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Abstract— We propose a novel rate allocation algorithm for
multi-user speech communication systems based on bargaining
theory. Specifically, we apply the generalized Kalai-Smorodinsky
bargaining solution since it allows varying bargaining powers to
match the dynamic nature of speech signals. We propose a novel
method to derive bargaining powers based on the short-time
energy of the input speech signals, and subsequently allocate rates
accordingly to the users. An important merit of the proposed
framework is that it is general and can be applicable for resource
allocation across a variety of multi-rate speech coders and it
is robust to a variety of speech quality metrics. The proposed
system is also shown to involve a quick and low complexity
training process. We generalize the algorithm to scenarios in
which users have unequally weighted priorities. These scenarios
might arise in emergency situations, in which certain users are
more important than others. The proposed rate allocation system
is shown to increase the utility measures for both the Itakura
and segmental SNR functions relative to the baseline system
that performs uniform rate allocation. Additionally, although
the instantaneous bitrate resolution of the speech encoder is not
changed, the proposed system is shown to increase the short-
time average bitrate resolution, and therefore provides a greater
number of operational rate modes for the network.

I. I NTRODUCTION

Resource allocation techniques in multi-user communica-
tion systems have been a major topic of research for many
decades. Specifically, thorough attention has been paid to
dynamic rate allocation within cellular telephone networks due
to the inherent limits on resources in such networks. However,
with the emergence of new modes of communication, such as
Internet phone services, rate allocation algorithms for speech
transmission systems have again become a crucial topic of
research.

This paper addresses the problem of dynamic rate alloca-
tion across multiple non-collaborative speech communication
systems. Dynamic resource allocation has been studied as an
efficient alternative to fixed resource allocation in general wire-
less data networks [1] [2]. However, these techniques consider
only spectral allocation, and determine solutions based on
external factors such as time-varying loads and spatial channel
differences. In [3], the authors propose a rate control approach
for generalized processor sharing. The method parameterizes
a source model and allocates rate accordingly, but it does not
consider resulting utilities for multimedia applications.

Attempts have been made to solve resource allocation
problems in the utility domain by considering the quality of
service (QoS) to users. In [4], dynamic spectral allocation is

based on QoS requirements in terms of bit error rate (BER),
but the proposed method does not consider the results on
the decoded data. Other existing resource allocation schemes
based on utility measures often require a relatively simple
utility function. In [5], the authors propose a rate allocation
scheme for communication networks based on utility results,
but the scheme requires the utility function to be solvable with
Lagrangian optimization techniques.

Recent research has applied game theory and bargaining
theory to solve resource allocation problems in the utility
domain, and these techniques have been shown to provide
improved performance. In [6], game theory is applied to
power control in cellular systems. In [7], the Nash bargaining
solution is used to develop an auctioning algorithm for channel
allocation in wireless networks, and in [8], bargaining theory
is applied to rate allocation in multi-user video transmission
systems. Also, note that none of the previously mentioned
studies develop resource allocation algorithms based on speech
characteristics, and instead base rate allocation on channel
and/or network conditions.

In this paper, we propose a non-collaborative rate allo-
cation algorithm based on axiomatic bargaining theory for
transmission of speech signals. In order to apply axiomatic
bargaining theory to the rate allocation problem, this paper
defines certain aspects of the general normalized bargaining
problem in terms of speech processing and communication
theory. Specifically, this paper focuses on a multi-user system
with a central spectral moderator (CSM), which is responsible
for dynamically and fairly allocating rate to users in the
network.

The novelty of this paper lies in the fact that we apply the
Kalai-Smorodinsky bargaining solution to speech communica-
tion networks. Various resource allocation solutions based on
bargaining theory can be adopted to enable a fair division of
resources among users, such as the Nash bargaining solution
[9] and the Raiffa bargaining solution [10]. However, the
Kalai-Smorodinsky bargaining solution is especially useful for
multi-user speech communication as it allocates the resources
in such a way that the achieved utility of any participating
user results in the same quality penalty, i.e. the same decrease
in speech quality, of the other users relative to their maximum
achievable qualities.

Additionally, the Kalai-Smorodinsky bargaining solution
allows the use of bargaining powers to weight users differently
in time. We introduce a novel method for deriving bargaining
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powers based on the short-time energy of the input speech
signals to match the dynamic nature of speech.

Unlike conventional solutions like Lagrangian optimization,
the Kalai-Smorodinsky bargaining solution does not require
the utility-resource function to fulfill specific properties such
as convexity. Importantly, this solution does not even require to
have an analytical expression for the utility-resource tradeoffs,
which is essential for speech coders.

Another important feature of the proposed system is the
robustness of the algorithm to different speech coders and
different speech quality metrics. The rate allocation algorithm
derived in this paper is compatible with any speech encoder,
as long as it can produce bitstreams at multiple quality levels.
The proposed system is also compatible with any numeric
speech quality measure, which is important since there is no
generally favored numerical quality of speech metric.

In Section II, we review several bargaining theory funda-
mentals. Section III describes the application of bargaining
theory to the problem of rate allocation, and develops the
proposed rate allocation system. Section IV analyzes the
complexity of the algorithm, and describes the learning process
of the system. Section V shows the performance and results
of the overall system. Finally, conclusions and discussion are
provided in Section VI.

