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Abstract

In this talk, I will focus on the importance of integrating knowl-
edge of human speech production and speech perception mech-
anisms, and language-specific information with statistically-
based, data-driven approaches to develop robust and scalable
automatic speech recognition (ASR) systems. As we will
demonstrate, the need for such hybrid systems is especially crit-
ical when the ASR system is dealing with noisy data, when
adaptation data are limited (for the case of speaker normaliza-
tion and adaptation), and when dealing with accents.

Index Terms: noise-robust ASR, speaker normalization,
speaker adaptation, accented English, limited data, knowledge-
based

1. Introduction

The last few decades have witnessed wide-spread use of speech
processing devices and tremendous progress in their perfor-
mance and reliability. Using mathematical models of human
speech production and perception has been an important fac-
tor in the improved performance of these devices. For exam-
ple, simplified linear models of speech production form the ba-
sis of several speech synthesizers [24] and the most widely-
used speech coder today: CELP (Code Excited Linear Predic-
tion) [30]. Simple auditory models have been used success-
fully in optimizing the performance of speech and audio coders
[31, 36, 21] and are embedded in the MPEG audio-coding stan-
dards [6]. Using auditory models as preprocessors has re-
sulted in improved performance of automatic speech recogni-
tion (ASR) systems in noise [18, 32].

Typical speech recognition systems involve two fundamen-
tal steps: short-term spectral analysis, followed by pattern com-
parison with representative templates (or statistical models of
templates). Today, many systems use Mel-Frequency Cepstral
Coeflicients (MFCCs) and their temporal derivatives for feature
extraction, and Hidden Markov Models (HMMs) of the tem-
plates for pattern comparison [29]. MFCCs are defined as the
Discrete Cosine Transform (DCT) of log spectral estimates ob-
tained with a critical bandwidth-like non-uniform filter bank
model [12]. The DCT provides an orthogonal transformation
to a vector space with better energy compaction, which there-
fore requires fewer (and largely decorrelated) coefficients per
acoustic vector. The wide use of temporal derivatives indicates
that much of the information of the acoustic signal may be rep-
resented in the changes that occur over time.

Providing a rigorous stochastic framework, HMMs and
the techniques to train and apply them, have led to successful
large-vocabulary speaker-independent systems. Unfortunately,
the performance of ASR systems still degrades significantly
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when training data are limited and/or the acoustic environment
(amount and type of background noise, reverberation, compet-
ing sources, etc.) differs from the training one.

In this paper, we will provide examples on how speech and
language-specific knowledge can improve HMM-based ASR
performance when training data are limited or noisy.

2. Limited Data: Rapid Speaker
Adaptation and Dealing with Accented
English

Spectral mismatch between training and testing utterances can
cause significant degradation in the performance of ASR sys-
tems. Speaker adaptation and speaker normalization techniques
are usually applied to address this issue. The maximum likeli-
hood linear regression (MLLR) [25] technique is widely used
in speaker adaptation due to its effectiveness and computational
advantages. When the adaptation data are sparse, however,
MLLR’s performance degrades because of unreliable parame-
ter estimation.

In the NSF-funded project, TBALL (Technology Based As-
sessment of Language and Literacy) we aim to advance the
state of the art in children’s speech recognition, datamining,
and human-computer interface design so that effective child-
friendly conversational interfaces can be designed and devel-
oped. These technologies are researched in a framework of
early learning and integrated with an understanding of the com-
ponents of children’s academic performance to develop a liter-
acy assessment system (for an overview, please see [2]). Several
K-5 schools in Northern and Southern California are partners in
this project. These schools have a diverse economic and eth-
nic student body with more than half of the population being
Hispanic. The project addresses several fundamental research
issues including pronunciation modeling and speaker adapta-
tion techniques that are scalable to children who are native and
non-native English speakers.

