UniEnc-

CASSNAT achieves the best performance with two iterations only instead of more than

10 iterations in BERT-CTC (faster inference). Based on the results in Table 4.1, UniEnc-

CASSNAT is better on Librispeech-100h but worse on Aishell1 than BERT-CTC. The reason

could be that Aishell1 contains simple sentences where a pre-trained BERT model is more

beneficial [HYA22] and the BERT-CTC has 143M parameters versus 102M in UniEnc-

CASSNAT.

4.3.2 Ablation Study of UniEnc-CASSNAT

We present more results on the Librispeech 100h data to show the importance of the pro-

posed MP-CTC training and iterative decoding. First, we set λ2 in Eq. 4.1 to zero and

train a UniEnc-CASSNAT with only first-pass CTC. The results in Table 4.2 show that the

single-pass CTC (SP-CTC) training has a performance gap compared to the CASS-NAT.

Additionally, SP-CTC training is not able to perform iterative decoding because TAEn>1

is not constrained by CTC outputs. MP-CTC training is also worse than the CASS-NAT

without iterative decoding (e.g. (50, NA)). When applying iterative decoding, we explore

different combinations of the number of sampled alignments Sn in each iteration. The total
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Table 4.2: Ablation study of MP-CTC training, the size of the TAE module, and iterative

decoding settings. d256, d512, and d768 are defined in Section 4.2.2 and their model sizes

(including encoder) are 96.1M, 99.3M, 104.2M, respectively. Sn is the number of sampled

alignments in iteration n.

Model Type (S1, S2) dev-clean dev-other test-clean test-other

CASS-NAT (50, NA) 4.7 11.4 4.9 11.2

UniEnc-CASSNAT

SP-CTC (50, NA) 4.9 11.9 5.0 11.6

MP-CTC-d512

(50, NA) 5.0 11.7 5.2 11.8

(50, 1) 5.0 11.1 4.9 11.1

(25, 2) 4.9 11.0 4.8 11.0

(10, 5) 4.9 11.1 4.9 11.1

(5, 10) 4.9 11.1 4.9 11.2

(2, 25) 5.0 11.4 5.1 11.4

(1, 50) 5.2 11.5 5.3 11.6

MP-CTC-d256 (25, 2) 4.9 11.4 4.9 11.2

MP-CTC-d768 (25, 2) 4.7 11.2 4.8 11.0

number of sampled alignments is set to the same as that used in CASS-NAT for a fair com-

parison. As shown in Table 4.2, iterative decoding with a setting of (25, 2) achieves the best

WER performance and is better than the WER of CASS-NAT. Most of the combinations of

Sn achieve comparable WERs to CASS-NAT. It is also noted that the diversity of sampled

alignments in the first iteration is more important than that in the second iteration.

Finally, since the TAE extractor introduces extra model parameters besides the founda-

tion model, we conduct experiments of UniEnc-CASSNAT with different transformer settings

(d256, d512, d768) described in Section 4.2.2). The results are also shown in Table 4.2. We

can see from the table that with a bigger TAEE module, the performance tends to be bet-

ter. However, we select MP-CTC-d512 as the final results to show in Table 4.1 because

MP-CTC-d768 did not achieve significant improvements with additional 5M parameters.
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4.4 Chapter Summary

In this chapter, we presented a novel encoder-only non-autoregressive ASR (NASR) model,

UniEnc-CASSNAT, which integrates the advantage of CTC and CASS-NAT. The encoder of

UniEnc-CASSNAT acts as both the encoder and decoder in CASS-NAT to reduce the model

parameters and can be well initialized from the speech foundation models (SSL pretraining).

