


Section 4 concludes the paper with a brief summary and plans

for future work.

2. Database and Experimental Setup

2.1. Database

The OGI Kids’ Speech Corpus [16] was used in this study. This

corpus contains speech from approximately 100 speakers per

educational grade level, from kindergarten to 10th grade. Both

scripted and spontaneous styles of speech were recorded from

the speakers. For scripted speech, scripts included single words,

sentences, and digit strings. For spontaneous speech, speakers

were asked to respond to a series of prompts such as “Tell me

about your favorite movie.” Recordings had a sampling rate of

16 kHz. To eliminate the confounding factor of a child language

model, only single words from the scripted speech task were

used in this study to perform word recognition.

Word utterances covered 208 words. These words ranged

from easy words, such as “chair,” to more difficult words, such

as “organization.” Notably, the number of utterances of the

words “push” and “spoons” was much higher than the other

words across all grades. To remove possible biasing effects, we

randomly sampled for a subset of the utterances of “push” and

“spoons” to be more consistent with the number of utterances of

the remaining words. In general, no other words dominated the

number of utterances. To eliminate low-quality or misspoken

recordings, only the files marked as “1” from verification files

in the OGI Kids’ Speech Corpus were used. This “1” indicated

that the file was judged to contain the target word and was of

good quality. After removing the poor-quality files, the remain-

ing database contained 1,654 word utterances from kindergarten

children and at least 3,000 word utterances from each remaining

grade. Each grade contained at least 88 speakers.

2.2. Matched-Grade Experiments

For the matched-grade experiments, word utterances were ran-

domly sampled from each grade for a total of 1,654 utter-

ances per grade to ensure a fair comparison. A ten-fold cross-

validation was performed for each grade with approximately

1,490 utterances used for training a triphone-based ASR and

the remainder used for testing. Training and testing data were

separated in such a way that any speaker appearing in the train-

ing list would not appear in testing. The language model was

a multiple-choice single-word selection with all words equally

probable.

For all systems, 13 Mel-frequency cepstral coefficients

(MFCCs), extracted with a window size of 25 ms, a frame

shift of 10 ms, 23 filters, and a lifter coefficient of 22, were

used. Cepstral mean normalization (CMN) was applied to the

MFCCs. An additional 7 frame linear discriminant analysis

(LDA) was then used for a final 40-dimensional feature input.

Derivatives of the MFCCs were not used as they were found not

to be as helpful as the LDA features.

Due to the small scale of the word recognition task, ASR

systems were trained with 250, 500, and 1000 triphones using

both Gaussian mixture model (GMM) and DNN-based hidden

Markov model (HMM) systems. DNNs were trained on an ad-

ditional 9 frame LDA and with 2 hidden layers using 2-norm

non-linearities with an input dimension of 500 and output di-

mension of 100 [17]. All systems were trained using the Kaldi

ASR tookit [18]. Feature space maximum likelihood linear re-

gression (fMLLR) speaker adaptive training was also used. The

use of VTLN or SGR normalization was found not to be helpful

in these matched-grade experiments and will not be reported.

2.3. Kindergarten Mismatched-Grade Experiments

For the mismatched-grade experiments, the same systems that

were trained using the DNN-HMM 250 triphone system trained

on various grades from the matched-grade experiments were

used. The systems were tested with kindergarten speech. In ad-

dition to fMLLR used in the previous experiments, both conven-

tional piecewise-linear VTLN and feature warping with SGR

normalization [8] were also used to reduce the mismatch be-

tween age groups. The SGR estimation algorithm in [8] uses

a threshold of 11 years old to separate younger children from

older children. As such, we chose the division between 5th and

6th grade as our threshold for the SGR algorithm.

3. Results and Discussion

3.1. Matched-Grade Experiments

The results of the matched-grade experiments for both the

GMM-HMM and DNN-HMM systems are shown in Table 1.

Overall, there were three major jumps in performance between

adjacent grades. First, between kindergarten and 1st grade,

word error rate (WER) had an absolute decrease of more than

10% and relative decrease of more than 38%. Then, between 1st

and 2nd grade, WER had an absolute decrease of an additional

3-7% and a relative decrease of more than 23%. Finally, be-

tween 3rd and 4th grade, WER had an absolute decrease of ap-

proximately 5% and a relative decrease of approximately 50%.

