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Abstract
The proposed method focuses on speaker disentanglement
in the context of depression detection from speech signals.
Previous approaches require patient dataset speaker labels,
encounter instability due to loss maximization, and intro-
duce unnecessary parameters for adversarial domain predic-
tion. In contrast, the proposed unsupervised approach re-
duces cosine similarity between latent spaces of depression
and pre-trained speaker classification models. This method
outperforms baseline models, matches or exceeds adversar-
ial methods in performance, and does so without relying on
speaker labels or introducing additional model parameters,
leading to a reduction in model complexity. The higher the
speaker de-identification score (DeID), the better the de-
pression detection system is in masking a patient’s identity
thereby enhancing the privacy attributes of depression detec-
tion systems. On the DAIC-WOZ dataset with ComparE16
features and an LSTM-only model, our method achieves an
F1-Score of 0.776 and a DeID score of 92.87%, outper-
forming its adversarial counterpart which has an F1-Score
of 0.762 and 68.37% DeID, respectively. Furthermore, we
demonstrate that speaker-disentanglement methods are com-
plementary to text-based approaches, and a score-level fusion
with a Word2vec-based depression detection model further
enhances the overall performance to an F1-Score of 0.830.

Introduction
Depression is anticipated to become the second leading
cause of disability globally, revealing significant diagnos-
tic accessibility gaps (Mathers and Loncar 2006). Recent
advancements in speech-based automatic detection have
proven invaluable in tackling the challenges posed by this
formidable illness (Cummins et al. 2015). The evolution of
speech-based MDD detection encompasses diverse acous-
tic features (Afshan et al. 2018; Dubagunta, Vlasenko, and
Doss 2019; Seneviratne et al. 2020), sophisticated backend
modeling techniques (Harati et al. 2021; Rejaibi et al. 2022;
Liu et al. 2023), and innovative data augmentation frame-
works (Yang, Jiang, and Sahli 2020; Ravi et al. 2022b).
While the efficacy of depression detection systems has seen
notable improvements, safeguarding patient privacy remains
a paramount concern in digital healthcare systems (Lust-
garten et al. 2020), particularly within the realm of mental
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health, where societal stigma persists as a formidable chal-
lenge (Goldman et al. 1999).

Given the pivotal importance of privacy preservation in
speech-based depression detection, numerous previous stud-
ies have delved into this concern. Approaches such as fed-
erated learning (Bn and Abdullah 2022) and sine wave
speech (Dumpala et al. 2021) have been explored to safe-
guard patient identity; however, these methods often incur
a performance degradation in depression detection. More
recently, adversarial learning (ADV), introduced in (Ravi
et al. 2022a), has demonstrated an enhancement in depres-
sion detection performance at the cost of a reduction in
speaker classification accuracy. In the work by (Wang, Ravi,
and Alwan 2023), non-uniform adversarial weights (NUSD)
were identified as superior to vanilla adversarial methods in
the context of raw audio signals. Additionally, in (Zuo and
Mak 2023), the utilization of reconstruction loss in conjunc-
tion with an autoencoder was found effective in achieving
speaker disentanglement, consequently leading to improved
depression detection performance.

Despite the notable progress achieved by the aforemen-
tioned studies in enhancing depression detection perfor-
mance while reducing dependency on a patient’s iden-
tity, there are significant drawbacks. Firstly, the training of
these systems still necessitates speaker labels from patient
datasets, posing a challenge to the privacy-preserving aspect
of depression detection systems. Secondly, many prior meth-
ods rely on an adversarial loss maximization training proce-
dure for speaker disentanglement. While effective in achiev-
ing good performance, it is acknowledged that loss maxi-
mization is inherently unstable due to the absence of upper
bounds for the adversarial domain objective function (Xing,
Song, and Cheng 2021). Thirdly, all the aforementioned
methods introduce additional parameters, such as adversar-
ial domain prediction layers or reconstruction decoders, to
the model training framework, which are extraneous for the
primary task. This inefficiency can be mitigated.

Motivated by the efficacy of unsupervised learning ap-
proaches (Yang et al. 2021), this paper introduces a novel
speaker disentanglement method to address existing chal-
lenges. The proposed method focuses on reducing the co-
sine similarity between the latent spaces of a depression de-
tection model and a speaker classification model. Operating
at the embedding level, this approach eliminates the need



for speaker labels from the patient dataset. By reformulat-
ing the training process into a loss minimization framework,
we overcome the issues of unboundedness associated with
adversarial methods. Since the speaker classification models
serve as embedding extractors and undergo neither retrain-
ing nor fine-tuning, our method achieves efficiency by not
requiring domain prediction or reconstruction, resulting in
fewer model parameters compared to previous approaches.