Furthermore, MP-CTC training and iterative decoding are proposed for UniEnc-CASSNAT

to further improve the performance to be better or comparable to CASS-NAT. As a result,

UniEnc-CASSNAT achieved similar performance to the CASS-NAT using iterative decoding

and requires fewer parameters. We examined the effectiveness of the proposed methods on

the Librispeech 100h, MyST, and Aishell1 datasets. To the best of our knowledge, we have

achieved the best-performing WER results for NASR on the first two datasets with the same

settings as those in the literature. Future work includes model compression and distillation

to further reduce the parameters. Another interesting direction is to design SSL pretraining

methods for the encoder-decoder NAT models.
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CHAPTER 5

Benchmarking the Performance of Speech Foundation

Models for Children’s ASR

5.1 Motivation

Large foundation models have increasingly gained attention in the research community be-

cause of their impressive zero-shot and in-context learning ability [WTB22, LWL23, PT23].

Specifically in the speech area, the Whisper-large model [RKX23] has shown great robust-

ness to diverse domains of speech data by learning from large-scale supervised data in a

multi-task training setting. In addition to Whisper, another type of speech foundation

models (SFM) is obtained through self-supervised learning, e.g. Wav2vec2.0 [BZM20], Hu-

BERT [HT21], WavLM [Che22], and W2VBERT2.0 [CZ21]. Such models do not require

annotations and learn to extract contextual representations based on data patterns in the

speech signals [ZPH22]. State-of-the-art results of various speech recognition tasks can be

achieved by finetuning these models or using them as feature extractors.

With the increasing use of voice-based educational technology, better child ASR sys-

tems are needed because speech is one of the mechanisms young children use to interact

with devices due to their limited reading and writing abilities. However, as we mentioned

in previous chapters, child ASR is difficult due to, in part, the lack of large child speech

databases. To address this issue, researchers have developed a variety of data augmentation

methods by perturbation [KPP15,YFA21b,YFA21b,KS20] or voice conversion [LV24,Sha20].

Another direction is to adopt the pretraining finetuning paradigm, which utilizes the un-

annotated data with self-supervised learning [ML22, FZW22] or the annotated adult data

with transfer learning [SG20] in the pretraining stage. The knowledge learned in the pre-
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trained models can greatly improve the performance for child ASR. With the recent ad-

vances of SFMs, several studies have compared the performance of widely used SFMs on

child speech [JBY23,Att23,LSA22]. However, these studies provide only full finetuning ex-

periments on SFMs. In addition, the speech corpora used in these studies are partitioned

differently in each one, making direct performance comparisons difficult.

In this chapter, we initiate and present a comprehensive benchmark on the OGI [SHC00]

read and MyST spontaneous [WC11] child speech corpora, studying the performance of

various SFMs. More importantly, we investigate finetuning strategies for child speech by

comparing various data augmentation and parameter-efficient finetuning (PEFT) methods,

which are not discussed in previous works. We observe many interesting behaviors of fine-

tuning different speech foundation models. For example, adapter finetuning is better than

full finetuning for large models but vice versa for small models. Our benchmark study may

offer guidance in selecting appropriate models, data augmentation and PEFT strategies to

develop robust and accurate child ASR systems. The code and evaluation data list are re-

leased 1. We hope the standard evaluation can lead to fairer comparisons for child ASR

research.

5.2 Covered Topics in the Bechmark

We briefly introduce the methods that are compared in the benchmark, including used SFMs,

data augmentation and parameter-efficient finetuning (PEFT) techniques.

5.2.1 Speech Foundation Model

Large models trained with large amounts of data have shown great potential to improve the

performance of speech recognition tasks. There are two types of SFMs that are: 1) trained

with supervised speech-text pairs, such as Whisper [RKX23] and Parakeet [RKK23], and

2) trained with un-annotated speech data using self-supervised learning, e.g. Wav2vec2.0

1https://github.com/Diamondfan/SPAPL_KidsASR
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[BZM20], HuBERT [HT21], and WavLM [Che22]. For supervised SFMs, the zero-shot ability

of these models is compared as they can directly perform speech recognition tasks. We then

conduct in-depth finetuning experiments on the Whisper series (tiny, base, small, medium,

large and largeV3). For self-supervised SFMs, finetuning experiments are conducted. The

models used in the benchmark are listed in Table 5.1 along with details including model

architecture, input features, model size and training data. The open-sourced models can be

accessed in the OpenASR leaderboard2.