Acoustic data from young children are not as widely avail-
able as adult data are, and there is no corpus of Spanish-
accented English spoken by young children. Hence, relying
only on data-driven techniques is not a viable option. More-
over, since time is of essence in a classroom situation, rapid
speaker adaptation with minimal adaptation data is critical. In
the following, I will describe our successful efforts in creating
rapid adaptation algorithms based on physiological and acoustic
constraints. In addition, knowledge of the child’s first language
(Mexican Spanish in our case) can help improve pronunciation
modeling, and hence ASR, significantly.
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2.1. Rapid Speaker Adaptation with Limited Adaptation
Data

We developed two algorithms for rapid speaker adaptation. The
first involves warping the speech spectra by paying particular
attention to the third formant frequency (F3), which is more
correlated with the speaker’s vocal-tract length than F1 or F2
[16, 15]. The second algorithm performs normalization based
on the location of the subglottal resonances in the speech spec-
tra. Both techniques are computationally efficient and perform
better than maximum-likelihood based vocal tract length nor-
malization (VTLN) [22] for limited adaptation data.

In the first method [11], speech spectra are reshaped by
aligning corresponding formant peaks between training and test
spectra. There are various levels of mismatch in formant struc-
tures. Regression-tree based phoneme- and state-level spectral
peak alignment is proposed for rapid speaker adaptation us-
ing linearization of VTLN [40]. This method is investigated
in an MLLR-like framework, taking advantage of both the effi-
ciency of frequency warping (VTLN) and the reliability of sta-
tistical estimations (MLLR). Two different regression trees are
investigated: one based on phonetic classes (using combined
knowledge and data-driven techniques) and the other based on
Gaussian mixture classes. Compared to MLLR and ML-based
VTLN, improved performance can be obtained for both su-
pervised and unsupervised adaptations for both medium vo-
cabulary (the RM1 database) and connected digits recognition
(the TIDIGITS database) tasks. Performance improvements are
largest with limited adaptation data, which is often the case for
ASR applications, and these improvements are shown to be sta-
tistically significant.

In [38, 39] another speaker normalization technique, based
on subglottal resonances, was introduced. Speaker normaliza-
tion typically focuses on variabilities of the supra-glottal (vo-
cal tract) resonances, which constitute a major cause of spec-
tral mismatch. Recent studies [8, 28] show that the subglottal
airways also affect spectral properties of speech sounds. The
speaker normalization method is based on estimating the sec-
ond and third subglottal resonances (hereafter referred to as Sg2
and Sg3, respectively). It should be noted that the algorithm that
automatically detects the subglottal resonances, especially Sg2,
was calibrated using direct measurements from accelerometer
data collected simultaneously with the acoustic recordings.

Since the subglottal airways do not change much for a spe-
cific speaker, the subglottal resonances are independent of the
sound type (vowel, consonant, etc.) and remain almost con-
stant for a given speaker of a certain age. This context-free
property makes the proposed method suitable for limited-data
speaker adaptation. The method is computationally more ef-
ficient than maximum-likelihood based VTLN in estimating
frequency-warping factors, with performance better than ML-
based VTLN especially for limited adaptation data in a variety
of testing conditions and tasks.

Cross-language variability of Sg2 was then investigated for
a number of English and Spanish words spoken by bilingual
children. Analysis showed that, as predicted, Sg2 is indepen-
dent of speech content and language. Based on these obser-
vations, a cross-language speaker normalization method using
Sg2 was developed. Experimental results showed that Sg2 nor-
malization is more robust across languages than VTLN, with
no significant performance difference observed when adapta-
tion data changed from English to Spanish. This language-
independent property of Sg2 leads to robust cross-language nor-
malization, whereby acoustic models trained in one language
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can be adapted with data in another language, which may be
useful in ASR applications for second-language learning.

2.2. Dealing with Accented English

There are many children in California who are of Hispanic ori-
gin, and their speech exhibits various degrees of accentedness.

