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Abstract

In this paper, we study human perception of consonants ipribeence of additive babble noise at two speaking ratedditian, we
work on a model that attempts to replicate these human ssuttugh a phoneme recognition model. Consonant-VowekQuant
(CVC) stimuli comprising of a set of 13 consonants and 3 vew&/, /i/, /ul) were recorded in a sound proof booth by twketas
at two different speaking rates (fast and slow). Noisy slinvere generated by adding babble noise at different leiethe quiet
recordings. These stimuli were used to conduct percepkperanents in which 52 listeners were asked to listen andaepack the
CVC phrases presented in babble noise under 3 SNR conddimhdoth speaking rates. The data was transcribed by tweettai
linguists. The results were analyzed by SNR, vowel, andigpgaate. Rate did not have an effect on the perception c$@oants in
quiet conditions. With the exception of /CuC/ stimuli, skieg rate had a pronounced effect, with slow speech being imbelligible
than fast speech in the presence of noise. /CaC/ stimuli,waraverage, more robust than other stimuli in all condgidn addition,
syllable initial consonants were better identified thanlfammsonants, especially in noise. The effect of rate wasrposnounced in
voiced syllable final consonants. The stimuli collected wasthrough a phoneme recognition model based on GMMs. Tlohimea
effectively sees "noisy” data even though we present it wigtan stimuli due to mismatched train and test conditior@sr(ion TIMIT,
test on sound booth stimuli). The machine consonant retiogriiccuracies and confusions are similar to that of hunfilan8dB
stimuli. The machine also mimicks the effect of rate on husrfan the /i/ and /u/ context while it does not for the /a/ camte

Index Terms. Rate, Perception, CVCs, Confusion Matrix

1. Introduction

In the presence of a noise masker, speech sounds are ofteisednvith others by both human listeners and machines. ¢{enbig
challenge for automatic speech recognition (ASR) systamdshaman listeners is to perceive speech in the presenceckfimand
noise. It is useful to study the way humans perceive speenbige in order to enable us to build more noise robusts sysfenthe
same. Nonsense syllables of the form of Consonant-Vowek@uant (CVC) or Consonant-Vowel(CV) or Vowel-Consondatf are
typically used in perceptual experiments to study the wapdms confuse consonants and vowels in the presence of naigieeent

SNRs. The classic study [1] performed experiments with CNables (16 consonants, 1 vowel, in white noise). It showed some



consonants are identified more easily than others at the Siife The percentage accuracy of a consonant was used asi@ afietr
consonant identification. A more detailed analysis on thregpual confusion patterns were studied in [2].

Following the classic study [1], there have been severagissuon consonant confusions in the presence of noise. Agpicatly
balanced set of nonsense English syllables containingnigaliconsonants, ten vowels and ten final consonants wenersin [3].
The study by [4] also showed that some consonants are ideghtifore easily than others, and hence some consonantseradugher
SNR in order to be identified as well as others. In additioa,gaper also studied the identification of initial vs final samants. Initial
consonants showed a better accuracy of identification apamd to final consonants under all SNR conditions presergadilar
results for initial consonants being more accurately ifiedt were obtained by [5]. One possible argument with a bas@uditory
processing could be that a greater neural response fobly/kmsets would help perceive them better than syllabketdf[6]. An
alternate argument, which has its basis in speech produdsithat the initial consonants are produced differefithntfinal consonants
(i.e. initial consonants are usually longer and of largepkitorde) [5].

The effect of vowel context on the identification of consdsamas been studied previously. It has been shown that canton
are most accurately identified in the presence of the vowelest /a/, next for /i/, and least accurately identified ie ttontext of
/ul [7]. However, these are overall results, and the efféatoavel context can be further studied by separately stuglymitial vs
final consonants or separating consonants based on placecafation [8]. Previous work has studied the effect ofaiag rate on
voice-onset time (VOT) and vowel production [9], and on tkeegeption of voice onset time for initial stop consonant¥.[The effect

of speaking rate on the identification of consonants in ndiasn’t been studied previously. This paper mainly focosethis area.