5.2.2 Data Augmentation

Data augmentation methods are commonly used in child ASR systems for alleviating the

data scarcity problem, but no systematic comparison between them has been conducted be-

fore. Based on the Whisper-small model, we compare several widely-used methods including

pitch perturbation [PNR11], speed perturbation [KPP15], vocal tract length perturbation

(VTLP) [JH13], and SpecAugment [PCZ19]. Two augmented utterances were created for

each utterance as has commonly been done in the literature.

• Pitch perturbation involves altering the fundamental frequency of speech signals while

preserving other temporal /spectral features. The pitch is shifted to n/12 octave higher

or lower for each utterance, where n is randomly sampled from 1 to 12 twice.

• Speed perturbation modifies the speed of speech signals. Two copies of each utterance

are created with the perturbation rate of 0.9 and 1.1.

• VTLP involves simulating the effects of variations in vocal tract length by applying

frequency warping. The perturbation rate used (0.9 and 1.1) is the same as that used

in speed perturbation.

• SpecAugment randomly masks consecutive frequency bands and time frames, which

effectively increases the robustness of the model to time-frequency variations. We use

the default SpecAug settings in the Whisper model.

2https://huggingface.co/spaces/hf-audio/open_asr_leaderboard

82



We look forward to incorporating new augmentation methods in the benchmark in the future.

5.2.3 Parameter Efficient Finetuning (PEFT)

Parameter-efficient finetuning techniques have become increasingly important when large

foundation models are used as model initialization for various tasks [LQP24]. These tech-

niques aim to adapt pretrained models to new tasks or domains while minimizing the com-

putational resources required for training. We compare four widely-used PEFT techniques,

which are Low Rank Adaptation (LoRA) [HW21], adapter tuning [HGJ19] (the one we used

in Chapter 2.1.3), prompt tuning [LJ22], and prefix tuning [LL21].

• LoRA leverages the observation that the matrices of model layers often exhibit low-

rank structures. By decomposing weight matrices into low-rank factors and updating

only the low-rank factors during fine-tuning, LoRA reduces computational overhead

while preserving model performance. We apply LoRA weights to both the query and

value-related parameters in each attention layer, with a rank of eight [HW21] .

• Adapter tuning introduces lightweight adapter modules, which are small neural net-

work components inserted between layers of the foundation models. By finetuning

only the parameters within the adapters, efficient adaptation is achieved. We used the

residual adapters with the bottleneck dimension of 32, which is similar to [HGJ19].

The residual adapters are inserted after each block in both the encoder and decoder.

• Prompt Tuning prepends randomly initialized prompt vectors to the input sequence

and the prompts are optimized through gradient-based methods, allowing the model

to directly learn task-specific input representations during fine-tuning. 100 and 20

prompts are inserted in the encoder and decoder inputs, respectively, in our experi-

ments.

• Prefix tuning is similar to prompt tuning but prepends the prompts at each layer

instead of at the input, bringing more flexibility during finetuning. In our experiments,

50 and 10 prompts are inserted at the beginning of each layer input to both the encoder
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and decoder modules, respectively.

The number of prompts used in prompt tuning and prefix tuning are chosen empirically. By

comparing various PEFT methods to full finetuning, we will discover the best finetuning

strategy for child ASR when using speech foundation models.

5.3 Experiments

In this section, we present the speech datasets used, experimental setup and results.

5.3.1 Child Speech Datasets

The experiments are conducted on two child speech databases: My Science Tutor (MyST)

spontaneous speech corpus [WC11], and CSLU OGI scripted read speech corpus [SHC00],

as described in Chapter 2 and Chapter 3. The preprocessing of the MyST corpus is slightly

different for the benchmark described in this chapter.