A number of standard ASR and machine learning tech-
niques allow us to integrate prior knowledge of accented chil-
dren’s speech into our automatic assessment modules. Acoustic
models can be trained for the fundamental sounds of speech
based on both accented and unaccented recordings, to cover
as much of the variability in pronunciation as is seen in the
data. When decoding these acoustic models from an unknown
speech signal, we can constrain the results to a closed set of
pronunciations that reflect common variants made by speakers
in our target population. Finally, in synthesizing a binary read-
ing score from a set of acoustic cues, we can condition our de-
cision on prior knowledge of the child’s demographics, native
language, grade level, and other factors we would assume teach-
ers to know and use when making the same assessment. These
building blocks afford us the methods to assess students fairly,
regardless of their native languages or pronunciation idiosyn-
crasies.

For example, using a mapping of Spanish phonology to
English can help predict (and tag) pronunciations and talkers
with Spanish accented speech [42]. Therefore, we know that if
speakers read a word that way, they are probably reading cor-
rectly and if intervention is needed it is in English phonology.
Using Spanish letter to sound rules we can predict pronunci-
ations that apply Spanish rules to English words, which diag-
noses a reading issue in English, but also flags that the con-
cept of letter to sound rules is being learned. This is a real
learning opportunity for the teacher to know about and is far
more important than if the recognizer just said ’incorrect’. We
also found that all of the optimized vowel letter-sound dictio-
naries included the Spanish-confusable letter-sound pronuncia-
tions, proving that the addition of these unacceptable pronun-
ciations in the dictionary was helpful in detecting pronuncia-
tion errors in nonnative speakers. If a child repeatedly makes
Spanish-related pronunciations, the system will detect this class
of errors, and the teacher can infer from the automatic results
that the child may be confusing the letter-sound pronunciations
of the two languages. Both letter-sound and word verification
results improved when the pronunciation dictionary included
Hispanic pronunciations with models trained on in-domain data
[4, 371.

3. Noise Robust ASR

Speech recognition systems trained in quiet suffer from perfor-
mance degradation in the presence of ambient noise. This is
mainly due to the mismatch between the clean acoustic mod-
els and noisy features. There are two ways to reduce the mis-
match to achieve satisfactory performance. One approach is to
either denoise front-end feature vectors while keeping the clean
models unchanged [5, 14], or to develop noise robust features
[19, 9]. The other approach involves adapting the back-end
acoustic models according to the noisy environments [25, 17].
Over the years, members of our laboratory have developed
a number of front-end and back-end processing techniques for
noise robust speech recognition that are inspired by the way
humans produce and perceive speech especially in noise. The
techniques include: variable frame rate analysis [43, 41], peak



isolation [32], threading formant peaks [33], incorporating voic-
ing [35], and harmonic demodulation [45]. Recognition results
with the Aurora databases show that a combination of these
techniques results in a significant reduction in word error rate
for the mismatched case (clean training and noisy testing) when
compared to the MFCC front-end, with no significant increase
in computational complexity (e.g., [44, 9]).

The Variable Frame Rate (VFR) algorithm is motivated
by the fact that changes in spectral characteristics are impor-
tant cues for discriminating and identifying speech sounds [1].
These changes can occur over very short time intervals. Com-
puting frames every 10 ms, as is commonly done in ASR, is not
sufficient to capture such dynamic changes. The VFR algorithm
increases the frame rate for rapidly-changing segments with rel-
atively high energy and decreases the frame rate for steady-state
segments, based on a weighted log energy Euclidean MFCC
distance [43] or on computing entropy changes between adja-
cent frames [41].

The Peak Isolation algorithm is a cepstral-processing tech-
nique to enhance local spectral peaks. It was motivated by per-
ceptual experiments with spectrally complex speech-like stim-
uli that indicated that human audition is particularly sensitive to
the frequency location of local spectral peaks [23]. Measure-
ments of the timing detail of individual inner hair cell responses
reveal firing responses which track dominant spectral features
[13], suggesting one possible mechanism for increased sensi-
tivity to local spectral peaks.