2. Methods

2.1. Perception Experiments

2.1.1. Stimuli and Subjects

The stimuli included only nonsense CVC syllables, sincé&clicontext can affect perceptual results. The CVC sydlallere chosen
from a set of 120 phonetically balanced nonsense Englishtdgs [3] . A subset of 36 CVCs from the total set, with thenesrvowels
(/al, lil, lul) were chosen as stimuli for these experimeHence the CVCs covered a set of 13 consonants (/p/, /tIdiblk/, 19/, Isl,
121, Iml, In/, In/, /I/, Ir/) and 3 vowels. It is important tote that, in the CVC list that we used, all 13 consonants dappear in the
syllable initial and final location. Table 1 shows the coraus which appear in the initial and/or final position.

The CVC sounds were recorded in a sound proof booth at UCLAgLesh AKG C-410 head mounted microphone. Two repetitions
of each syllable were obtained in the carrier phrase "/&/@Cat normal and fast speech rates. This gave a set of 144 @¥Qalker
(36 CVCs, 2 repetitions, 2 speaking rates). These were @eddoy two native speakers of U.S English. The phrase /aCIGvas
chosen as a compromise between the use of a carrier phramh @old increase the memory and attention burden fomes® and
using isolated CVCs which lack formant transition cues attibginning of the syllable. Stimuli were directly digitizat a sampling
rate of 16 kHz.

The noisy stimuli were prepared by adding babble noise (fhmiseX database [11]) at an SNR of 0 dB, and 5dB to the clean

stimuli. The SNR was calculated using the average SNR offieech only samples (speech activity detection was perfibonghe



Table 1:Consonant List - Initial and Final Syllable Position

Consonant | Initial | Final
Ip/ v v
It v v
Ikl v v
/bl v
[d/ v v
lg/ v
Is/ v v
z] v
/h/ v
/m/ v v
In/ v
N v v
Ir/ v

clean CVC stimulus). This SNR was used to calculate the nmmwer to be added to the clean stimulus to prepare the nomylss.
Each noisy stimulus was prefixed and postfixed with 75ms dfleatoise (at the SNR calculated previously). This was dorenable
the listeners to get accustomed to the noise environmemicéja total of 864 CVC stimuli (36 CVCs, 2 repetitions, 2 &iegqrates -
fast, slow, 3 SNRs - quiet, 0dB, 5dB) were presented to eatdmier.

There were a total of 52 listeners who participated in theegrpents. All listeners were normal-hearing adults, lasstthe age

of 25, and were native speakers of U.S. English.

2.1.2. Experimental Setup and Procedure

The experiments were conducted in a sound proof booth at U@iAg the stimuli described in the previous section. Theentb
would hear the set of 864 CVC stimuli over two sessions of Irleach, comprising of 432 stimuli per session. The stimulieve
played back to back, and the subjects were given a 3 secomtbwibetween successive stimuli, to respond. The subjeottezpthe
heard sound by repeating back the stimulus into the micnephtn this setup, the subject didn’'t need to choose fromt ®1i€VCs.
This procedure is similar to that used in [12] and was doneviorreasons (a) in order to avoid the errors/bias based osuthiects’
knowledge of phonetics, (b) in order to enable the subjectpitckly reproduce the CVC without putting thought intoritdacausing
confusion. A short break of 10 seconds was given after ev@rstienuli in order to avoid fatigue. Two phonetically traghnguists
transcribed the responses of the subjects manually. Takrotmber of CVC stimuli transcribed was 864*52 = 44928. Toiveare
setup for the listening experiments and the transcriptiom® prepared in-house at UCLA. A Matlab based GUI was desidor this

purpose.