As mentioned in previous chapters, the MyST corpus consists of around 240 hours of

transcribed conversational children’s speech (from grade 3 to grade 5), recorded from virtual

tutoring sessions in physics, geography, biology, and other topics. Different from previous

chapters and similar to [Att23], we identify and filter low quality audio samples by passing

the transcribed dataset through the Whisper-largeV2 model. Utterances with WER larger

than 50% or with less than 3 words are removed, resulting in a 133 hours training set. When

evaluating the Whisper model, we find that the results are unstable for the test samples that

are longer than 30s (the maximum length for training Whisper). Hence, utterances longer

than 30s are also removed in both the training and test sets. As a result, the original data

splits in MyST corpus are as follows: train (133h), dev (21h), and test (25h).

The utterance ID list for the two corpora will be released as standard evaluations with

the training code.
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Table 5.2: Zero-shot performance of the supervised speech foundation models in terms of

WER. Bold numbers are the best performance among the supervised SFMs.

Model
Model
Size

MyST OGI

dev test dev test

Whisper-tiny 39M 18.5 20.6 40.1 53.8

Whisper-base 74M 15.6 16.8 36.8 38.0

Whisper-small 242M 14.4 13.4 21.2 25.4

Whisper-medium 769M 13.3 13.1 18.8 20.8

Whisper-large 1550M 14.4 12.5 21.2 22.9

Whisper-largeV3 1550M 12.3 12.6 14.9 19.9

Canary 1B 9.3 9.5 14.8 18.2

Parakeet-rnnt 1.1B 10.7 11.1 14.3 16.7

5.3.2 Finetuning and Evaluation Setup

When finetuning the supervised SFMs, we use the same vocabulary and objective function

as those used in the pretraining stage. When finetuning self-supervised SFMs, we use all

characters in the transcriptions to create a vocabulary and apply a CTC loss to perform ASR.

All results are reported by greedy search decoding without any external language model.

5.3.3 Zero-shot Performance for the Supervised SFMs

Since supervised speech foundation models are trained with ASR loss, we first compare their

zero-shot abilities on child speech. Top performing models from the OpenASR benchmark

for adult speech are selected for comparisons. The results are presented in Table 5.2. The

Canary and Parakeet models have been shown to perform better than Whisper, on average,

on the adult speech benchmark [SMK23]. The same conclusions can be drawn here for

child speech, which is surprising because the Whisper models are trained with more data

than Canary and Parakeet (training data sizes are shown in Table 5.1). Considering that
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many of the data for Whisper training is weakly-supervised, we conclude that data quality

is sometimes more important than the size of data for obtaining a robust supervised speech

foundation model, which has also been observed for large language models [Zho24].

5.3.4 Comparisons of Data Augmentation Methods

Table 5.3: WER comparisons of different data augmentation methods on MyST dataset

using the Whisper-small model. PP, VTLP, SP, SA indicates pitch perturbation, vocal tract

length perturbation, speed perturbation, and SpecAugment, respectively. PIF is perturba-

tion invariant training. x3 indicates three copies of the original data for augmentation.

Whisper-small Augmentation MyST-dev MyST-test

Baseline no 14.4 13.4

Finetuning

no 8.4 9.3

PP (x3) 8.6 8.8

VTLP (x3) 8.6 9.0

SP (x3) 8.1 8.9

SpecAug (SA) 8.2 9.0

SA + PP 8.2 8.9

SA + VTLP 8.1 9.0

SA + SP 8.3 8.9

PIF
VTLP (x3) 8.3 9.0

PitchP (x3) 8.3 8.9

Data augmentation is an important technique to deal with low-resource tasks, such as

child ASR. However, previous works either used private data or conducted experiments

with their own settings, making the comparisons of different methods difficult. In addition,

previous data augmentation methods are proposed based on training from scratch. It is

unknown whether these methods improve the performance when using SFMs. To address

this issue, we made a comparison of different data augmentation methods and explored their
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role in finetuning SFMs. The experimental results on MyST dataset using Whisper-small

model are shown in Table 5.3. The reason we use the Whisper-small model is because it

is computationally efficient given our limited number of GPUs, and achieves a reasonable