II. REVIEW OF BARGAINING THEORY FUNDAMENTALS

A. Axiomatic Bargaining Theory

A bargaining problem involves two or more users who can
collaborate for their mutual benefit in multiple ways [9]. A
bargaining solution is defined as an optimal distribution of
resources among the users involved. A bargaining solution
must lie on the Pareto surface, which is defined as the
collection of points in the utility space relative to which no
other solutions are superior in all objectives [11].

The development of Axiomatic Theory of Bargaining in
[9] introduced a more mathematical approach to the solution.
In axiomatic bargaining theory, a solution is selected that
satisfies a set of rational and desirable axioms, and these
axioms guarantee fairness among parties. Specifically, this
theory presented thenormalizedbargaining problem, in which
the problem is represented by the pair(S, d) in utility space.
In this notation,S is the subset of the utility space which
includes all feasible utility points, andd is the disagreement
point defined as:

d =
[
umin

1 , umin
2 , . . . , umin

M

]T
, (1)

where umin
i represents the minimum agreeable utility for

useri.

B. The Kalai-Smorodinsky Bargaining Solution

The Kalai-Smorodinsky Bargaining Solution (KSBS) [12] is
confined to functionsf : RM → RM such thatf (S, d) ∈ S
that satisfy the following three axioms which are introduced
in [9]. Note that we define the vector operator> such that for
x, y ∈ RM , x > y iff xi > yi for i = 1, 2, . . . ,M .

Axiom 1- Pareto Optimality: For every(S, d) there is no
y ∈ S such thaty > f (S, d) andy 6= f (S, d).

Axiom 2- Symmetry: We let T : RM → RM be defined by
T ((x1, x2, . . . , xM )) =

(
xp(1), xp(2), . . . , xp(M)

)
, wherep is

any permutation of the numbers(1, . . . ,M), and we require
that for every(S, d) ∈ RM , f (T (S) , T (d)) = T (f (S, d)).

Axiom 3- Invariance with Respect to Affine Transformation
of Utility: A is an affine transformation of utility ifA =
(A1, A2, . . . , AM ) : RM → RM , A (x1, x2, . . . , xM ) =
(A1 (x1) , A2 (x2) , . . . , AM (xM )), and the mapsAi (x) are
of the form cix + di for some positive constantci and some
constantdi. We require that for such a transformationA,
f (A (S) , A (d)) = A (f (S, d)).

These axioms guarantee fairness and efficiency of the
bargaining solution. Specifically,Axiom 1 ensures that the
bargaining solution is efficient and that no other solution
can be found that can assign a greater amount of utility
to all users.Axiom 2 guarantees that users are given equal
treatment with respect to assignment of utility. Finally,Axiom
3 guarantees that if users are bargaining for unlike utilities,
these utilities will be normalized before the bargaining solution
is determined.

In [12], a fourth axiom is introduced, namely theAxiom of
Monotonicity. This axiom states in the2-user case that if user
1 demands a certain utility level, and the utility level of user2
can simultaneously be increased, then the utility level of user
2 assigned by the solution should be increased.

Let us define the functiongS (xi) as the maximum utility
levels other users can be assigned if useri is assigned utility
level xi. Then, theAxiom of Monotonicityis defined as:

Axiom of Monotonicity - If (S2, d) and (S1, d) are bar-
gaining pairs such thatgS1 < gS2 , thenfi (S1, d) < fi (S2, d)
(wheref (S, d) = (f1 (S, d) , . . . , fM (S, d)).

It is proven in [12] that there is one and only one solution
within the set of functions defined byAxioms 1,2,and3, that
also satisfies theAxiom of Monotonicity. This unique KSBS
introduced the concept of autopia point, a, which is a point
in the utility space defined as:

a = [umax
1 , umax

2 , . . . , umax
M ]T , (2)

whereumax
i represents the maximum achievable utility for

useri and is only achievable if all the rate is allocated to that
user.

The KSBS defines the unique solution to a normalized
bargaining problem as the intersection of the Pareto Surface
and the line connectingd and a. The KSBS also offers the
ability to apply the concept ofbargaining powers, which
represents the weights of users’ demands in bargaining.

The unique KSBS, denoted asû, to the bargaining problem
represented by(S, d) [12], is defined as:

ûk = max
uk∈S, α∈R

uk, (3)

whereuk = d + αC · (a− d)

where C is a diagonal matrix whosecii element is the
bargaining power of theith user, andα is a scalar. Figure
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Fig. 1. The Kalai-Smorodinsky Bargaining Solution (KSBS) for the 2-user
case

1 shows an example of the KSBS, labeled as(û1, û2), in the
simple 2-user case.

III. PROPOSEDRATE ALLOCATION SYSTEM

A. System Overview

Application of bargaining theory to the problem of rate
allocation necessitates certain definitions. Firstly, the concept
of resources can clearly be defined as allocated rate to each
user in the system. Additionally, the concept of utility can
be defined as the quality of speech transmitted by each user.
Finally, the concept of bargaining power can be interpreted as
the relative benefit of additional rate for the speech quality of
user’s transmitted speech.