2.2. MachineModel

2.2.1. Modeling Paradigm

A machine model that is trained to perform phoneme recagmis provided with the same stimuli presented to the humabjests.
The machine model we use here is a Gaussian Mixture Model (Ehdded system where a GMM is learned for each consonant (a

total of 13). Ideally we would like to split up the set of stilhinto a train and a test set for evaluation. However, we dbhave



sufficient data to utilize such a framework. There are onlg 8dmuli collected, each less than a second long. Hence aire ttne
GMMs using data from the TIMIT corpus which contains broatabaecordings of 630 speakers of eight major dialects of Acaar
English, each reading ten phonetically rich sentences s€htences contain phoneme boundaries. The features eskF@Cs. The
GMNMs are trained using the Expectation Maximization altjon (they are not trained discriminatively). The number @ftores are
determined by performing a search on the parameter spaces&\®} mixture GMMs in this work. In the testing phase we firekibst
phone that matches with each phone segment by performingrmaaxlikelihood on these GMMs. The phone segments are addain

through a manual transcription.

2.2.2. Challenges Faced

e Mismatched Training and Test Daté# is important to note that the inherent differences befwéhe training and test corpus
make it very difficult to build a good phoneme recognizer. Té® corpus consists mbnsense&onsonant-vowel-consonants
while the training corpus contains syntactically corresglish sentences. In addition, there is a channel mismatahia clean

condition due to different microphone characteristics.

e Limited Data: Due to the limited amount of data we are forced to use a pgimadihere there is a training/test mismatch. In the

future, we hope that a large sized corpus of honsense Camsdoael-Consonant (CVC) utterances will be collected.

3. Resultsand Discussion
The results of the perceptual experiments are describeudrsection. These were analyzed by separating the effezaaif of the
factors : consonant location (initial or final of a CVC utteca), speaking rate (fast, slow) and vowel context.
3.1. Overall Accuracies separated by Vowel

The overall consonant accuracies separated by vowel atteglio Figure 1. The highest accuracy is obtained for theef@mantext

/al, then /il and the lowest for the /u/ context for both sjiregikates. This is consistent with the studies performedrband [8].

Figure 1: Overall Accuracies (Both Rates)
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3.2. Effect of Consonant Location

The consonant position (initial or final @V C) is an important factor for the perception of consonantsTdbles 2 and 3, we pick

those consonants which occur in both the syllable initidl fimal positions in our CVC list in the corresponding cont@dble 1). The



Figure 2: Effect of Rate
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results are reported for the /a/ and /u/ context only sinesdlare least and most affected by noise. We see that tte @aitisonant is

more accurately identified than the final consonants, ealbeai noise. These results are consistent with previoukwb[4] and [5].

The only exception is /I/, where syllable final position wasrerobust than initial position at both rates. One expianas that in fast

speech, /Il becomes syllabic and more robust.

Table 2:Identification accuracies for syllable Initial vs Final Ceonants - /a/ context

Consonant Clean 5dB 0dB
Initial | Final | Initial | Final | Initial | Final
It/ 0.99 0.93 0.87 0.74 0.66 0.47
Ikl 0.97 0.92 0.72 0.45 0.52 0.23
/d/ 0.97 0.97 0.95 0.52 0.92 0.44
N 0.98 0.96 0.87 0.88 0.61 0.81

Table 3:ldentification accuracies for syllable Initial vs Final Ceonants - /u/ context

Consonant Clean 5dB 0dB
Initial | Final | Initial | Final | Initial | Final
Ip/ 0.96 0.66 0.57 0.04 0.42 0.05
It/ 0.98 0.94 0.92 0.68 0.78 0.51
Ikl 0.98 0.95 0.54 0.55 0.31 0.34
/sl 0.99 0.96 0.95 0.88 0.93 0.81
/m/ 1.00 0.85 0.75 0.23 0.61 0.11

3.3. Effect of Speaking Rate

3.3.1. Separated by Vowel Context

The results shown in Figure 2 are averaged for all consomemtshow that humans perceive slow speech more clearlydksasdeech

in the presence of babble noise for the vowel context of /d/@nThis holds true across both SNR levels that were pttesdre. 0dB,

5dB. However, in the vowel context of /u/, both the slow arst fpeech show similar accuracies.