WER on child speech. We can observe from the table that different augmentation methods

achieve similar WER improvements compared to the finetuning baseline. Interestingly, the

combination of two data augmentation methods does not provide further gains compared

to using only one method. This is slightly different from the conclusion in [YFA21a] when

the model is trained from scratch. This might be because the SFM itself is already robust

to some variations created by the data augmentation methods. Note that F0-based data

augmentation in [YFA21a] achieves similar performance to pitch perturbation.

The improvements of speed perturbation and SpecAugment are more stable (consistent

improvements in WER on development and test sets) than pitch perturbation and VTLP.

We therefore propose a perturbation invariant finetuning (PIF) technique to stabilize the

VTLP and pitch perturbation. Specifically, an additional distance loss between the encoder

outputs of original and perturbed utterance is added as a regularization for finetuning. The

results in Table 5.3 show that PIF can lead to more consistent improvements of perturbation

methods on the MyST-dev and MyST-test sets. We look forward to incorporating other

data augmentation methods into the public codebase/benchmark in the future.

5.3.5 Comparisons of Parameter Efficient Finetuning

When speech foundation models are large, full finetuning with the entire model parameters

would be difficult because of the high GPU memory costs. Parameter efficient finetuning

can retain the performance of full tuning but update less parameters during the finetuning

stage. We compare several widely used PEFT methods in the NLP area on Whisper-small

model and present the results in Table 5.4. It can be seen from the table that adapter tun-

ing achieves similar performance compared to the full finetuning while having only 1.29M

parameters for updates. Note that the initialization of the adapters are important for good

performance of adapter tuning. For example, the inserted adapter module should be equiva-
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Table 5.4: WER comparisons of different parameter efficient finetuning (PEFT) methods

on MyST dataset using the Whisper-small model. Params indicates the number of updated

parameters during finetuning. Enc. and Dec. represents finetuning encoder and decoder

only, respectively.

Model PEFT MyST-dev MyST-test Params

Baseline no 14.4 13.4 0

Full-FT no 8.4 9.3 242M

Whisper
-small

Enc. 9.0 9.2 88M

Dec. 8.9 9.5 154M

Prompt [LWL23] 10.4 10.4 92k

Prefix [LL21] 8.9 10.2 541k

LoRA [HW21] 9.1 9.6 917k

Adapter [FA22] 8.4 9.3 1.29M

lent to the identity function at the start of the finetuning. However LoRA, the most popular

PEFT method in the area of NLP, achieves worse performance than the full finetuning.

5.3.6 Supervised vs. Self-supervised Foundation Models with Finetuning

In addition to the supervised foundation models, self-supervised foundation models are also

widely used for child ASR. We compare the full-finetuning performance between the two

types of foundation models and present the results in Table 5.5. The results show that

supervised SFMs can achieve better performance than the self-supervised SFMs after fine-

tuning with similar model parameters (e.g. Whisper-small with 242M and WavLM with

311M parameters). Among the most widely used SSL models, WavLM achieves the best

performance because it used more data and included a masked reconstruction from noisy

and multi-talker speech data during pretraining. Note that an advantage of the SSL models

are that they might also be robust to other speech tasks because the SSL loss is not specif-

ically designed for ASR. We don’t compare this ability of SSL models since we are mainly
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Table 5.5: WER comparisons of finetuning supervised and self-supervised speech foundation

models. Note the performance difference between OGI (read speech) and MyST (spontaneous

speech).