As mentioned in the introduction, this paper will focus on
a multi-user speech communication system with a CSM for
the M -user case. The CSM is responsible for dynamically
allocating a constant total rate,R, to the users. That is, for
every block of coded speech, the CSM will determine the rate
allocation vector:

qk = [r1,k, r2,k, . . . , rM,k]T , (4)

where ri,k represents the rate allocated to thekth block
from useri, for 1 ≤ i ≤ M and k ≥ 1. Note the following
constraints onqk:
• 0 ≤ ri ≤ R, for 1 ≤ i ≤ M andk ≥ 1
•
∑M

i=1 ri,k ≤ R, for k ≥ 1
• The value∆R = R−

∑M
i=1 ri,k is less than the amount of

rate necessary for any user to operate at a higher bitrate
mode of the encoder. That is, the available rateR has
been maximally allocated.

Figure 2 shows the system overview for the 2-user case. In
this figure,si (n) represents the input speech signal of useri
andBPi,k represents the bargaining power of useri for block
k. Also, Bi,k represents thekth block of coded speech for
useri.

In our proposed system, the CSM determines the solution
rate allocation vector̂qk through the following steps:

TABLE I

Operating Modes of the GSM AMR-NB Speech Encoder, whereuSNR and

uItak Represent the Segmental SNR and Inverse Itakura Utility Functions

Respectively

Mode Bitrate (in kbps) uSNR uItak

1 4.75 1.541 2.912
2 5.15 1.385 3.020
3 5.90 1.610 3.557
4 6.70 1.661 3.726
5 7.40 2.244 3.916
6 7.95 1.881 3.864
7 10.2 2.783 5.278
8 12.2 2.957 5.173

1) Define the Pareto Surface (see Section III-C.1).
2) Position the disagreement point (see Section III-C.2).
3) Determine the utopia point (see Section III-C.3).
4) Determine the matrixC by normalizing the bargaining

powers of the users (see Section III-C.4).
5) Determinêu, the KSBS in the utility space (see Section

III-C.6).
6) Determine the point in the resource domain,q̂k, corre-

sponding tôuk (see Section III-C.7). Note that̂qk is an
approximation ofqk, since the Pareto Surface is discrete,
and the exact operating pointqk can not generally be
achieved.

As illustrated in Figure 2, the computational steps of the
proposed rate allocation system occur at two different loca-
tions within the system. The calculations of the unnormalized
bargaining powers are carried out within individual speech
encoder blocks, and therefore these calculations can be done
in parallel. The unnormalized bargaining powers are then
received by the CSM, and the CSM determines the KSBS. The
components of the solution rate vector are then transmitted to
the corresponding speech encoder blocks.

The rate allocation system was designed to be updated for
every block of coded speech. Thus, in the case of most modern
speech coders, a new rate allocation solution is determined ap-
proximately every20 ms. The proposed algorithm is therefore
able to adapt to transitions in the speech signals as quickly as
the coder can adapt.

It is important to note that the rate allocation algorithm de-
veloped in this paper can be applied to many different speech
encoders. As can be seen in Figure 2, the only requirement
for the coder used is that it can operate at multiple levels of
quality. Furthermore, better performance of our rate allocation
scheme can be expected with an increased number of quality
levels. This is due to the fact that an increased number of
operating modes of the speech encoder will provide increased
resolution on the Pareto Surface. To illustrate the performance
of our system, we use the GSM Adaptive Multi-Rate (AMR)
Narrow-Band (NB) speech coder specified in [13]. This speech
coder can operate in 8 different rate modes between4.75 kbps
and12.2 kbps.
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Fig. 2. System Overview for 2-User Case wheresi (n) Represents the Input Speech Signal of Useri, BPi Represents the Unnormalized Bargaining Power
of User i, ri Represents the Rate Allocated to Useri, and Bi (k) Represents thekth Block of Coded Speech From Useri

B. Definitions of the Utility Functions and Feasibility Set

In general bargaining theory, the utility function is a func-
tion from the resource domain to the utility domain. In the
specific case of our system, the utility function expresses the
quality of synthesized speech encoded at a certain bit rate.

To illustrate the robustness of our system to a variety of
speech quality metrics, we define two distinct utility functions.
These utility functions are based on common speech distortion
measures.

A widely used objective speech quality metric for synthe-
sized speech is the segmental SNR,dSNR [16]. If the original
speech signal,s (n), is encoded at a bit rater, the segmental
SNR of the synthesized speech signal,ŝr (n), is defined as:

dSNR (r) =
10
K

K−1∑
k=0

log10


(k+1)N−1∑

n=kN

s2 (n)
(s (n)− ŝr (n))2


 ,

(5)
whereN is the frame size andK is the total number of

frames. The segmental SNR utility function is therefore given
by:

USNR (qk) = [dSNR (r1,k) , dSNR (r2,k) , . . . , dSNR (rM,k)] .
(6)

We also consider another distortion metric which is often
used to compare Linear Prediction Coding (LPC) based co-
efficients in speech coding and recognition applications. [15].
The Itakura distortion,IItak (r), between the original speech
signal,s (n), and synthesized speech encoded at a bit rater,
ŝr (n), is defined as:

IItak (r) = log

(
âT

Rpâ
aT Rpa

)
(7)

whereRp is the pth-order autocorrelation matrix ofs (n),
anda and â are defined as:

a = [1,−a1,−a2, . . . ,−ap]
T

, (8)

and

â = [1,−â1,−â2, . . . ,−âp]
T (9)

whereak and âk are thekth predictor coefficients forp-
order Linear Predictive Coding (LPC) [17] analysis ofs (n)
and ŝ (n), respectively.