Extensive experiments are conducted to validate the ef-
ficacy of the proposed method, showcasing its superior-
ity over baseline models (without speaker disentanglement)
in terms of depression detection. Furthermore, the method
demonstrates performance that is either better than or com-
parable to adversarial methods. Evaluation across multiple
input features and backend models establishes the gener-
alizability of the proposed framework to diverse architec-
tures. The complementary nature of speaker disentangle-
ment methods is highlighted through score-level fusion with
text-based models, resulting in an enhanced overall perfor-
mance when the models are combined.

Subsequent sections of this paper are: Section 2, which
describes the proposed method, Section 3, which outlines
experimental details, Section 4, which presents and dis-
cusses the results, and Section 5, which discusses future re-
search directions.

Proposed Method
In conventional speaker disentanglement methods (Gat et al.
2022; Li et al. 2020), the loss function for the adversarial
domain (speaker-prediction) is maximized. Consider the de-
pression prediction loss LMDD and the speaker prediction
loss for the adversarial method LSPK−ADV . Then the total
loss for the model training can be written as -

Ltotal−ADV = LMDD − α · LSPK−ADV , (1)

where α is a hyperparameter controlling the contribution of
the adversarial loss to the main loss function where the neg-
ative sign indicates that the speaker prediction loss is max-
imized thereby forcing the model to learn more depression
discriminatory features and less speaker discriminatory fea-
tures. The speaker prediction loss LSPK−ADV is usually the
Cross-Entropy loss defined as -

LSPK−ADV (y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

yij · log(ŷij), (2)

y is the ground-truth speaker label and ŷ is the predicted
speaker probabilities for N samples and C speakers.

As discussed earlier, this approach has three major issues:
1) this method requires the ground-truth speaker label y to
achieve disentanglement, 2) the disentanglement of speaker
identity is based on loss maximization (−α · LSPK−ADV

which does not have an upper bound, resulting in degraded
stability during training and 3) the speaker prediction branch
in the model, to obtain ŷ, adds additional model parame-
ters that are not useful for depression detection making this
approach inefficient. In (Zuo and Mak 2023), along with

speaker labels, feature reconstruction is used for speaker
disentanglement which adds even more unnecessary pa-
rameters. In contrast, we propose an unsupervised method
of speaker disentanglement that does not need any patient
dataset speaker labels and neither involves loss maximiza-
tion nor adds additional unwanted model parameters. The
proposed method is depicted in Figure 1.
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Figure 1: The unsupervised speaker disentanglement
method (USSD) aims to minimize cosine similarity between
latent spaces of depression classification and speaker classi-
fication models.

Consider a depression classification model (θMDD) and
a speaker classification model (θSPK ). For a given speech
input X , the latent embeddings of these models are:

HMDDX
= θMDD(X) (3)

HSPKX
= θSPK(X) (4)

Then, we define the unsupervised speaker disentangle-
ment loss function as - LUSSD as follows -

LUSSD = MSE(ypred, ytarget) (5)
Here, we set ypred as the cosine similarity between the

two latent space embeddings, defined as:

ypred =
HMDDX

·HSPKX

||HMDDX
|| · ||HSPKX

||
(6)

To ensure the orthogonality between the depression and
speaker latent spaces, we set ytarget to 0.

ytarget = 0 + ϵ, (7)
ϵ is a small noise value added for better convergence (Li
et al. 2022) and can be written as:

ϵ = U(0, 1) ∗ 1e− 8. (8)

Minimizing the MSE loss of Eq. 5 ensures that the model
learns more depression-discriminatory and less speaker-
discriminatory information. The total loss is:

Ltotal−USSD = LMDD + α · LUSSD, (9)
Note that experiments in which the squared cosine simi-

larity was minimized resulted in inferior performance.



Experimental Details
Dataset: DAIC-WoZ
The dataset (Valstar et al. 2016), comprises audio-visual in-
terviews conducted in English with 189 participants expe-
riencing psychological distress, including male and female
speakers. For our experiments, 107 speakers were employed
for training, while an additional 35 speakers were designated
for evaluation purposes, aligning with the dataset specifica-
tions. The audio data only from the patients were extracted
based on the provided time labels. For text-based experi-
ments, the transcripts provided with the database were used.
Results are reported using the validation set in line with pre-
vious research (Ma et al. 2016; Bailey and Plumbley 2021;
Feng and Chaspari 2022; Wu, Zhang, and Woodland 2023).