By 4th grade, WER levels stabilized to a value that was likely to

represent adult levels. Overall, the WERs indicated four major

grade level groups in terms of recognition performance: kinder-

garten; 1st grade; 2nd and 3rd grade; and 4th grade and above.

Observing the GMM-HMM models, varying the number of

triphones used in acoustic modeling had different effects on er-

ror rates depending on grade level. For the kindergarten ASR,

the WER increased significantly when the number of triphones

increased from 500 to 1000 (p < 0.001). While at a lower

level of significance, the 1st grade ASR also showed significant

degradation in performance when the number of triphones in-

creased from 500 to 1000 (p < 0.05). For 2nd grade and older,

increasing the number of triphones did not seem to have any

obvious effect on WER except for the 8th grade system.

The DNN-HMM models seemed to perform comparably

to or better than the GMM-HMM models in all cases. Simi-

larly, the DNN-HMM model had the same grade level grouping

of kindergarten; 1st grade; 2nd and 3rd grade; and 4th grade

and above based on WER. Additionally, the degradation in per-

formance due to increasing the number of triphones vanished

for 1st grade and 8th grade when using the DNN-HMM mod-

els. However, the kindergarten ASR still degraded significantly

when increasing the number of triphones from 500 to 1000

(p < 0.01).

The degradation in performance for the youngest grade lev-

els when increasing the number of triphones likely comes from

multiple sources. Notably, past studies on child speech suggest

that young children do not have the ability to consistently coar-

ticulate in speech production [19, 20, 21]. As such, the inclusion

of additional triphones may not provide any additional benefit

to the ASR of younger children. Additionally, as the number

of triphones increases, the amount of data available to train the

model of each triphone decreases rapidly. As younger children

tend to be more variable and inconsistent in their pronunciation

[1, 2, 3, 4], the models may be encountering poor training con-
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Table 1: Word error rates (WERs) (%) of ASR systems for the matched-grade experiments. Each ASR was trained and tested on the

same grade level. Systems were trained with fMLLR speaker adaptive training. Both GMM and DNN-based acoustic models are shown

with the number of triphones used in parentheses. The kindergarten ASR performed dramatically worse than older grades and was

more affected by the number of triphones.

System Grade
K 1 2 3 4 5 6 7 8 9 10

GMM(250) 28.32 15.39 11.76 11.12 5.98 6.30 4.88 6.24 3.75 4.25 3.85
GMM(500) 30.08 17.28 12.99 11.18 5.61 7.34 5.42 5.89 6.16 4.57 4.23
GMM(1000) 35.93 19.55 14.57 12.86 6.34 7.10 5.85 6.54 6.90 5.28 4.88

DNN(250) 26.91 14.64 10.50 10.39 4.65 4.64 4.78 5.39 3.34 3.58 3.56
DNN(500) 26.34 16.18 9.51 9.54 4.50 5.46 4.15 5.42 3.57 3.39 3.80
DNN(1000) 30.30 16.06 10.69 10.06 5.22 5.09 5.20 5.14 3.65 3.57 4.05

Table 2: Word error rates (WERs) (%) of ASR systems for the mismatched-grade experiments. Each ASR was trained on a single

grade level and tested on kindergarten speech. The systems tested were equivalent to the DNN acoustic model ASR systems with 250

triphones and fMLLR in the matched-grade experiments. Additionally, VTLN and SGR feature normalization were used and found to

be effective on systems trained on older children. The best performing system (in boldface) was trained on 1st grade speech with no

feature normalization.

Feature Training Grade
Normalization K 1 2 3 4 5 6 7 8 9 10

None 26.91 23.11 24.80 25.38 26.45 24.83 28.64 31.64 36.58 39.00 43.62
VTLN 28.49 24.04 26.75 25.40 26.00 24.17 26.11 29.63 31.65 32.25 34.85
SGR 28.07 26.53 26.96 25.79 26.85 25.82 28.02 29.54 32.33 33.36 35.02

ditions when the number of triphones is large. The combination

of these factors is likely to be the main cause of performance

degradation when increasing the number of triphones. We also

note that most of the older grades seemed invariant to the num-

ber of triphones in our experiments while training on the same

number of words.