In order to obtain a utility function that is directly related
to speech quality, we define our proposed utility function as
the inverse of the Itakura distortion. Thus, our utility function
is given by:

UItak (qk) =
[

1
IItak (r1,k)

,
1

IItak (r2,k)
, . . . ,

1
IItak (rM,k)

]
.

(10)
Table I shows the operating modes and resulting utility

measures of the GSM AMR-NB speech encoder. The utility
functions used are the Segmental SNR distortion [16] and
the inverse of the Itakura distortion [15] previously described.
The utility points are obtained using a training set from the
TIMIT Acoustic-Phonetic Continuous Speech Corpus [19].
The training set included 275 sentences, 169 of which were
spoken by various male speakers, and 106 of which were
spoken by various female speakers.

Note that there are a couple of instances where the utility
points decrease with an increase in bitrate. These instances
are due to the varying bit allocation in the speech coding
specifications of the GSM AMR-NB encoder. For example, the
drop in theuSNR utility from mode1 to mode2 is most likely
due to the fact that the mode1 coded speech block contains
2 sets of gain values per20 ms block, and designates8 bits
to each. The mode2 block contains4 sets of gain values, but
only designates6 bits to each. Also, the drop in performance
for both utility functions in mode6 is most likely due to the
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difference in adaptive codebook construction. Finally, the drop
in the uItak utility from mode 7 to mode8 is most likely
due to the fact that the mode8 block uses no look-ahead for
calculation of the the linear prediction coefficients.

The quality feasibility set is defined as the set of all points
in the utility space which correspond to feasible resource
allocation vectors. Specifically, the quality feasibility set is
defined as:

S =
{

q | ∃r = [r1, r2, . . . , rM ]T , r is feasible,

andumin
i ≤ ui (ri) = qi, i = 1, 2, . . . ,M

}
. (11)

An important property required to be able to apply the
KSBS to our problem of rate allocation is the fact that the
quality feasibility set isd-comprehensive. The definition of
comprehensiveness of a set states that the setS ⊂ RM is
d-comprehensiveif y ∈ S andd ≤ x ≤ y imply x ∈ S.

Lemma 1: The quality feasibility set S isd-comprehensive.
Proof: Let x, y ∈ RM×1 be vectors in the feasibility set such

thatd ≤ x ≤ y. Now definery ∈ RM×1 such thaty = U (ry).
Since our utility function is monotonically increasing, there
must exist a vectorrx ∈ RM×1 such thatx = U (rx).

C. Definitions of Bargaining Theory Parameters for Proposed
System

1) Determining the Pareto Surface:To ensure that a bar-
gaining solution is not wasteful, a fundamental property of a
bargaining solution is Pareto optimality. A solutionq is Pareto
optimal if q ∈ PS, wherePS is the Pareto Surface ofS and
is defined as:

PS = {x ∈ S | y > x impliesy /∈ S} . (12)

Figure 3 illustrates an example of the Pareto Surface using
USNR for a total rate constraint of18.0 kbps in the 2-user
case, and the corresponding user rates are shown. Note that
the Pareto Surface in Figure 3 includes few points. This is due
to the fact that the GSM AMR-NB encoder can operate in a
small number of quality modes across a large range of bitrates.
A speech encoder with a larger number of operating modes
with finer bitrate resolution would result in a more populated
Pareto Surface.

In the proposed system, the Pareto Surface is obtained
by first compiling a list of all possible operating points for
the M -user case. Note that these operating points, given as
(r1, r2, . . . , rM ), are comprised of user rates that lie between
the rates corresponding to the utility valuesumin

i and umax
i .

Thus, the system contains a set of predetermined lists for
different user numbers. The Pareto Surface for a given rate
constraintR, and a given number of usersM , is then obtained
through the following steps:

• The list corresponding to theM -user case is traversed,
and the total rate is determined for each operating point:
RT =

∑M
m=1 rm. If RT > R, the point is excluded from

the subset of possible Pareto Surface points.
• The remaining list of possible operating points is tra-

versed, and each point is checked for Pareto Optimality.

Fig. 3. Example of the Pareto Surface for the 2-User Case UsingUSNR

With Total Rate Constraint of18.0 kbps

That is, for the current point,ucurr, and for any other
point x, if ucurr < x, the current point is excluded.

The computational load of obtaining the Pareto Surface for a
givenR andM may become large asM grows large. However,
these algorithms are carried out offline, and the Pareto Surface
is obtained for the particular rate constraint and user number
before the system is used.

2) Determining the Disagreement Point:As shown in
Equation 1, the disagreement point,dk, is the point in utility
space composed of the minimum acceptable utility levels
for each user. Thus,dk represents the point in utility space
below which solutions are deemed unacceptable by one or
more users. Only utility points greater thandk are therefore
considered during the bargaining process.

3) Determining the Utopia Point:The utopia point,a,
represents a point in utility space desired by all users, and
is defined in Equation 2. The valuesumax

i described represent
the maximum utilities for each user. Thus, in the proposed
rate allocation system, eachumax

i value will be equal to
the maximum utility possible for the given speech coder. In
the case of the GSM AMR-NB encoder used, the maximum
possible utility value can be obtained from Table I.