Input Features
For the audio, four input features are evaluated to show
that the proposed framework is independent of the acous-
tic features used. Mel-Spectrograms, raw-audio signals,
ComparE16 features from the OpenSmile library (Eyben,
Wöllmer, and Schuller 2010), and the last hidden state
of the Wav2Vec2 (Baevski et al. 2020) model are used.
Mel-Spectrograms are 40 and 80 dimensional, raw-audio
features are 1-dimensional, ComparE16 features are 130-
dimensional and Wav2vec2 features are 768 dimensional.
For the text, a Word2vec model (Mikolov et al. 2013) is used
to extract word-level embeddings from the transcripts of the
patient’s audio. The embeddings are 200 dimensional. Au-
dio and text feature processing is based on publicly available
code repository (Bailey and Plumbley 2021). Since there is
an imbalance in the dataset, similar to (Ma et al. 2016; Bai-
ley and Plumbley 2021), random cropping and segmenta-
tion are applied. To negate the bias effects of randomness, 5
models are trained with different random seeds, and perfor-
mances are obtained via majority voting (MV).

Models
Similar to input features, multiple model architectures are
designed for the audio modality to show that the pro-
posed method generalizes to different model architectures.
Mel-spectrogram features and Raw-Audio signals are used
with two model configurations - CNN-LSTM and ECAPA-
TDNN (Desplanques, Thienpondt, and Demuynck 2020;
Wang et al. 2022a). The other two features, ComparE16 and
Wav2vec2 are used with an LSTM-only configuration. For
the speaker classification model, two pre-trained models are
used - ECAPA-TDNN (128-dimensional embedding) and
the X-Vector model (Snyder et al. 2018) (256-dimensional
embedding) from the hugging face speechbrain library (Ra-
vanelli et al. 2021). Note that the number of parameters re-
ported for each experiment does not include off-the-shelf
speaker classification models that have not undergone re-
training or fine-tuning. For the text model, a simple CNN-
LSTM framework was used. In the interest of space and
since this paper does not propose any new neural network
architecture but rather uses previously established models,
we do not explain the model architecture in detail. However,

model weights and code repository will be made publicly
available here1.

Evaluation Metrics
As is common in the depression detection literature, to mea-
sure system performance, the F1 scores (Chinchor 1992) for
the two classes (Depressed: D and Non-Depressed: ND) F1-
D and F1-ND as well as their macro-average, F1-AVG were
reported. To evaluate the privacy-preserving capabilities of
the models, the De-Identification score (Noé et al. 2020), in-
spired by the voice privacy literature, is used and measures
how good the anonymization process is (Tomashenko et al.
2022). In the context of this paper, a better system has a
higher F1-AVG as well as a higher DeID. Since DeID is
calculated using voice similarity matrices constructed using
embeddings before and after disentanglement, it is only re-
ported for the speaker-disentangled experiments.

Results and Discussion
Speaker Disentanglement versus Baseline
Table 1 shows enhanced depression detection performance
(F1-AVG) across all experiments when applying speaker
disentanglement, either in the form of ADV or USSD. On
average, a notable improvement of 8.3% and 8.2% was ob-
served for ADV and USSD, respectively, over six exper-
iments. The highest improvement with ADV, 13.8%, oc-
curred when utilizing Raw-Audio features with the ECAPA-
TDNN model, while the lowest improvement, 5.3%, was
observed with Mel-Spectrograms features and the ECAPA-
TDNN model. In the case of USSD, the highest im-
provement was 11.7% with ComparE16 features and the
LSTM-only model, and the lowest improvement was 3.8%
with Mel-Spectrogram features and the CNN-LSTM model.
These results collectively indicate that partially normaliz-
ing speaker identity-related information can significantly en-
hance depression detection performance.

USSD versus ADV
Comparing USSD to its adversarial counterpart, ADV, we
observe that the proposed method outperforms ADV in 2
out of 6 experiments: Raw-Audio with CNN-LSTM (0.746
for USSD vs. 0.709 for ADV) and ComparE16 with LSTM-
only (0.776 for USSD vs. 0.762 for ADV). Conversely, ADV
exhibits better performance than USSD in 3 out of 6 experi-
ments, with both methods yielding the same results in 1 out
of 6 experiments. In the aggregate, ADV achieves the best
overall results with an F1-Score of 0.79, whereas the corre-
sponding USSD model achieves 0.773—a slight decrease of
2.15%, despite using 15k fewer parameters and not relying
on speaker labels. Even without utilizing speaker labels or
additional parameters for predicting speakers, USSD show-
cases comparable or superior performance to ADV. This
highlights the potential advantage of USSD over ADV in
scenarios where speaker labels for the training set are either
unavailable or cannot be used.

