




number of samples, but also because emotional speech could

be regarded as a variation of neutral speech. The models for

the remaining three classes (‘sad’, ‘angry’, and ‘happy’) were

adapted from the ‘neutral’ model. The classification decision

was made based on the log-likelihood that a test supervector

was drawn from each class.

4.1.2. The Support Vector Machine Classifier

A support vector machine (SVM) using a linear kernel imple-

mented in the Weka toolkit [27] was used. The supervector con-

figuration that performed the best for each feature set was used

for the SVM classification. The complexity parameter C was

chosen between the values 10−1, 10−2, 10−3, 10−4, 10−5 and

10−6, so that it maximizes the system performance on the de-

velopment dataset for each feature set. Data upsampling was

carried out for the under-represented classes to address the data

imbalance problem.

4.2. System Fusion

The best performing configuration for each feature set/classifier

combination on the development dataset was selected as the rep-

resentative system for that combination. The system fusion was

performed on the n-best performing representative systems.

In order to fuse the results from the GMM and SVM classi-

fiers, the log-likelihood output from the GMM classifier was

converted into the confidence score so that it was consistent

with the baseline SVM classifier results. The SVM classifier’s

confidence score was the probability that the test utterance be-

longed to a class, and it was calculated so that scores for the

classes added up to one. On the other hand, the GMM likeli-

hood was calculated for each class independently, hence, there

was no guarantee that the likelihoods for the classes added up to

one. Thus, the confidence for the i-th class, ci, was calculated

as follows:

ci =
exp (li − µ)

∑
M

i=1
exp (li − µ)

(1)

where li is the log-likelihood for the i-th class, M is the num-

ber of classes, and µ = 1/M
∑

M

i=1
li is the mean of the log-

likelihoods across the classes. The confidence scores from the

classifiers were averaged and used for the combined class deci-

sion.

5. Experimental Results

5.1. Individual Supervector-Based System Performance

The performances of individual systems in terms of unweighted

average recall (UAR) are summarized in Table 1. VQual per-

formed better than both MFCCs and the baseline ComParE16

feature set in all conditions.

Contrary to expectation, the clustering did not provide a

performance gain. For the MFCC feature set, the performance

degraded from 41.37% UAR to 36.78%. The degradation might

be due to overfitting because of insufficient amount of data to

train within each cluster. Because MFCCs had 60-dim features

while VQual had 33-dim features, the shortage of data points

might have affected the MFCC-based system more critically.

It is interesting to note that the ComParE16 feature set per-

formance was improved to 40.7% UAR by using the supervec-

tor, compared to the OpenSMILE baseline system with a UAR

of 37.8%; recall that the baseline system uses a statistics vec-

tor for utterance representation. Because both systems used the

Table 1: Individual system performance in terms of unweighted

average recall (UAR, [%]). The performance was measured on

the development dataset. The system configurations chosen for

system fusion are denoted with asterisks (*), and the ranking

among them is shown in the last column. The SVM parameter

C = 10−6, 10−5, and 10−3 was used for the VQual, MFCCs

and ComParE16 features, respectively.

feature set clustering classifier UAR ranking

VQual Yes GMM 39.40 -
VQual No GMM *41.37 2

VQual No SVM *41.92 1

MFCC Yes GMM 36.78 -
MFCC No GMM *41.21 3

MFCC No SVM *40.95 4

ComParE16 Yes GMM 36.19 -
ComParE16 No GMM *40.21 6

ComParE16 No SVM *40.71 5

Table 2: Fused system performance on the development dataset,

in terms of unweighted average recall (UAR, [%]). The best

performing combination is boldfaced.

+ baseline

2-best 41.71 42.24
3-best 42.60 43.92

4-best 43.89 43.78
5-best 44.42 42.96
6-best 42.69 41.04

same acoustic feature set, these results can be used to compare

the effect of different methods in modeling the utterances.

5.2. Fused System Performance

The configurations selected for each feature set/classifier com-

bination are denoted with asterisks (*), and their performance

ranking is shown in Table 1. The n-best system fusion perfor-

mance is shown in the first column of Table 2. The two best sys-

tems were both VQual-based systems, one with an SVM and the

other with a GMM classifier. The fact that both systems used the

same acoustic information might be the reason why fusion did

not improve performance. Adding the third and the forth best

system, which were based on MFCCs, the UAR improved by

2.18%, providing complementary information to VQual-based

systems. The 5-best system combination, by adding the Com-

ParE16/SVM system, performed the best (UAR=44.42%).

The OpenSMILE baseline system, with a UAR of 37.8%,

used different utterance representation from the supervector

framework. Even though the performance was lower than the

systems introduced in this study, the baseline system might be

complementary. Thus, the fusion of the baseline system in ad-

dition to the n-best systems was investigated. The performance

with the baseline system is shown in the second column of Ta-

ble 2. Fusing the baseline system with the 2 and 3 best systems

improved the performance, suggesting a complementary effect.

However, fusing it with the 4, 5 and 6 best systems degraded the

system performance.

5.3. System Performance Evaluation on the Test Dataset

The complete system block diagram is shown in Figure 2 and

its performance on the development and test dataset is reported
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