4) Determining Normalized Bargaining Powers With Equal
Priorities: In the most common scenario, all users in theM -
user proposed network will have equal priority. In other words,
the speech quality of the transmitted signal from useri is of
equal importance to the overall system as the quality of speech
of the transmitted signal of userj, for 1 ≤ i, j ≤ M . The
following section derives the formula for bargaining powers
in the equal priority case.

In the general KSBS, the bargaining powers of users can be
interpreted as the relative weights of the user’s demands. In
the mathematical solution of the KSBS, the bargaining powers
of the users in the system are given by the matrixC. As
stated previously,C is a diagonal matrix with thecii element
representing the normalized bargaining power of useri.

As proposed earlier, we use parameters of the input speech
signal of useri to determine the corresponding normalized bar-
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gaining power, which will be referred to asρi. The equations
for the bargaining powers of speech signals(n) are given in
Section III-D. We now defineC as:

C = diag{p} , (13)

where

p = [ρ1, ρ2, . . . , ρM ]T , (14)

diag(p) is the matrix with diagonal values ofρ1, . . . , ρM

and zero-valued nondiagonal elements, and where the user
normalized bargaining powersρi are given by:

ρi =
Γi∑M

m=1 Γm

, (15)

whereΓi represents the unnormalized bargaining power of
useri.

5) Determining Normalized Bargaining Powers With
Weighted Priorities: In certain possible scenarios, the pri-
orities of different users in theM -user network may differ
from each other at given times. These scenarios might arise
in emergency situations, for example, when a certain user is
considered more important than the other users. Therefore,
formula for weighted bargaining powers are necessary.

Let the vectorw ∈ RM×1 contain the relative priority
weights of theM users. That is:

w = [w1, w2, . . . , wM ]T , (16)

wherewi corresponds to the relative priority weight of user
i. It then follows intuitively thatpw, the vector of normalized
weighted bargaining power, can be calculated as follows:

pw = [ρw
1 , ρw

2 , . . . , ρw
M ]T , (17)

where

ρw
i =

wiΓi∑M
m=1 wmΓm

. (18)

Note that when the priority weight vector is set tow =
[1, 1, . . . , 1], the formula in Equations 17 and 18 simplify to
the equal priority case of Section III-C.4.

6) Determining the KSBS in the Utility Space:With neces-
sary bargaining parameters defined for our speech communi-
cation system, we can now apply our KSBS to the problem of
rate allocation for multi-user speech transmission. Given the
total rate constraint, we can define the quality feasibility set
as discussed in Section III-B and then the Pareto Surface as
discussed in Section III-C.1. Furthermore, we can position our
disagreement point as discussed in Section III-C.2. Then, the
Kalai-Smorodinsky bargaining solution can be stated simply
as q̂, whereû = U (q̂), and where:

û = arg max
u

pT ·
(

u − d
|u − d|

)
, (19)

for ∀u ∈ PS.
Due to the discrete nature of the Pareto Surface,û rep-

resents an approximation to the determined KSBS. Thus, a

certain amount of error between the calculated solution and
û is unavoidable. However, this error is decreased for Pareto
Surfaces with finer resolution, i.e. Pareto Surfaces consisting
of a greater number of points. As discussed in Section III-
C.1, finer resolution on the Pareto Surface is achieved with a
speech encoder that can operate in a large number of quality
modes.

7) Determining the KSBS in the Resource Space:The
KSBS solution is determined in the utility domain as described
in Section III-C.6. However, since the utility functionU (·) is
not 1-to-1, there does not exist an inverse functionU−1 (·).
Thus, in order to obtain a point in the resource domain,qk,
such that:

uk = U (qk) , (20)

we rely on a predetermined codebook containing(uk, qk)
pairs to find our final rate allocation solution vector,q̂k. Our
codebook is designed to not contain any mappings of distinct
resource vectors,qj andqk, to the same utility vector, so that
ul = U (qj) = U (qk). Determining a KSBS in the resource
domain involves a search of the previously described codebook
to match the utility domain KSBS, and since the codebook
lists (uk, qk) pairs, the resource domain KSBS can easily be
obtained.

D. Defining Bargaining Powers Based on Short-Time Energy
Level

Application of the KSBS to our problem of rate allocation
necessitates the definition of bargaining powers. Bargaining
powers represent the relative importance of additional rate to
the users with respect to utility. This paper introduces a novel
bargaining power based on the short-time energy of the input
speech signal.

Scalable or multi-rate speech coders often include a hard
decision Voice Activity Detection (VAD) algorithm [16] to
classify speech versus non-speech segments. For example,
the GSM AMR-NB speech coder includes the option to
run at a lower bitrate when the current block of speech is
determined to be comprised of solely background noise [13].
VAD algorithms often include a weighted sum of classifier
functions, such as periodic similarity, zero crossing rate, spec-
tral tilt, pre-emphasized energy ratio, and total frame energy.
In such algorithms, the weighted sum of classifier functions
is compared to a predetermined threshold. However, due to
the possibly drastic effects of incorrectly classifying a speech
segment as non-speech, the hard decision threshold is often
set relatively low [16].