Overall, we have observed that modifications to the num-

ber of triphones in the acoustic model may affect kindergarten

speech more dramatically than some of the older grades. Ad-

ditional caution should be used when considering ASR design

specifications such as the number of triphones when training a

kindergarten ASR. We also note that evaluating performance on

a larger age range of children (e.g. 6-10 years old) may not be

indicative of performance on individual age groups.

We note that the results of this experiment seem compa-

rable to those reported in [14] such that the kindergarten ASR

systems have great difficulty on a relatively easy task for older

children or adults. That study reported 19% error rate on a clean

digit recognition task with a 5 year old average speaker age. The

ASR system they tested, provided by Nuance, was the default

ASR of the Aldebaran NAO, a popular humanoid robot inter-

face in the social robotics research community. Both the results

of our matched-grade experiment and the results from [14] are

unacceptable for effective ASR interfaces for kindergarten-aged

children and performance must improve dramatically if such in-

terfaces are to be usable.

3.2. Kindergarten Mismatched-Grade Experiments

The results of the mismatched-grade experiments, including

VTLN and SGR normalization techniques, are shown in Table

2. The testing data used in Table 2 were always kindergarten

speech, and the training data were speech from a specific grade

(K-10th grade). The DNN-HMM system with 250 triphones

was used for all experiments as this seemed to produce the best

results for kindergarten speech (without any obvious compro-

mise for the remaining grades as well). Additionally, both con-

ventional piecewise-linear VTLN and SGR normalization were

evaluated as these warping techniques were found to be helpful

when dealing with age-mismatched ASR systems [7, 8, 13, 22].

As expected, the ASR systems trained on the older grades

(6th-10th grade) rapidly degraded in performance as training

grade level increased. Additionally, both VTLN and SGR fea-

ture normalization were able to improve performance when

kindergarten speech was tested with ASR systems trained on

older age groups (6th-10th grade, 11-16 years old), and both

normalization techniques were comparable in performance.

However, performance still did not reach the level of the ASR

systems trained on the younger age groups (1st-5th grade, 6-11

years old).

ASR systems trained on 1st-5th grade did not show any

obvious benefit from feature normalization when testing on

kindergarten speech, either with VTLN or SGR normalization.

This is justifiable as the physiological differences between the

younger age groups is smaller than with the older children. Ad-

ditionally, SGR estimation algorithms rely on formant estima-

tion [8], which is especially difficult for younger children. This

may have caused the degradation seen by the systems trained on

younger grades when SGR normalization was used. Overall, it

seems that the benefit of feature warping only appears when the

training and testing data are substantially mismatched.

Notably, the ASR system trained on 1st grade speech per-

formed significantly better on kindergarten speech than even the

kindergarten-trained ASR system (p < 0.05). This may suggest

that kindergarten speech is not as suitable for training ASR sys-

tems as 1st grade speech, even when applied to kindergarten

children. This is likely due to the large reductions in speech

variability as children age [3, 4]. As such, training on 1st grade

speech may result in more stable training conditions. Addition-

ally, as 1st grade children are only one year older than kinder-

garten children, the mismatch in acoustic conditions is small, as
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Table 3: Word error rates (WERs) (%) of ASR systems trained

on either kindergarten or 1st grade speech and tested on kinder-

garten speech, separated by number of syllables in the target

word.

# Syllables Training Grade

K 1st

1 31.39 31.87

2 25.26 19.98

3 26.63 21.53

evidenced by the results.

These results indicate that the training and testing of ASR

for kindergarten speech is not as straight-forward as providing

more data to train an ASR system. Varying training data by

age (and educational level) slightly may significantly help the

performance of a young child ASR system. Additional studies

must be done to evaluate the effect of age groups across the

many applications of child ASR.

3.3. Phonetic Analysis of Kindergarten ASR

To understand the main difficulties of the ASR systems, we per-

formed an analysis of the ASR errors when tested on kinder-

garten speech. We analyzed the errors from the systems trained

on either kindergarten or 1st grade speech with no VTLN or

SGR normalization.

The WERs, separated by number of syllables of the tar-

get word, were analyzed. As words with 4 or 5 syllables were

underrepresented, we only considered words with 1, 2, and 3

syllables. The results are shown in Table 3.