3.3.2. Effect on Voiced Syllable Final Consonants

Table 4 shows the difference in accuracy between slow andfeech, for voiced and unvoiced consonants. Not all cargsroccur
in syllable final position (Table 1), and we choose thoseeianvoiced opposing pairs for which we have complete d&eaobserve
that voiced syllable final consonants are more affected t®/thean voiceless consonants in noisy speech. For exanhgle/oiced
consonants (/d/ and /z/) are affected more by rate, thanuheoiced counterparts. The duration of the vowel is an irgr cue for
the voicing characteristic of the consonant that follow3][1A faster speaking rate would shorten the vowel signifigamnd it is

hence possible that the voicing characteristic of the aassofollowing it would be hard to identify. We also note frdhe confusion
matrix in Table 9, that the consonant /z/ is usually confusih /s/ and /d/ with /t/. The large difference in intelligiby between the

slow and fast speech for voiced consonants could be duestogtason.

Table 4:Difference in identification accuracies between slow arsd far voiced vs unvoiced syllable final consonants

Difference (Slow
Accuracy - Fast
Accuracy )
vowd Consonant | Clean 5dB 0dB
Context

lal [d/ 0.02 0.51 0.33
la/ It 0.05 0.12 -0.11
lil Is/ 0.02 0 0.01
lil 1z] 0.16 0.45 0.53

3.3.3. Separated by Consonant Group

In Table 5, the results are separated by consonant groumgsStricatives, Nasals and Glides]. The identificatiorueaties of these
consonant groups are compared with each other, averagessat 3 center vowels. The glides (/I/, /r/) are the mostsblbo noisy
conditions, where accuracies as high as 70% are seen in seeof@dB babble noise. The fricatives show the next bestativer

performance. We also see the overall trend of slow speecty lmore intelligible than fast speech, when averaged aaibsswel

contexts.

Table 5:Accuracies for each consonant group (all vowels)

Clean 5dB 0dB
Slow | Fast | Slow | Fast | Slow | Fast
Stop 096 | 094 | 0.79 | 0.59 | 0.50 | 0.43
Fricative | 0.93 | 0.92 | 0.89 | 0.77 | 0.76 | 0.70
Nasal 095 | 096 | 055 | 0.60| 0.52 | 0.43
Glides 0.98 | 0.97 | 096 | 0.86 | 0.70 | 0.66

3.3.4. Confusion Matrices

Tables 6 and 7 show the confusion matrices for slow and fastcprespectively for the syllable initial consonants, ¢ GNR.
Similarly, Tables 8 and 9 show these confusion matricesyitalsle final position. Since the subjects repeat back tkatified CVC,

and do not choose from a predefined list, it is possible thet thport a consonant outside the list of allowed consonartiese go



into the "none” column of the confusion matrix. Certain roefsthe confusion matrix are missing since not all consonantsir in
the syllable initial and final position (Table 1). The bolcdaentries of the confusion matrix which indicate the petage accuracies
for these consonants, are lower for fast speech than sloeckpéiowever, it is evident that the confusion pattern islainfior both
speaking rates. For example, /z/ is confused primarily ¥githn both slow and fast speech. Another example is whetis g@nfused

with /k/, /t/ or /h/, for both speaking rates.

In [14], it was reported that /t/ in CV syllables is part of ahiscoring set in noise while /b/, /d/, /g/, /k/ are not. Weeskie a
similar trend in our data for both rates and both syllablgahand final position. Similarly, /n/ was reported to bethiggoring but not
/m/. Here, we again observe a similar trend, however ragetfftthe perception of /n/ more significantly than /m/. In][14/ and /z/
are both part of the high scoring set, but here we see thaewtis is true for slow syllable final consonants, /z/ is vesy kcoring in

fast speech due to the reasons outlined in Section 3.3.2.