The proposed bargaining powers based on short-time energy
offers a soft decision version of the VAD algorithms previously
described. However, a linear function of the short-time energy
will not serve as an efficient bargaining power since speech
segments vary greatly in energy level, even though they
generally contain more energy than non-speech segments.
Therefore, we introduce a bargaining power based on a non-
linear function of the short-time energy which incorporates
the A-Law companding function [18]. TheA-Law function
has been widely used as a quantization scheme in Pulse Code
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Modulated (PCM) speech coding. We define the average short-
time energy of the speech signals (n) as:

EST =
α

N

N−1∑
n=0

s2 (n) , (21)

whereN is the length of the speech signal segment, which
was set toN = 160 in the proposed system, andα is an
experimentally determined constant. The short-time energy
bargaining power,Γ, is then defined as:

Γ =
A · EST

1 + log10 (A)
for 0 < EST ≤ 1

A
(22)

Γ =
1 + log10 (A · EST )

1 + log10 (A)
for

1
A

< EST ≤ 1 (23)

Γ = 1 for EST > 1. (24)

In the proposed systemA = 68, which is a common value in
PCM algorithms, andα was found to give good performance
at a value ofα = 160 when the input speech signals were
normalized by the maximum value of the current utterance.

IV. COMPLEXITY AND SYSTEM LEARNING ISSUES

A. Complexity Analysis

The proposed rate allocation scheme uses a low complexity
algorithm that can run in real-time. The KSBS algorithm for
the M -user case involves the following computations at each
block iteration:

• Calculating the bargaining power at each speech encoding
block

• Normalizing the bargaining powers of each user at the
CSM

• Determining the solution in the utility domain at the CSM
• Identifying the solution in the resource domain corre-

sponding to the utility domain solution at the CSM

Calculating the bargaining power of a segment of speech
for an individual user involves determining the short-time
energy and the correspondedA-Law companded value. Let
Nw represent the length of the window used in processing
and coding the input speech signals. (In the GSM AMR-
NB speech coder,Nw = 160.) The calculation ofEST then
involvesNw multiplications andNw−1 additions. TheA-Law
companding function involves2 additions,2 multiplications,
and2 logarithmic functions.

Determining the solution in the utility domain involves
searching through a codebook to find the minimum result of
a cost function. The calculation of the cost function, given in
Equation 19, requiresM subtractions,M multiplications, and
1 division. Let us defineNPS as the number of points on the
Pareto Surface. Note thatNPS is a function of the number of
users,M , and the total rate constraint,R. Additionally, once
the solution in the utility domain has been located, the final
solution in the resource domain can be easily looked up since
the vectors are listed in pairs.

Table II summarizes the computational complexities of the
operations within each speech encoder block, which can be

TABLE II

Computational Complexity of Operations Within Speech Encoder Blocks,

whereNw Represents the Length of the Window Used for Coding in

Samples

Task Multiplications Additions Log functions
Determining BPs Nw + 2 Nw + 1 2

TABLE III

Computational Complexity of Operations Within the CSM whereM

Represents the Number of Users andNPS Represents the Number of

Operating Points on the Pareto Surface

Task Multiplications Additions Comparisons
Normalizing BPs M M − 1 0
Determiningûk NPS · (M + 1) NPS · M NPS

Determiningq̂k 0 0 1

carried out in parallel. Table III summarizes the computational
complexities of the operations within the CSM.

As can be interpreted from Figure 2, the proposed system
is integrated into the speech coding process. It is important
to note that the computational load introduced by the rate
allocation algorithm is far smaller than those introduced by
other speech communication tasks such as encoding. Modern
CELP speech coders include construction of both a short-term
prediction filter and long-term prediction filter, approximation
of pitch and pitch delay, and an extensive codebook search
for optimum excitation positions and gains [16], and thus the
proposed system has little effect on the computational load of
the overall rate allocation and coding system.

Furthermore, our algorithm does not require any additional
buffering other than the buffering necessary for block-based
speech coding. In our implementation, the input speech was
windowed and processed with a20 ms window. Thus, our rate
allocation system can be run in real-time.

B. Learning Process of the Proposed System

The proposed rate allocation system involves a low com-
plexity training process. The only information necessary for
the system is the matrix of rate-utility pairs,Θ, that represents
the rate-performance curve of the chosen speech coder in terms
of the chosen speech quality metric. The matrixΘ is defined
as:

Θ =


u1 r1

u2 r2

...
...

uP rP

 , (25)

where ui is the utility measure resulting from encoding
speech at rateri, andP is the number of modes for the chosen
multi-rate speech coder. The matrixΘ is estimated empirically
by averaging the utility measures resulting from a given rate
over a set of training speech segments. Let us defineuk,i as the
utility measure resulting from encoding thekth training speech
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segment at a rate ofri. The elements of the rate-performance
matrix Θ can then be determined with the following equation:

ui =
1
K

K−1∑
k=0

uk,i, (26)

where K is the number of speech segments used for
training. This process is carried out for each mode, i.e. for
0 ≤ i ≤ P − 1, of the chosen speech encoder to obtain the
matrix Θ.

V. RESULTS

The proposed rate allocation system was tested on con-
tinuous speech segments from the DARPA TIMIT Acoustic-
Phonetic Continuous Speech Corpus [19]. A subset of275
sentences were randomly selected for training,169 of which
were spoken by various male speakers, and106 of which were
spoken by various female speakers. A subset of255 sentences
were randomly selected for testing,168 of which were spoken
by various male speakers, and87 of which were spoken by
various female speakers. Both the training set and testing set
were spoken by the same group of speakers.