Unfortunately, obtaining reliable estimates for formant fre-
quencies and their temporal derivatives in a noisy acoustic sig-
nal is a considerable challenge. However, we have shown that a
relatively simple tracking of the dominant spectral peak in three
spectral regions can provide robust measures which improve the
performance of an HMM-based speech recognition system at
low signal to noise ratios [33].

Most feature vectors used in speech recognition do not in-
clude voicing information. With a single speaker in a clean
acoustic environment, there may be few instances where voic-
ing information is necessary for communication: whispering
works in quiet situations at close range. However in noisy situ-
ations, the temporal regularity of voicing may be a critical cue
for the separation of speech from background noises in similar
spectral regions but with entirely different temporal structure.
Using a temporal pitch-perception model [26], [34] has shown
that running autocorrelation measures of amplitude modulation
in the pitch-range for voiced speech can predict the percep-
tual detection of voicing [35], and increase the robustness of
a speech recognition system in noise.

The Harmonic demodulation (HD) algorithm is a method
that aims at reducing the difference between clean and noisy
speech spectra, particularly in inter-harmonic valleys. Here,
speech production is viewed as amplitude modulation in the
frequency domain, with the excitation spectrum being the car-
rier and the spectrum of the vocal tract transfer function being
the modulator. Non-coherent demodulation with non-linear en-
velope detection is used to recover the spectrum of the vocal
tract transfer function [45]. Envelopes of the speech spectra, in-
stead of the speech spectra themselves, are used to compute the
acoustic features.

Recognizing speech requires processing and analyzing a hi-
erarchy of structured cues that evolve over widely varying time
scales. Our work has focused on the relatively low-level struc-
ture from the rate of the formant frequency through the rate of
glottal pulses to the rate of the syllable. Our initial results are
encouraging. The current challenges are to extend the findings
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to larger-scale recognition tasks, and to find intelligent ways to
use the redundant information available throughout the hierar-
chy of speech with various time-scales at the feature, phoneme,
syllable, word, phrase and sentence level.

4. Summary and Conclusion

The most effective path to improved performance of speech ap-
plications, especially ASR, is a hybrid knowledge-based and
data-driven one. Large databases (when available) can be used
to derive statistically-salient models. Knowledge of speech pro-
duction, perception, and language structure can help improve
ASR performance especially when training data are limited or
noisy. Examples from noise-robust ASR, rapid speaker adapta-
tion, and ASR of accented English were provided. Despite sig-
nificant technical advances, a robust speech recognition system
that approaches human performance still does not exist [27].
Research on improving our understanding of human cognitive
abilities and on how best to constrain and regularize data-driven
approaches, therefore, continues.

Specifically, in the speech production area, better under-
standing and quantitative characterization of the acoustics and
articulatory dynamics of both normal and pathological human
speech are needed. In particular, data and models that address
articulatory and acoustic variabilities, both within and across
speakers are critical with benefits extending to the clinical and
linguistic areas.

In the perception area, better models of the human capac-
ity for perceiving speech in noise are critical. While healthy-
hearing individuals are remarkably adept at isolating a specific
speech signal from the background noise and understanding
what is said, the performance of automatic speech recognition
and hearing aids degrade significantly in noisy environments.
An important direction here would be to understand and model
how acoustic cues are weighted differently depending on the
acoustic environment. For example, perceptual experiments
reported in [7, 20] show that while both the voice-onset-time
(VOT), a primarily temporal cue, and the transition of the first
formant frequency (F1) play an equally important role in per-
ceiving voicing for plosives in quiet, the role of the VOT is vir-
tually diminished in the presence of additive white noise.

Finally, thinking beyond HMMSs to other probabilistic
graphical models [3] that are more amenable than HMMs to
including rule-based and/or heuristic speech and language con-
straints might greatly improve ASR performance.
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