1Model weights and code repository available at -
https://github.com/vijaysumaravi/USSD-depression



Feature Model Disentanglement Number of Parameters F1-AVG (MV) F1-ND F1-D DeID

Mel-Spectrogram

CNN-LSTM
No 280k 0.658 0.756 0.560 NA

ADV 293k 0.694 0.773 0.615 14.01%
USSD 280k 0.683 0.783 0.583 10.29%

ECAPA-TDNN
No 515k 0.709 0.809 0.609 NA

ADV 529k 0.746 0.826 0.667 3.69%
USSD 515k 0.746 0.826 0.667 5.97%

Raw-Audio

CNN-LSTM
No 445k 0.669 0.792 0.546 NA

ADV 459k 0.709 0.809 0.609 55.83%
USSD 445k 0.746+ 0.826 0.667 45.35%

ECAPA-TDNN
No 595k 0.694 0.773 0.615 NA

ADV 609k 0.790 0.880 0.700 22.32%
USSD 595k 0.773+ 0.851 0.696 19.90%

ComparE16 LSTM-only
No 1.15M 0.694 0.773 0.615 NA

ADV 1.18M 0.762+ 0.857 0.667 68.37%
USSD 1.15M 0.776 0.885 0.667 92.87%

Wav2vec2 LSTM-only
No 3.6M 0.683 0.783 0.583 NA

ADV 3.7M 0.747 0.863 0.632 52.43%
USSD 3.6M 0.720 0.840 0.600 58.65%

Table 1: F1-scores using MV and DeID, for speaker disentanglement through ADV and USSD using the DAIC-WOZ dataset.
Recall that, unlike ADV, USSD does not use speaker labels for disentanglement. The best results are bold-faced. + indicates
improvements are not statistically significant.

Privacy Preservation - DeID

Privacy is a crucial aspect of speech-based depression de-
tection, and Table 1 demonstrates positive DeID results
for both USSD and ADV across all models. Notably, Com-
parE16 features with USSD achieve the highest DeID
at 92.87%. Despite a marginal depression detection per-
formance drop in USSD compared to ADV, USSD ex-
cels in privacy preservation. An intriguing finding is that
USSD’s effectiveness is independent of the type or dimen-
sion of speaker embeddings used. Mel-spectrogram and
Raw-Audio experiments employed ECAPA-TDNN speaker
embeddings, while ComparE16 and Wav2Vec2 experi-
ments used X-vector embeddings with dimension reduc-
tion. USSD’s reliance on a pre-trained speaker classification
model may contribute to leveraging pre-trained speaker em-
beddings, enhancing the masking of depression embeddings,
and resulting in a higher DeID.

Text Fusion
Fusing speaker-disentangled audio models with Word2vec-
based text models yields a notable improvement in depres-
sion F1-score, particularly for the top 2 audio-only models,
as shown in Table 2. Specifically, when the ECAPA-TDNN
model trained on Raw-Audio is combined with Word2vec,
the depression detection F1-Score reaches 0.860. This re-
sult compares favorably to the state-of-the-art (SOTA) de-
pression detection F1-Score of 0.89 (F1-Max) reported
in (Wu, Zhang, and Woodland 2023), which involves a four-
model ensemble, including parameter-heavy models like
RoBERTa (Liu et al. 2019) and WavLM (Chen et al. 2022).
In contrast, our approach utilizes only Raw-Audio/ECAPA-
TDNN for audio classification and Word2vec/CNN-LSTM
for text classification. Similar to ADV, the USSD model
demonstrates a significant improvement in F1-Score when
fused with text models. These findings underscore the com-
plementarity of speaker-disentangled audio-based depres-
sion classification with text-based methods. Contrary to

Audio-Model Disent. Audio-only Word2vec Fusion
(Text-only)

DeID
(Audio-only)

Raw-Audio
ECAPA-TDNN ADV 0.790 0.860 (0.762) 22.32%

ComparE16
LSTM-only USSD 0.776 0.830 (0.762) 92.87%

Table 2: F1-AVG scores with and without score-level fusion
with the Word2vec text model. Results are shown for the top
2 audio-only models together with their DeIDs that illus-
trate the privacy-preserving feature of USSD.

the assumption that speaker-disentanglement models shift
focus from non-linguistic features to content-related fea-
tures (Qian et al. 2022), our results suggest that the infor-
mation learned by speaker-disentanglement models can be
complementary to content-related features.

Conclusion and Future Work
The proposed unsupervised method for speaker disentangle-
ment in depression detection is a promising approach for im-
proving model efficiency and privacy attributes. By reduc-
ing reliance on speaker labels and streamlining the model
through the minimization of cosine similarity between latent
spaces, we achieve superior performance compared to both
baseline models and adversarial methods. A higher DeID
indicates better masking of speaker identity, contribut-
ing to the algorithm’s enhanced privacy. The compatibil-
ity of speaker-disentanglement methods with text-based ap-
proaches further solidifies the versatility of the method. Fu-
ture work will study dimension mismatch between speaker
and depression embeddings, speaker-embedding extractors
from SSL models such as Instance Discrimination Learn-
ing (Wang et al. 2022b) which are trained without super-
vision and are shown to capture significant speaker infor-
mation, as well as understanding the nature of information
learned through speaker disentanglement methods.
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