A. Baseline Allocation Systems

In order to show relative improvement of the proposed
bargaining-based rate allocation algorithm, baseline algorithms
must be defined. We introduce a basic scheme involving
uniform allocation of a total rate ofR to M users within the
speech communication network, referred to as fairly allocated
(FA) uniform allocation. In this algorithm,ri, the amount of
rate allocated to useri, is determined as:

ri =
⌊

R

M

⌋
coder

, (27)

where the functionb·ccoder returns the rate of the highest
possible mode of the given speech coder whose bitrate is
less than or equal toRM . The FA uniform allocation scheme
guarantees fair rate allocation among users, but proves to be
very inefficient, as it generally cannot maximally allocate the
given total rateR.

Therefore, a maximally allocated (MA) uniform allocation
scheme is introduced. The MA uniform allocation algorithm
involves the following steps:

• Determine initial user rates,(ro
1, r

o
2, . . . , r

o
M ) according

to the uniform allocation scheme shown in Equation 27.
• Determine the excess rate,∆R = R−M ·

⌊
R
M

⌋
coder

.
• For usersi = 1, . . . ,M , if ∆R is greater than or equal to

the amount of rate needed to increase the encoding mode
of useri, then increase the encoding mode of useri and
update the excess rate.

B. Illustration of Example Input Signals to2-User Rate Allo-
cation System

The proposed rate algorithm was tested in the2-user
case, with equal priority weighting, and was tested using
the proposed bargaining-based system, as well as with the

baseline algorithms of FA uniform allocation and MA uniform
allocation. Randomly selected input speech signals, along with
the corresponding bargaining powers, normalized bargaining
powers, and allocated rates are shown in Figure 4. Panels1
and5 show the input speech waveforms to the2-user system.
Panels2 and 6 illustrate the short-time energy bargaining
powers corresponding to the input speech signals. Panels3
and 7 show the resulting normalized bargag powers, and
panels 4 and 8 show the rates allocated in time to users
1 and 2, respectively. As can be concluded from Figure 4,
there is noticeable correlation between the presence of speech
segments in the input signals and the corresponding short-
time energy bargaining powers. Figure 4 also shows how the
normalized bargaining powers translate into allocated rate.

Note the example time instant att = 0.90 seconds, shown
by the vertical dashed line. Within this speech block, the
speech waveform of user1 shows a high amplitude voiced
signal, and the speech waveform of user2 shows a low am-
plitude waveform. Note that the unnormalized and normalized
bargaining powers become high for user1 and become low
for user2. Finally, note that the bargaining powers translate
into a high bitrate ofr1 = 12.2 kbps for user1 and a low
bitrate ofr2 = 4.75 kbps for user2.

C. Increased Short-Time Coding Bitrate Resolution

The proposed rate allocation algorithm provides an in-
creased short-time coding bitrate resolution. The short-time
coding bitrate is defined in this paper as the mean rate for a
user over a period of2.0 seconds. In the case of the GSM
AMR-NB speech codec used, the encoder can operate in8
different bitrate modes, ranging from4.75 kbps to12.2 kbps,
as shown in Table I. In the baseline scheme of MA uniform
rate allocation, this results in poor short-time coding bitrate
resolution. The proposed bargaining-based rate allocation al-
gorithm provides improved short-time coding bitrate resolution
relative to the baseline scheme of MA uniform allocation.
Due to the dynamic nature of the rates allocated to each
user in time, the proposed system can run at a large number
of operating points. Figure 5 illustrates the bitrate operating
points for the2-user baseline network and the2-user bargain-
based network, for varying levels of total rate constraint. The
utility used is theUSNR utility function, discussed in Section
III-B.

Note the greater number of operating modes available for
the proposed rate allocation system. For example, in the2-
user case with a total rate constraint of9.0 kbps per user,
the only operating modes for the MA uniform allocation
system are(r1 = 7.4, r2 = 10.2), (r1 = 10.2, r2 = 7.4), and
(r1 = 7.4, r2 = 7.4). The only operating mode for the FA
uniform allocation system is(r1 = 7.4, r2 = 7.4). However,
as can be noted in Figure 5, there exist a large number of
short-time operating modes for the bargaining-based system,
and thus the proposed system can allocate rate to better match
the characteristics of the input speech signals.

D. Rate Allocation for Continuous Speech

The proposed rate allocation system was then tested over
255 sentences. Table IV shows the results of the system on
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Fig. 4. Example Input Speech Signals and Corresponding Bargaining Powers,
Normalized Bargaining Powers, and Allocated Rates for the2-user Case

continuous speech signals, using the segmental SNR utility
function. Table V shows the results of the proposed system
using the Itakura utility function, as well as theIItak distortion
function. Note thatu represents the average utility of the input
speech signals, and is given by:

u =
1
M

M−1∑
m=0

um, (28)

whereui represents the utility measure of useri, andM is
the number of users in the system.

As can be concluded from Table IV and Table V the
proposed rate allocation system provides increased utility
measures relative to the baseline systems. The proposed al-
gorithm provides0.465 dB improvement over the FA uniform
allocation scheme for theUSNR utility value. Additionally,
the proposed system provides a12.84% decrease of theIItak

distortion function. Additionally, the bargaining-based system
guarantees fairness among users, which the MA uniform
allocation system does not.