Table 6:Confusion Matrix - Slow Speech, 0dB SNR, Syllable Initiaisomants, All Center Vowels

p t k b d g S z h m n I r none
045 | 0.11 | 0.13 | 0.04 | 0.01| 0.00 | 0.00 | 0.00 | 0.12 | 0.02 | 0.00 | 0.03 | 0.01 | 0.06
0.14 | 0.75 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03
0.20| 0.05| 055 | 0.01 | 0.00 | 0.00| 0.01 | 0.00 | 0.15| 0.00 | 0.00 | 0.00 | 0.00 | 0.02
0.16 | 0.01 | 0.02 | 0.60 | 0.01 | 0.01| 0.00 | 0.00 | 0.09 | 0.03 | 0.00 | 0.01| 0.00 | 0.05
0.03| 0.10 | 0.02 | 0.04 | 0.70 | 0.02 | 0.00 | 0.00 | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04
0.02| 0.02 | 0.01| 0.01| 0.00| 0.00| 090 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02
0.20 | 0.02 | 0.06 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.62 | 0.02 | 0.00 | 0.00 | 0.00 | 0.03
0.01 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05| 0.75 | 0.01 | 0.05| 0.03 | 0.03
0.01| 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.23 | 0.01| 057 | 0.08 | 0.05
0.03| 0.00 | 0.00 | 0.14 | 0.01| 0.00 | 0.00 | 0.00 | 0.06 | 0.10 | 0.00 | 0.07 | 0.52 | 0.05

=|—|3|>|wn Q.U?x—'-r'ogga

Table 7:Confusion Matrix - Fast Speech, 0dB SNR, Syllable Initiah€dmants, All Center Vowels

B

p t k b d g s z h m n | r none
044 | 0.09 | 0.04 | 0.09 | 0.01| 0.00| 0.01| 0.00 | 0.20 | 0.02 | 0.00 | 0.01 | 0.02 | 0.08
0.13| 059 | 0.09 | 0.02 | 0.02 | 0.00 | 0.00| 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05
0.21| 0.02 | 047 | 0.02 | 0.00 | 0.00 | 0.00| 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02
0.16 | 0.04 | 0.04 | 047 | 0.01| 0.01| 0.00| 0.00 | 0.15| 0.03 | 0.00 | 0.01 | 0.01| 0.07
0.04 | 0.06 | 0.01| 0.05| 0.74 | 0.01| 0.00| 0.00 | 0.05| 0.00 | 0.00 | 0.00 | 0.00 | 0.02
0.00 | 0.04 | 0.00 | 0.00| 0.01| 0.00| 0.79 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13
0.14 | 0.02 | 0.08 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.70 | 0.01 | 0.00 | 0.00 | 0.00 | 0.03
0.03| 0.01| 0.01| 0.05| 0.00| 0.00| 0.00| 0.00 | 0.11 | 0.67 | 0.01 | 0.05| 0.03| 0.03
0.03| 0.01| 0.01| 0.04 | 0.00 | 0.00| 0.00| 0.00 | 0.07 | 0.16 | 0.00 | 057 | 0.03 | 0.07
0.01| 0.02 | 0.01| 0.03 | 0.00 | 0.00| 0.00| 0.00 | 0.06 | 0.06 | 0.00 | 0.11 | 0.64 | 0.06

=|—|3|T|n|alT|xX|~|T

3.4. MachineModel Results

3.4.1. Overall Consonant Identification Accuracies

The overall accuracies of the machine model are compardtketbuman results in Table 10. We see that the accuracies ofdbel
are similar to that of the Human at 0dB. The mismatch betwieetrain and test data for the machine model make the cledunatiom

files seem "noisy”. Hence the accuracies of the machine maédhr lower than the human results for the clean files.



Table 8:Confusion Matrix - Slow Speech, 0dB SNR, Syllable Final Goasts, All Center Vowels
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none