Model
MyST OGI

Dev Test Dev Test

Supervised SFM

Whisper-tiny 11.6 11.6 2.7 3.0

Whisper-base 9.1 10.4 2.0 2.3

Whisper-small 8.4 9.3 5.0 1.8

Whisper-medium 8.4 8.9 1.6 1.5

Whisper-large 8.2 9.2 1.8 1.7

Whisper-largeV3 8.5 9.1 1.6 1.4

Self-supervised SFM

Wav2vec2.0 10.6 11.1 2.1 2.5

HuBERT 10.5 11.3 2.2 2.5

WavLM 9.6 10.4 1.7 1.8
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focusing on the ASR task. The Canary and Parakeet-rnnt models were released after our

finetuning experiments on the Whisper models. The finetuning of Canary and Parakeet will

be reported in future publications.

5.3.7 The Impact of the Model size in PEFT

WER Performance on MyST-test data

0.0
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WER Performance on OGI-test data
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Figure 5.1: The impact of the Whisper model size for full and adapter finetuning (Adap-FT

in the figure). The model size of each whisper model can be found in Table 5.1.

As shown in Table 5.5, the WER of the Whisper model decreases when the model size

increases. We further explore whether the model size would affect the performance of PEFT,

specifically adapter tuning because it behaves better than other PEFTs as shown in Table 5.4.

The results of both full finetuning and adapter finetuning on MyST and OGI test data are

plotted in Figure 5.1. We can observe from the figure that the adapter tuning does not work

as well as the full finetuning for small models. However, when the model size increases, the

gap between adapter tuning and full finetuning decreases. For example, the adapter tuning

achieves even better performance than the full finetuning for the Whisper-largeV3 on the

MyST-test data. This interesting behavior provides us with guidance on how to select the,

appropriate finetuning strategy. That is, performing full finetuning for small models and

PEFT for large models. It would also be interesting to investigate the impact of the model

size for data augmentation methods, which will be included in future work.

90



5.4 Chapter Summary

In this chapter, we presented the first benchmark for child ASR with a comparison of vari-

ous speech foundation models, such as Whisper, Canary, Parakeet, Wav2vec2.0, HuBERT,

and WavLM. We found that the Canary and Parakeet models are better than Whisper

models on child speech with much less training data, indicating the data quality is some-

times more important than the data quantity. As expected, supervised SFMs performed

better than the self-supervised SFMs after finetuning. Moreover, we investigated finetuning

strategies by comparing various data augmentation (pitch perturbation, speed perturbation,

VTLP and SpecAugment) and parameter-efficient finetuning (PEFT) methods (prompt tun-

ing, prefix tuning, adapter tuning, and LoRA). Similar performance was achieved for the

data augmentation methods investigated. To stabilize the finetuning using the augmented

data, we propose a perturbation invariant finetuning (PIF) loss as a regularization. Various

parameter-efficient finetuning (PEFT) strategies were compared, and we observed that the

behaviors of PEFT are different when the model size increases. For example, PEFT per-

formed better than full finetuning for large models but worse for small models. This study

may offer guidance in selecting appropriate models, data augmentation and PEFT strategies

to develop robust child ASR systems.
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CHAPTER 6

Conclusion

This dissertation explored methods to improve the accuracy and inference efficiency for

children’s automatic speech recognition (ASR). Additionally, a child ASR benchmark based

on speech foundation models was created to facilitate further research on child ASR. In this

chapter, we summarize the main results of the dissertation and discuss possible future work.

6.1 Summary

Chapter 2 presented the developed self-supervised learning (SSL) based techniques to im-

prove the accuracy for children’s ASR by leveraging adult speech data in the pretraining

stage. Specifically, a bidirectional APC (Bi-APC) framework was proposed for BLSTM

pretraining, which addressed the problem that APC is not suitable for bidirectional model

pretraining. We discussed the possibility of using Bi-APC for non-causal transformers. Vari-

ous solutions were investigated and results showed that Bi-APC framework can have a slight

improvement over the transformer baseline without pretraining, but the results are worse

than other bidirectional pretraining methods like Wav2vec2.0 and HuBERT. Additionally, a

domain responsible adaptation and finetuning (DRAFT) framework was proposed to allevi-

ate the domain shifting problem between adult and child speech. The DRAFT framework

performed well on APC, Bi-APC, Wav2vec2.0 and HuBERT methods, showing that it can

improve the performance of pretraining methods for both causal (APC) and non-causal

transformers (the other three techniques). When compared to the conventional pretraining

baselines without adaptation, we achieved relative WER improvements of up to 19.7% on

the two child ASR tasks (OGI and MyST).
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In Chapter 3, a novel non-autoregressive transformer (CASS-NAT) was proposed. CASS-