For the ASR systems in Table 3, WERs for words with 1

syllable were approximately 6-12% higher than for words with

2-3 syllables. This could indicate that the ASR systems re-

lied mainly on vowels, which is unsurprising. To investigate

this further, we separated vowels into four classes: high-front,

high-back, low-front, and low-back. Of the errors where the tar-

get word had 1 syllable, we calculated the percentage of trials

where the predicted word had a vowel of the same class as the

target word.

For the ASR trained on kindergarten speech, 74.42% of the

errors made with a one syllable target word had a shared vowel

class between the target and predicted word. Similarly, for the

ASR trained on 1st grade speech, 78.63% of the errors made

with a one syllable target word had a shared vowel class be-

tween the target and predicted word. This suggests that conso-

nants are an unreliable source of information for kindergarten

ASR, which may be expected.

We note that training on 1st grade speech greatly improved

the performance of the system on 2-3 syllable words while pro-

viding no performance increase on 1 syllable words. At this

time, the reason for this is unclear. However, this does suggest

that words with multiple syllables are more suitable for word

identification tasks for kindergarten children such as keyword

activation or spotting applications.

In the kindergarten-trained ASR system, the three

phonemes that caused the highest error rates were /D/, /U/, and /j/

with WERs of 41.3%, 41.0%, and 36.8%, respectively. In the

1st grade-trained ASR system, the same three phonemes also

caused the highest error rates with WERs of 37.0%, 37.3%, and

36.8%, respectively. Words such as ‘mouths,’ ‘bathe,’ ‘lure,’

‘tourist,’ ‘humor,’ and ‘mutual’ were correctly classified less

than 50% of the time. The large number of errors from /D/ and

/j/ is reasonable due to the weak fricative properties of /D/ and

the rapid acoustic changes of /j/, characteristic of semivowels.

However, the vowel /U/ is unexpected to be among the difficult

phonemes. We believe that varying pronunciations may have

had an effect on this phoneme, such as ‘lure’ pronounced with

an /u/. If we consider the ten most difficult phonemes to recog-

nize, both /T/ and /b/ were also considered difficult by both the

system trained on kindergarten speech and the system trained

on 1st grade speech.

4. Conclusion

This study investigated different child ASR systems when both

training and testing data were separated by specific grade levels.

The OGI Kids’ Speech Corpus, containing speech from kinder-

garten to 10th grade children, was used for training and testing

data.

The matched-grade experiments revealed two major re-

sults necessary for understanding kindergarten ASR. First, the

matched-grade ASR system for kindergarten speech performed

substantially worse than even the matched-grade ASR system

for 1st grade speech. As such, it may be necessary to evalu-

ate ASR systems on kindergarten speech separately instead of

grouping several ages together. Second, the selection of the

number of triphones used dramatically affected performance for

the kindergarten ASR. In contrast, the ASR systems trained on

older grades were mostly invariant to the number of triphones.

This indicates that additional caution must be taken when se-

lecting the number of triphones for an ASR system suitable for

kindergarten speech.

In the mismatched-grade experiments, when testing on

kindergarten speech, the ASR system trained on 1st grade

speech performed significantly better than even the system

trained on kindergarten speech. This suggests that slightly older

children may serve as better training data for kindergarten ASR.

We also note that feature warping on kindergarten speech, using

either conventional piecewise-linear VTLN or SGR normaliza-

tion, only showed improvements when the systems were trained

on 6th grade children or older. These results can be used as an

indicator for when to apply such normalization techniques for

kindergarten speech.

Finally, an analysis of the errors made by the kindergarten

and 1st grade ASR systems (tested on kindergarten speech) re-

vealed additional information. The systems struggled most with

1 syllable words. Interestingly, training on 1st grade speech im-

proved the performance of the ASR on 2-3 syllable words while

providing no benefit on 1 syllable words. Finally, we noted sev-

eral phonemes that the kindergarten ASR systems did not rec-

ognize correctly.

For future work, we will consider the additional conse-

quences of continuous speech on the kindergarten ASR systems

by considering how the best-performing language models differ

across age groups. We will also further explore the best prac-

tices for training kindergarten and young child ASR systems for

various application usages.
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