0.03

0.16

0.23

0.01

0.05

0.19

0.02

0.00

0.00

0.00

0.06

0.03

0.00

0.21

0.00

0.45

0.03

0.00

0.11

0.02

0.01

0.04

0.00

0.01

0.05

0.17

0.00

0.10

0.01

0.27

0.28

0.00

0.03

0.06

0.02

0.02

0.00

0.02

0.05

0.11

0.00

0.12

0.00

0.04

0.00

0.00

0.50

0.09

0.00

0.03

0.00

0.01

0.10

0.09

0.00

0.13

0.00

0.05

0.01

0.01

0.21

0.33

0.01

0.06

0.00

0.02

0.11

0.06

0.00

0.12

0.00

0.00

0.00

0.00

0.00

0.00

0.78

0.20

0.00

0.00

0.00

0.01

0.00

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.87

0.00

0.00

0.00

0.01

0.00

0.02

0.00

0.06

0.00

0.01

0.11

0.07

0.01

0.05

0.00

0.13

0.34

0.11

0.00

0.12

0.00

0.02

0.00

0.00

0.03

0.02

0.00

0.01

0.00

0.03

0.68

0.16

0.01

0.04
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0.00

0.01

0.00

0.00

0.03

0.00

0.00

0.01

0.00

0.00

0.03

0.85

0.00

0.06

Table 9:Confusion Matrix - Fast Speech,

0dB SNR, Syllable Final Goasts, All Center Vowels
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none

0.06

0.17

0.55

0.00

0.03

0.04

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.13

0.00

0.53

0.11

0.00

0.01

0.02

0.05

0.04

0.00

0.01

0.06

0.08

0.00

0.10

0.01

0.32

0.34

0.00

0.01

0.01

0.09

0.03

0.00

0.00

0.03

0.04

0.00

0.11

0.00

0.48

0.05

0.00

0.17

0.07

0.04

0.03

0.00

0.00

0.05

0.02

0.00

0.09

0.01

0.35

0.10

0.00

0.08

0.22

0.03

0.03

0.00

0.01

0.03

0.01

0.00

0.13

0.00

0.03

0.00

0.00

0.00

0.00

0.85

0.07

0.00

0.00

0.00

0.01

0.00

0.03

0.00

0.10

0.01

0.00

0.01

0.01

0.49

0.34

0.00

0.00

0.00

0.00

0.00

0.03

0.01

0.24

0.04

0.00

0.05

0.03

0.04

0.04

0.00

0.14

0.25

0.05

0.00

0.10

0.00

0.27

0.02

0.00

0.02

0.02

0.03

0.02

0.00

0.01

0.40

0.12

0.00

0.08
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0.00

0.12

0.02

0.00

0.02

0.01

0.02

0.02

0.00

0.01

0.03

0.69

0.00

0.07

Table 10:Machine Model vs Human Accuracies

k
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d
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h

Machine - Clean| 0.37

0.66

0.88

0.20

0.66

0.07

0.98

0.13

0.68

0.64

0.50

0.46

0.38

Human - Clean

0.89

0.97

0.96

0.98

0.97

0.90

0.90

0.88

0.99

0.95

0.97

0.97

0.99

Human - 5dB

0.49

0.80

0.60

0.68

0.67

0.47

0.86

0.69

0.78

0.60

0.70

0.86

0.90

Human - 0dB

0.35

0.62

0.40

0.54

0.53

0.28

0.82

0.60

0.66

0.45

0.54

0.72

0.58




3.4.2. Effect of Rate

In Figure 3 and Figure 3 we split up the accuracies of by comsband speaking rate for both the human and machine. Siadéeh
are in clean condition, the accuracy of the human listeneeiig high(near 98%). The machine performs poorly in cleamdi®n,
and hence we try to compare slow/fast for the machine the saaypeave did for the human subjects in noise. The noisy resattghie
machine are not presented in this paper. From Figure 3, wihaeslow speech has higher accuracy of identification thahspeech
for the consonants /p/, /z/, Ihl, Im/ , In/, /l. The accueacire similar across both rates for the consonants /g/ AnBast speech is
identified more accurately for the remaining consonantscdehe overall effect of rate (across all vowels) on the nmechmodel is
not very clear. The reason could be that the model that we hseé is unable to pick up on certain perceptual cues thatuimah

listeners do.
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In Table 11, we split the accuracies by vowel context as wWat. notice that overall, the accuracy is the best for the /atexd,
which is the same as the result obtained for that of the huistmers! The effect of rate in /i/ and /u/ context is in coaetplagreement
with that of human listeners (/i/ is better for slow speecthjg invariant to effect of rate). However for the /a/ contestow speech is

better perceived which is different from that of human ressurhe model has not picked this up.