NAT increases the inference efficiency for an ASR system. During training, Viterbi-alignment

was used to estimate the posterior probability, and various training strategies were applied

to improve the WER performance of CASS-NAT. During inference, we investigated in depth

an error-based sampling alignment (ESA) method that we introduced to reduce the align-

ment mismatch between training and inference. The extensive experiments on CASS-NAT

have shown that: (1) a mixed-attention decoder (MAD) in CASS-NAT was important for

reducing the WER; (2) the reason why ESA decoding works well was because it has a lower

length prediction error rate; (3) TAEs had similar functionality to word embeddings, such as

representing grammatical structures, indicating the possibility of learning semantics without

a language model. As a result, CASS-NAT achieved new state-of-the-art results for NAT

models on several ASR tasks (Librispeech, Aishell1, TED2, and MyST) with and without

SSL pretraining. The performances of CASS-NAT were comparable, in relative terms, to

AT with beam search decoding, but maintain a ∼20x speed up.

Chpater 4 integrated the usage of SSL and non-autoregressive generation, and pre-

sented a novel encoder-only non-autoregressive ASR (NASR) model, UniEnc-CASSNAT.

The UniEnc-CASSNAT acted as both the encoder and decoder in CASS-NAT to reduce the

model parameters and can be well initialized from speech foundation models (SSL pretrain-

ing). Furthermore, MP-CTC training and iterative decoding were proposed for UniEnc-

CASSNAT to further improve the performance so that it is comparable to CASS-NAT.

Experimental results showed that UniEnc-CASSNAT achieved similar performance to the

CASS-NAT using iterative decoding, and however, it required fewer parameters.

Finally, in Chapter 5, we introduced the first benchmark for child ASR with a compar-

ison of various speech foundation models, such as Whisper, Canary, Parakeet, Wav2vec2.0,

HuBERT, and WavLM. The Canary and Parakeet models are better than Whisper mod-

els on child speech with much less training data, indicating the data quality is sometimes

more important than the data quantity. Supervised SFMs performed better than the self-

supervised SFMs after finetuning. Moreover, various data augmentation (pitch perturbation,

speed perturbation, VTLP and SpecAugment) and parameter-efficient finetuning (PEFT)
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methods (prompt tuning, prefix tuning, adapter tuning, and LoRA) were compared. We ob-

served that different data augmentation methods performed similarly and PEFT performed

better than full finetuning for large models but worse for small models.

6.2 Future work

In the proposed DRAFT framework, we observe that the residual adapters learned from

one dataset could benefit another dataset. It could be interesting to investigate the fusion

of residual adapters learned from various domains for greater WER improvements on child

and/or other low-resource ASR tasks.

In addition to the proposed non-autoregressive generation methods, model compression

and distillation are also promising directions for improving the inference efficiency by reduc-

ing model parameters.

The presented benchmark in this dissertation may offer guidance in selecting appropri-

ate models, data augmentation and PEFT strategies to develop robust child ASR systems.

Future work will include: 1) Evaluations on other child speech datasets; 2) Comparisons

with new data augmentation methods; 3) Evaluations of other open-sourced speech founda-

tion models, such as SeamlessM4T [BCM23], OWSM [PT23] and W2VBERT2.0 [CZ21]; 4)

Migration of models not supported in Huggingface, e.g. the Canary and Parakeet models

developed using the NeMo [KLN19] framework, since our finetuning code is implemented

based on Huggingface.

Finally, the language modeling for child ASR is an under-explored topic, which might

require more attention from the research community in the future.
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