Bargaining-Based Rate Allocation

MA Uniform Rate Allocation

Fig. 5. Operating Modes for the2-User Baseline Network and the2-User
Bargaining-Based Network, for Total Rate Constraints Ranging from9.5 kbps
to 24.4 kbps: The top panel refers to bargaining-based rate allocation while
the bottom panel refers to Maximally Allocated (MA) Uniform Allocation.
Note that the operating points associated with Fairly Allocated (FA) Uniform
Allocation are the subset of MA operating points along the diagonal axis.

TABLE IV

Results for2-User System Using theUSNR Utility Function, Tested On

Continuous Speech

Allocation Algorithm u improvement over FA
FA Uniform Allocation 2.770 dB N/A
MA Uniform Allocation 3.092 dB 0.322 dB

Bargaining-based Allocation 3.235 dB 0.465 dB

E. Rate Allocation for Simulated Conversational Speech

Since speech communication networks commonly transmit
signals that are comprised of both speech segments and non-
speech (silent) segments, the proposed system was tested on
simulated conversational speech. The simulated conversational
speech signals were created by concatenating randomly chosen
sentences with silence of durationSβ , whereSβ is a random
variable with uniform distribution over the range[0, β]. Thus
the expected value ofSβ is E [Sβ ] = β/2. Figure 6 shows
and example of simulated conversational speech signals for a
2-user network.

Table VI shows the results of the proposed rate allocation
algorithm using the segmental SNR utility function, tested on

TABLE V

Results for2-User System Using theUItak Utility Function, Tested On

Continuous Speech

Allocation Algorithm u IItak % decrease from FA
FA Uniform Allocation 3.380 0.296 N/A
MA Uniform Allocation 3.813 0.262 −11.49%

Bargaining-based Allocation 3.880 0.258 −12.84%
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Fig. 6. Example Input Simulated Conversational Speech Signals for2-user
Case

TABLE VI

Results for2-User System Using theUSNR Utility Function, Tested On

Simulated Conversational Speech

Allocation Algorithm u improvement over FA
FA Uniform Allocation 3.886 dB N/A
MA Uniform Allocation 4.164 dB 0.278 dB

Bargaining-based Allocation 4.590 dB 0.704 dB

simulated conversational speech withE [Sβ ] = 3.0 seconds.
Table VII shows the results of the proposed rate allocation
algorithm using the Itakura utility function and theIItak

distortion measure, also withE [Sβ ] = 3.0 seconds.

It can be interpreted from Table VI and Table VII that
the bargaining-based rate allocation algorithm results in in-
creased utility measures relative to the baseline systems. The
proposed system provides0.704 dB improvement relative to
the FA uniform allocation scheme in terms of theUSNR

utility functions. Additionally, the proposed system provides a
19.50% decrease in theIItak distortion measure. Furthermore,
the relative improvements shown for simulated conversational
speech are greater than those provided for continuous speech.
Improved performance is due to the fact that users are typically
not speaking simultaneously. For example, in theM -user
example, if useri is silent for a period of time, all excess
rate can be allocated to the other users in the system.

TABLE VII

Results for2-User System Using theUItak Utility Function, Tested On

Simulated Conversational Speech

Allocation Algorithm u IItak % decrease from FA
FA Uniform Allocation 3.146 0.318 N/A
MA Uniform Allocation 3.531 0.283 −11.01%

Bargaining-based Allocation 3.906 0.256 −19.50%

TABLE VIII

Performance of Weighted Priority Rate Allocation in the2-User Case,

Using theUSNR Utility Function

Relative Weight Vector [1, 1]T [1, 2]T [1, 3]T

r1 (kbps) 8.749 7.960 7.807
r2 (kbps) 8.851 9.640 9.793

u1 3.136 dB 2.905 dB 2.869 dB
u2 3.501 dB 3.744 dB 3.886 dB

F. Weighted Priority Rate Allocation

As discussed in Section III-C.5, there may exist scenarios in
which the utilities of users may be weighted unequally. These
relative weights are defined in vector form in Equation 16.
Table VIII shows examples of the resulting rates and utilities
for the3-user case, for arbitrary relative weight vectors, using
the USNR utility function.

In can be concluded from Table VIII that the resulting user
rates and utility measures reflect the corresponding priority
weighting vectors.

Several benefits are shown for the proposed bargaining-
based rate allocation system for multi-user speech networks.
Firstly, the proposed system results in superior quality of
speech measures relative to the baseline system of uniform
allocation. The second major benefit of the proposed algorithm
is increased short-time coding bitrate resolution. Finally, the
proposed system is robust to scenarios in which the quality of
speech measures of users are weighted differently.

VI. CONCLUSION

This paper focuses on a non-collaborative multi-user speech
communication system with a central spectral moderator.
Specifically, this paper investigates bargaining theory as a
method of rate allocation in anM -user system, and applies
the generalized KSBS to solve this problem. The algorithm
developed uses the concept of bargaining powers based on
the short-time energy of input speech signals, and accordingly
allocates rate. The rate allocation scheme is designed to be
applicable to any multi-rate speech coder, and is robust to a
variety of speech quality metrics.

The proposed rate allocation system is shown to provide
increased speech utility measures relative to the uniform
allocation baseline systems. Additionally, the system is shown
to involve a quick and low complexity training process. It is
also shown to be robust to scenarios in which the quality of
speech of users are weighted differently. Finally, the proposed
system is shown to improve the short-time coding bitrate
resolution of the GSM AMR-NB speech coder. This results
in a greater number of operational modes for the multi-user
network.
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