Table 11:Machine Model vs Human Accuracies

Vowd | Slow Fast | Trend Similar To Humans?
lal 62.22 | 68.75 No
fil 51.58 | 47.87 Yes
fu/ 54.17 | 54.26 Yes

3.4.3. Confusion Matrices

Tables 12, 13 show the machine confusion matrices for slalfast speech respectively. An interesting observatidmasthe machine
confusion matrix in clean condition is very similar to thenfasion matrix of the human listeners in 0dB babble noise méaitioned
previously, the mismatched training/test condition of ingdel is analogous to adding noise. From Table 13, we seéahiatmainly

confused with /t/ and /k/. /t/ is confused primarly with /kg/ and /z/ are confused with each other mainly. For fastdp€kable 13, /z/
is always identified wrongly as /s/. In slow speech the pertoice is slightly better at 25%. These are in agreement hatlsanfusion

matrices of human listeners (Tables 6, etc..)

Table 12:Machine Confusion Matrix - Slow Speech, All center vowels

p t k b d g S z h m n I r none
050 | 0.25 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 060 | 0.32 | 0.00 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.04 | 0.00 | 0.82 | 0.00 | 0.00 | 0.00 | 0.07 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.50 | 0.10 | 0.00 | 0.05 | 0.30 | 0.00 | 0.00 | 0.00 | 0.05| 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00| 0.25| 0.06 | 0.13 | 0.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.60 | 0.20 | 0.07 | 0.07 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.75| 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.25| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05| 0.00 | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.67 | 0.12 | 0.00 | 0.03 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | 0.08 | 0.67 | 0.00 | 0.00 | 0.00
0.00 | 0.03 | 0.14 | 0.00 | 0.03 | 0.00 | 0.00 | 0.06 | 0.03 | 0.08 | 0.17 | 0.47 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.19 | 0.31 | 0.00

(0]
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Table 13:Machine Confusion Matrix - Fast Speech, All center vowels

Fast| p t k b d g S z h m n | r none
021 | 0.50| 0.21 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.04 | 071 | 0.25| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.07 | 0.93 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.20 | 0.20| 0.00 | 0.35 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.13| 0.13 | 0.00 | 0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00| 0.53 | 0.20 | 0.13 | 0.07 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00| 0.00 | 0.00 | 0.00| 0.00| 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.15| 0.00| 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.65 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.03 | 0.00| 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.14 | 0.03 | 0.61 | 0.11 | 0.00 | 0.00 | 0.00
0.00 | 0.25| 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.17 | 0.08 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00
0.11| 0.08 | 0.14 | 0.06 | 0.03 | 0.00 | 0.00 | 0.06 | 0.00 | 0.06 | 0.03 | 0.44 | 0.00 | 0.00
0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | 0.06 | 0.25 | 0.44 | 0.00

=|—|3|3|T|N|ln|e|alT|x|~|T




4. Summary and Conclusion

We have studied the effect of rate on the human perceptiomganants in babble noise. This was done by conducting jpeiade
experiment on human subjects. The data collected from theseeptual experiments are presented and analyzed ingper.pin
addition, we also present a modeling study on the data ¢etledNe perform phoneme recognition with the help of a GMM g&iod
on clean data. They key results of this paper includa): The intelligibility of syllable final consonants is maaéfected by noise
than initial consonants. (b) Slow speech is better perckthan fast speech for /CaC/ and /CiC/ stimuli. (c) The eftécdpeaking
rate is more pronounced in voiced syllable final consonamas their unvoiced counterparts. (d) The machine in cleamdd@n has
a similar effect of rate as the human in /i/ (slow better) anfi(fate invariant) context in noise. However, in /a/ confeRe model
gives a different trend from that of the human (e) The macimiméean condition has similar confusions as that of the harimenoisy
conditions (0dB)In future, we will study other consonants and vowel cont&th a much larger set of CVCs. Moreover, we will
attempt to incorporate the effect of speaking rate into tbeehsince our model does not replicate the human perforenfomche /a/

context. We would also work on improving the overall accigaof the model.
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